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Markov processes with absorption

We consider a Markov process which evolves on a state space

E ∪ {∂}, with absorption at ∂ /∈ E , i.e. the process stays in ∂ once

it reached it.

Denoting by τ∂ = inf{t ≥ 0, X ∂
t = ∂} the hitting time of ∂, we

thus have

X ∂
t = ∂, ∀t ≥ τ∂ almost surely.

Examples: stochastic models for population sizes.

Galton-Watson processes on N (discrete time),

Birth and death processes on N,
Stochastic Lotka-Volterra system on Rnumber of types

+ ,

Wright-Fisher processes on [0,1].
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Long time behavior of X ∂

Some assumptions

P∂x (τ∂ < +∞) = 1 and P∂x (τ∂ > t) > 0, ∀t > 0.

X ∂ is an ergodic process whose stationary distribution is δ∂ ...

We are interested in the distribution of the non-absorbed positions

of the process: P∂x
(
X ∂
t ∈ ·|t < τ∂

)
.

De�nition

A quasi-limiting distribution (QLD) is a probability measure α such

that ∃µ ∈M1(E ) satisfying

α = lim
t→∞

P∂µ
(
X ∂
t ∈ ·|t < τ∂

)
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Yaglom limits and quasi-stationary distributions

Dé�nitions

A Yaglom limit for X ∂ is a probability measure α on E such that

α = lim
t→∞

P∂x (X ∂
t ∈ .|t < τ∂), ∀x ∈ E .

A quasi-stationary distribution (QSD) is a probability measure α
such that

Pα(X ∂
t ∈ .|t < τ∂) =

∫
E

Px(X ∂
t ∈ .|t < τ∂)dα(x) = α, ∀t ≥ 0.

Questions: Existence and uniqueness, value of the QSD, speed of

convergence.
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General properties

Yaglom limit, QLD and QSD

1. The Yaglom limit is a QLD (de�nition),

2. Any QSD is a QLD (de�nition),

3. Any QLD is a QSD.

Brie�y: Yaglom limit ⇒ QLD ⇔ QSD.

QSD, QLD, absorption rate

1. If α is a QLD, then ∃λ0 > 0 such that

1a. Pα(t < τ∂) = e
−λ0t ,

1b. Eα(eθτ∂ ) < +∞, ∀θ ∈ [0,λ0[.

2. If α is a QLD for X starting from µ, then

absorption rate(t)
def
= P∂µ(τ∂ ∈]t,t + 1]|τ∂ > t) −−−→

t→∞
e−λ0 .
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Numerical illustration

Convergence of the absorption rate for a BM in [0,1] absorbed at

{0,1}

Convergence to the Yaglom limit, then quasi-stationarity (3D

Brownian motion with drift).
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Criterion for the existence and uniqueness of a QSD

Proposition

If there exist C ,γ > 0 such that, for any µ and ν,∥∥∥Pµ (X ∂
t ∈ ·|t < τ∂

)
− Pν

(
X ∂
t ∈ ·|t < τ∂

)∥∥∥
TV
≤ Ce−γt , ∀t ≥ 0,

then there exists a unique QSD α for X and∥∥∥Pµ (X ∂
t ∈ ·|t < τ∂

)
− α

∥∥∥
TV
≤ Ce−γt , ∀t ≥ 0,

Remark 1: Even if the QSD is unique, there is now insurance that

this mixing property holds.

Remark 2: The mixing property is also interesting when the

semi-group isn't time-homogeneous.
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Let E be a bounded and smooth open subset D ⊂ Rd . Let X ∂ be

de�ned by

dX ∂
t = σ(t,X ∂

t )dBt + b(t,X ∂
t )dt, X

∂
0 ∈ D,

with time-periodic, Lipschitz and elliptic coe�cients.

Theorem (Del Moral, V. 2011)

If ∑
k,l

∂φ

∂xk
(z)

∂φ

∂xl
(z)[σσ∗]kl (t,ε,z) = f (t,ε,z) + g(t,ε,z),

where φ(z) = d(z ,∂D), fi is positive and of class C 1,2 and

g(t,ε,z) ≤ k0φ(z), then the mixing property holds.

Existence and uniqueness results can also be found in Pinsky 1985,

Gong, Qian, Zhao 1988, Knobloch, Partzsch 2010.
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Let E = N∗ and ∂ = 0. Let X ∂ be a non-explosive strong Markov

process on E ∪ {∂}, with transition rate matrix (Q(x ,y))(x ,y)∈N2 .

Theorem (Martínez, San Martín, V.)

Assume that Pt(x ,y) > 0, ∀x ,y ∈ N∗ and that there exists a �nite

subset K ⊂ N∗ such that

inf
x∈N∗\K

Q(x ,0) +
∑
y∈K

Q(y ,x)

 > sup
x∈N∗

Q(x ,0).

Then the mixing property holds.

