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Unwinding of DNA
 If we throw DNA in 
hot water, the bonds 

between the two 
strands break, and 

the strands 
disentangle

How long does it 
take?

It depends on the 
DNA length...



  

● We want to study the time τ of DNA thermal 
denaturation as a function of the DNA length L

                           

● We use simplified models, no microscopic details
  -  Poland-Scheraga
  -  Self-avoiding walks on 3d lattice

Scaling properties

~Lz



  

A lot of twist needs to be released

Entropy
increase



  

The main point: 
no crossings of the two strands

Polymer locally 
cannot overlap or 
temporarily break 
their continuity to 
cross each other

In our body there are enzymes (topoisomerases) that  
allow portions of DNA strands to cross each other,

removing knots  or other unsuitable topologies

Polymer locally 
cannot overlap or 
temporarily break 
their continuity to 
cross each other

Polymer locally 
cannot overlap or 
temporarily break 
their continuity to 
cross each other



  

unwinding is a non-local problem
the chain length matters

Same linking, but 
in the second case there is 
a longer portion of the chain 

to be moved / traveled...

TokyoRio



  

unwinding is a non-local problem
the chain length matters



  

Poland-Scheraga model
1 = bound segment  →  
                                   energy E → 
                                                   weight  exp[-E/kT]
0 = bubble portion
000000 = bubble of length n →weight

     c = 3/2   (random walk)
     c = 1.76 (self-avoiding polygon)
     c = 2.14 (Kafri-Mukamel-Peliti, we use this one)

A configuration:  0000101001111010111111101000
Partition function: 

bnn−c

Z=(bn1 n1
−c

)...(bnqnq
−c

)exp [−Etot /kT ]



  

Poland-Scheraga model

It is tempting
to change
a 1 to a 0

as a Glauber 
move in the
Ising model



  

Poland-Scheraga model

...but a simple
1 → 0 change

corresponds to 
a non-local 

rearrangement 
of the chain!



  

Poland-Scheraga model

One should 
move the 1's
only locally

●Kawasaki
 

●Glauber 



  

The dynamics
● Metropolis acceptance ratio

 
● Kawasaki in the bulk    01 ↔ 10
 Glauber at end sites     0 → 1   or  1 → 0

● L sites, all 1's at time t=0

● Time step = L local updates 
                                 (Glauber / Kawasaki)

P(x → y)=min(1,Z y /Z x)



  

The simulation

● Number of open sites (0's) =  δ
  

● Number of bubbles = ν

● Closed boundaries (one loop with two strands)

● High temperature

●Thus: we start with a lot of 1's (double helix) and 
we wait until we have almost all 0's (giant bubble)



  

Comparison of the two dynamics

all Glauber
Kawasaki

O L2.15

O L3

O(1)



  

Scaling with L
   bubbles                          unbound sites



  

Two time-scales 1 ,2



  

First regime: 
1's escape from borders

● 1111111111111111111111111
● 0111111111111111111111110
● 010111111111101111111100
● 00011111111100111001010

●.....
● 00000001111111000000000

Numerically: 

Random 1-0 
swaps lead to a 

diffusion like 
time-scale L^2

But at some point 
some larger 

bubbles start to 
trap the 1'sτ1∼Lz1 with z1≃2.15

T
IM

E



  

2nd regime: bound segments (1's) 
must overtake entropic barriers

Free-energy  vs.  position of the “1”

Z=bn1 n1
−c

 ...bnqnq
−c

exp[−E tot /kT ]



  

Scaling of the 2nd time-scale
A single escape of a bound segment from an 

entropic barrier from a bubble of length x
 takes a time ~ 

Summing over all lengths x<L/2, 
one expects an exponent

Numerically  

z2=c1≃3.1

τ2∼Lz2 with z2≃3

xc



  

Noticeable approximations 

1) One assumes jumps between states described 
by equilibrium quantities (partition functions)

2) Pairing between homologous bases is forced

3) Inertia neglected



  

Noticeable approximations 

1) One assumes jumps between states described 
by equilibrium quantities (partition functions)

2) Pairing between homologous bases is forced

3) Inertia neglected

Let's try a 3d simulation



  

Two polymers on the fcc lattice

Initial double helix

No interaction, only self- and 
mutual-avoidance

Each of the L sites can host 
one or more consecutive 
monomers (not visible)

Total N ≥ L monomers



  

~N local moves per time step t



  

Local moves  

N=14,  L=9

Among local 
moves, we have 
displacements of 

accumulated 
monomers, and 

vicecersa  

N=14,  L=10 



  

Elastic Lattice Polymers (ELP)

This model has been named ELP

Its equilibrium properties studied recently
Baiesi, Barkema, Carlon, Phys.Rev.E. 2010

Interesting quantity: stored length density
(N-L)/N

Its scaling is related to critical exponents



  

Unbinding time: exponent z=2.57(3)

~N z



  

Opening from 
the ends

0.39 = 1 / 2.57

This opening is 
not imposed:
It comes from
the physics

of the process

Mean distance of monomer “i” from the other strand (profile for fixed t)

TIME INCREASE

l t ~t0.39



  

If it was equilibrium-like



  

Too large exponent z=3.18 > 2.57 

● A similar exponent >3 found by 
Baumgärtner & Muthukumar (1985) 
in a less asymptotic simulation  

● Assumption of equilibrium meta-states is not 
supported by our simulations

● Configurations can have spiral-like shapes
● Though not easy to define spirals between two 
polymers → Need to try polymer+bar



  

Summary

● DNA denaturation is not a desorption problem, 
we must take into account the chain entanglement

● If we do, the time-scales of disentangling scale 
at least as a power-law of DNA length, with 
exponent at least 2.57

● Need to clarify the occurrence of multiple time-
scales and the kind of dynamics, and find more 
explanations for the numbers



  

Quite not prophetic

Baumgärtner and 
Muthukumar, 1985
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