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“The Example”: (1 + d)–directed walk models

Symmetric Random Walk {Sn}n with increments in {−1, 0,+1} (d = 1)

Sn

n0 ω3 ω4 ω6 ω14 ω15 ω16

Defect Line

Model (β ≥ 0, h ∈ R):

dPN,ω

dP
(S) =

1

ZN,ω
exp

(

N
∑

n=1

(βωn + h) δn

)

with δn = 1Sn=0. The disorder ω is a IID sequence N (0, 1) of law P.
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“The Example” again: d–dim. heteropolymer

A polymer chain made up of charged monomers, interacting with a
potential near a point in space

0

ωa ωb ωc
ωd

Many other physical, biological,... systems:

Two dimensional interfaces near a (rough) wall

Of course: DNA denaturation (Poland-Scheraga)

Flux-lines in super-conductors
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“The Example” again: d–dim. heteropolymer

A polymer chain made up of charged monomers, interacting with a
potential near a point in space

0

ωa ωb ωc
ωd

Many other physical, biological,... systems:

Two dimensional interfaces near a (rough) wall

Of course: DNA denaturation (Poland-Scheraga)

Flux-lines in super-conductors

many more, but also: exactly solvable if β = 0

G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 4 / 19
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‘Rethinking ‘The Example”

Symmetric Random Walk {Sn}n with increments in {−1, 0,+1}

Sn

n0 ω3 ω4 ω6 ω14 ω15 ω16

τ1 τ2 τ3 τ4 τ5 τ6

Defect Line

Model (β ≥ 0, h ∈ R):

dPN,ω

dP
(τ) =

1

ZN,ω
exp

(

N
∑

n=1

(βωn + h) δn

)

with δn = 1n∈τ .
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1 τ = {τ0, τ1, τ2, . . . } discrete renewal sequence (that is, τ0 = 0 and
{τj − τj−1}j∈N is IID), of law P, s. t.

K (n) = P(τ1 = n) ∼ CK/n1+α, (CK > 0),

or even P(τ1 = n) ∼ L(n)/n1+α, L(·) a slowly varying function, and
∑
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K (n) ≤ 1.
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K (n) = P(τ1 = n) ∼ CK/n1+α, (CK > 0),

or even P(τ1 = n) ∼ L(n)/n1+α, L(·) a slowly varying function, and
∑

n∈N

K (n) ≤ 1.

2 If
∑

n K (n) < 1 =⇒ renewal on N∪{∞}, with K (∞) = 1−
∑

n K (n)
(terminating renewal), otherwise the renewal is persistent.

Obs.: α = 1/2 for both d = 1 and 3, but
∑

n

K (n) < 1 if d = 3
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or even P(τ1 = n) ∼ L(n)/n1+α, L(·) a slowly varying function, and
∑

n∈N

K (n) ≤ 1.

2 If
∑

n K (n) < 1 =⇒ renewal on N∪{∞}, with K (∞) = 1−
∑

n K (n)
(terminating renewal), otherwise the renewal is persistent.

τ0 := 0 τ6 nτ1 τ2 τ3 τ4 τ5
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The Poland-Scheraga model

Loops

AA

A

G

CTT

T

τ6 − τ5 τ9 − τ8 τ14 − τ13

The two thick lines are the DNA strands. They may be paired,
gaining thus energetic contributions that depend on whether the base
pair is A-T or G-C.
There are then sections of unpaired bases (the loops) to which an
entropy is associated: loops correspond to inter-arrival of length
n ≥ 2.
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Annealed, pure and homogeneous models

Observe that

EZ c
N,ω,β,h = E

[

exp

(

N
∑

n=1

((β2/2) + h)δn

)

δN

]

which is the partition function of a homogeneous model.
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Observe that

EZ c
N,ω,β,h = E

[

exp

(

N
∑

n=1

((β2/2) + h)δn

)

δN

]

which is the partition function of a homogeneous model.

So:

The annealed (or pure) model is just a homogeneous model with
pinning potential h + β2/2;

Homogeneous pinning models are exactly solvable exhibiting a
surprisingly wide spectrum of behaviors (when α varies).
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The free energy

Theorem (Existence of the free energy and self-averaging). The limit

lim
N→∞

1

N
log ZN,ω =: f(β, h)

exists P(dω)-a.s. and in L1(P), f(β, h) is non random and f(β, h) ≥ 0.
Moreover f(·, ·) is convex, f(β, ·) is non-decreasing and
f(0, h) ≤ f(β, h) ≤ f(0, h + β2/2) =: fa(β, h).

Proof of f(β, h) ≤ f(0, h + β2/2): Jensen’s inequality

E log ZN,ω ≤ log EZN,ω.
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Localization and Delocalization

Proof of f(β, h) ≥ 0:

f(β, h) = lim
N

1

N
E log E

[

exp

(

N
∑

n=1

(βωn + h)δn

)]

≥ lim inf
N

1

N
E log E

[

exp

(

N
∑

n=1

(βωn + h)δn

)

; τ1 > N

]

= lim
N

1

N
log P (τ1 > N) = 0.
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The phase diagram

Critical point/curve: hc(β) := max{h : f(β, h) = 0}

β0

0

f(β, h) h

h

hc(β)

hc(β)

hc(0)

ha
c(β) := hc(0) − β2/2

f(β, h) > 0

f(β, h) = 0
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The phase diagram

Critical point/curve: hc(β) := max{h : f(β, h) = 0}

β0

0

f(β, h) h

h

hc(β)

hc(β)

hc(0)

ha
c(β) := hc(0) − β2/2

f(β, h) > 0

f(β, h) = 0

Plenty of questions, but above all:

Can one compute or estimate hc(β)?

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))νq
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Critical behavior of the pure model

The pure model is solvable and it displays any kind of critical behavior!
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∑

n K (n)(≥ 0)
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Critical behavior of the pure model

The pure model is solvable and it displays any kind of critical behavior!

hc(0) = − log
∑

n K (n)(≥ 0) and if h > hc(0) the free energy is given by

∑

n

K (n) exp(−f(0, h)n) = exp(−h),

which directly yields

f(0, h)
hցhc (0)

∼ const.(h − hc(0))
νa

with

νa =

{

1/α for α ∈ (0, 1)

1 for α > 1
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Critical behavior of the pure model

The pure model is solvable and it displays any kind of critical behavior!

hc(0) = − log
∑

n K (n)(≥ 0) and if h > hc(0) the free energy is given by

∑

n

K (n) exp(−f(0, h)n) = exp(−h),

which directly yields

f(0, h)
hցhc (0)

∼ const.(h − hc(0))
νa

with

νa =

{

1/α for α ∈ (0, 1)

1 for α > 1

...M. Fisher ’84. But: Erdos, Pollard, Feller, Garsia, Lamperti... (40’s...)
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General principles to deal with disorder(?)

Recall the main questions:

Compute or estimate hc(β)

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))νq
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Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))νq

Harris Criterion (A. B. Harris 1974)

Knowing the critical behavior of the pure system one can decide whether
(at small disorder) the critical behavior of pure and disordered systems
coincide (the disorder is irrelevant) or differ (the disorder is relevant).
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Recall the main questions:

Compute or estimate hc(β)

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))νq

Harris Criterion (A. B. Harris 1974)

Knowing the critical behavior of the pure system one can decide whether
(at small disorder) the critical behavior of pure and disordered systems
coincide (the disorder is irrelevant) or differ (the disorder is relevant).

HC for pinning models [Forgacs et al. (1986), Derrida et al. (1992)]:

hc(β) = ha
c(β) and νq = νa for β small if α < 1/2

hc(β) 6= ha
c(β) and (probably) νq 6= νa for β > 0 and α > 1/2.
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Harris criterion for pinning models: rigorous results

If 0 ≤ α < 1/2 disorder is irrelevant if β is not too large: there exists
β0 ∈ (0,∞] such that for β < β0 we have

hc(β) = ha
c(β)

and νq = νa, that is

lim
hցhc (β)

log f(β, h)

log(h − hc(β))
= 1/α

[Alexander 08], [Toninelli 08], [GT09],[Lacoin 10]
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Harris criterion for pinning models: rigorous results

If 0 ≤ α < 1/2 disorder is irrelevant if β is not too large: there exists
β0 ∈ (0,∞] such that for β < β0 we have

hc(β) = ha
c(β)

and νq = νa, that is

lim
hցhc (β)

log f(β, h)

log(h − hc(β))
= 1/α

[Alexander 08], [Toninelli 08], [GT09],[Lacoin 10]

If α > 1/2 disorder is relevant for every β > 0: hc(β) > ha
c(β) and

νq ≥ 2 > νa = 1/α smoothing!

Moreover

hc(β) − ha
c(β) ≈

{

β2α/(2α−1) if α ∈ (1/2, 1)

β2 if α > 1

[GT 06], [Derrida GLT 09], [A Zygouras 10]
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The marginal case (α = 1/2): two parties

Marginal irrelevance of weak disorder:
Forgacs, Luck, Nieuwenhuizen, Orland (1986, 1 + 1-dim. wetting)

Marginal relevance of disorder:
Derrida, Hakim, Vannimenus (1992, 1 + 1-dim. wetting)
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The marginal case (α = 1/2): two parties

Marginal irrelevance of weak disorder:
Forgacs, Luck, Nieuwenhuizen, Orland (1986, 1 + 1-dim. wetting)
Grosberg, Shakhnovich (1986, pinning of a heteropolymer in d = 3)
Gangardt, Nechaev (2008, 1 + 1-dim. wetting)

Marginal relevance of disorder:
Derrida, Hakim, Vannimenus (1992, 1 + 1-dim. wetting)
Bhattacharjee, Mukherji (1993, 1 + 1-dim. wetting)
Tang, Chaté (2001, 1 + 1-dim. pinning)
Stepanow, Chudnovskiy (2002, 1 + 1-dim. pinning)

Claim in case of disorder relevance:
critical point shift of ≈ exp(−c/β2) (more vague about νq)

Rigorous: νq ≥ 2 (poor...)

cε exp(−c/β2+ε) ≤ hc(β) − ha
c(β) ≤ c exp(−c/β2)

for β ≤ β0 [A08,T08,GLT10,GLT11]
G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 15 / 19



Smoothing inequality

Theorem [GT06, CMP and PRL]

Under assumptions on the disorder, for every β > 0 there exists Cβ such
that for every h

f(β, h) ≤ αCβ (h − hc(β))2 .

Possibly more transparent when written as

0 ≤ f(β, h) − f(β, hc (β)) ≤ αCβ (h − hc(β))2

(the result is non trivial only for h < hc(λ)). Rephrasing: f(β, ·) is C 1,1 at
hc(β) =⇒ the transition is at least of second order (almost third...)

G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 16 / 19



Smoothing inequality

Theorem [GT06, CMP and PRL]

Under assumptions on the disorder, for every β > 0 there exists Cβ such
that for every h

f(β, h) ≤ αCβ (h − hc(β))2 .

Possibly more transparent when written as

0 ≤ f(β, h) − f(β, hc (β)) ≤ αCβ (h − hc(β))2

(the result is non trivial only for h < hc(λ)). Rephrasing: f(β, ·) is C 1,1 at
hc(β) =⇒ the transition is at least of second order (almost third...)

What assumptions?

The disorder is IID and the law of ω1 either has a strictly positive density
(with a finite entropy condition wrt Gaussian) or it has compact support.
Generalizes to non IID: e.g. stationary Gaussian with summable
covariance. [Berger]

G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 16 / 19



Smoothing argument: the rare stretch strategy

0 Nℓ 2ℓ 3ℓ 6ℓ

good block

7ℓ

Consider blocks of length ℓ (large, but finite) and choose N to guaranty
that with large probability there is at least a (good!) block in which
log Z c

ℓ,θiℓω,β,hc (β)
is larger than ℓ1

2f(β, hc (β) + ∆), ∆ > 0.
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)

because to have log Z c
ℓ,ω,β,hc(β) > ℓ1

2f(β, hc (β) + ∆) it suffices that the

environment looks like (ω1 + ∆/β, . . . , ωℓ + ∆/β).
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because to have log Z c
ℓ,ω,β,hc(β) > ℓ1

2f(β, hc (β) + ∆) it suffices that the

environment looks like (ω1 + ∆/β, . . . , ωℓ + ∆/β).

This requires N = O
(

ℓ exp
(

1
2ℓ∆2

β2

))

.

Then make a lower bound on Z c
N,ω,β,hc(β) by considering only the τ

trajectories visiting the only the first good block
G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 17 / 19
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By super-additivity:

1

N
E log Z c

N,ω,β,hc(β) ≤ f(β, hc (β)) = 0

G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 18 / 19



Smoothing argument: the rare stretch strategy

0 Nℓ 2ℓ 3ℓ 6ℓ

good block

7ℓ

By super-additivity:

1

N
E log Z c

N,ω,β,hc(β) ≤ f(β, hc (β)) = 0

But (recall N = O
(

ℓ exp
(

1
2ℓ∆2

β2

))

)

0 ≥ E log Z c
N,ω,β,hc(β) ≥ ℓ

1

2
f(β, hc (β) + ∆) − C log N

≥ ℓ

(

1

2
f(β, hc (β) + ∆) −

C

2

∆2

β2

)

+ O(log ℓ)

and the non-positivity of the blue term is the smoothing inequality.
G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 18 / 19



About smoothing

Other approaches to smoothing:

The inequality ν ≥ 2/d in [Chayes×2, Fisher, Spencer 86] is about
correlation functions and it is valid under complex assumptions
(conditional result), verified for the Ising model and for the quenched
averaged correlation length. It is very unclear what this approach
yields for pinning models, and above all for α > 1.

[Aizenman, Wehr 91] uses a substantially different mechanism: typical
fluctuations (CLT: [AW]) versus atypical deviations (Large Deviations:
[GT])

G.G. (Paris Diderot and LPMA) IRS 2012 Paris, IHP 19 / 19
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About smoothing

Other approaches to smoothing:

The inequality ν ≥ 2/d in [Chayes×2, Fisher, Spencer 86] is about
correlation functions and it is valid under complex assumptions
(conditional result), verified for the Ising model and for the quenched
averaged correlation length. It is very unclear what this approach
yields for pinning models, and above all for α > 1.

[Aizenman, Wehr 91] uses a substantially different mechanism: typical
fluctuations (CLT: [AW]) versus atypical deviations (Large Deviations:
[GT])

Important issue

For α ≥ 1/2, is νq > 2?
This is certainly expected, and observed numerically in [Coluzzi, Yeramian
07] for α = 1.15, along with the role of atypical deviations.
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