The existence and uniqueness of the QSD for X ∂ was already

known (Ferrari, Mari�c 2007) in the subcase∑
x∈N∗

inf
y∈N∗

Q(x ,y) > sup
x∈N∗

Q(x ,0).
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A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

2. Approximation of conditioned Markov processes
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Application: study of a multi-type di�usion process

A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

The interacting particle system (Burdzy, Holyst, Ingerman, March

1996)

(X 1
t ,...,X

N
t )t≥0 is a càdlàg process:

Start with N independent copies of X ∂
t ,

Wait for the �rst killing time (τ1) the killed particle is sent to

the position of one another particle (in E )

continue with N independent copies of X ∂ until the next

killing time (τ2), and so on.

Some notations: sequence of killing times 0 < τ1 < τ2 < ...
AN
t denotes the number of killings up to time t.

µNt =
1

N

N∑
i=1

δX i
t
.
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A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

Illustration with 2 particles and E =]0,1[

AN
t = 0
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A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

Illustration with 2 particles and E =]0,1[

AN
t = 3
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Theorem (V 2011)

Assume that µN0 −−−−→
N→∞

µ0 ∈M1(E ), that Pµ0(t < τ∂) > 0 and

that

AN
t < +∞, ∀N ≥ 2 almost surely,

then

µNt (dx)
law−−−−→

N→∞
P∂x
(
X ∂
t ∈ dx |t < τ∂

)
.

Moreover we have, for all measurable function f and all time T > 0,

E
(∣∣∣µNT (f )− EµN0

(
f (X ∂

T )|T < τ∂

)∣∣∣)
≤ 4‖f ‖∞√

N

√√√√√E

 1

P∂
µN0

(T < τ∂)
2

.
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Approximation of conditioned Markov processes

Application: study of a multi-type di�usion process

A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

About AN
t < +∞ almost surely for all N ≥ 2...

Soft obstacle setting with a bounded rate of killing: trivial

Hard obstacle setting: not always true and di�cult (see

Burdzy, Holyst, March (2000) Löbus (2007), Bienek, Burdzy,

Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A counter example:

A more interesting counter-example (Bienek, Burdzy, Pal, 2011):

dX ∂
t = dBt − 1

X∂
t

dt.
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E = Env × D, with Env ⊂ Rd (environment), D ⊂ Rd ′ (position).

X ∂ = (t,et ,Zt)t∈[0,+∞[×E∪{∂}

is such that

det = s(t,et ,Zt)dβt +m(t,et ,Zt)dt

dZt = σ(t,et ,Zt)dBt + µ(t,et ,Zt)dt,

killed when X ∂ reaches [0,+∞[×Env × ∂D.

Theorem (V. 2011)

If ∂D is of class C 2, s,m,σ,µ are uniformly bounded and∑
k,l

∂φ

∂xk
(z)

∂φ

∂xl
(z)[σσ∗]kl (t,ε,z) = f (t,ε,z) + g(t,ε,z),

where φ(z) = d(z ,∂D), fi is positive and of class C 1,2 and

g(t,ε,z) ≤ k0φ(z), then

AN
t < +∞ almost surely.
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Application: study of a multi-type di�usion process

A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y 1
t ,Y

2
t ) be a couple of semi-martingale such that

dY i
t = dM i

t + bitdt + Y i
t − Y i

t-,

with Y i
t − Y i

t- > 0 (only positive jumps).

Proposition (V 2011)

If 〈M〉it = πitdt, where π
i is a good semi-martingale, then

P(T(0,0) < +∞) = 1.

To verify �πi is a good semi-martingale� is a simple application of

Itô's formula when Y 1 and Y 2 are C 2 functions of Itô's di�usion

processes. In our case, Y 1 = φ(X 1) and Y 2 = φ(X 2).
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A Fleming-Viot type interacting particle system
Convergence to the conditioned distribution
A non-explosion problem
Uniform convergence in time

Proof (2) AN
t
= +∞ ⇒ attainability of (0,0)

Assume that AN
t = +∞.

We deduce that

lim
n→∞

(
φ(X 1

τn),φ(X
2
τn)
)
=(0,0)

Denoting (Y 1,Y 2) = (φ(X 1),φ(X 2)), we get

P(AN
t =∞) ≤ P(T(0,0) < +∞)

By our assumptions, (Y 1,Y 2) cannot reach (0,0).
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Uniform convergence in time

Let E be a bounded and smooth open subset D ⊂ Rd . Let X ∂ be

de�ned by dX ∂
t = σ(t,X ∂

t )dBt + b(t,X ∂
t )dt, X

∂
0 ∈ D, with

time-periodic, Lipschitz and elliptic coe�cients.

Theorem (Del Moral, V. 2011)

If ∑
k,l

∂φ

∂xk
(z)

∂φ

∂xl
(z)[σσ∗]kl (t,ε,z) = f (t,ε,z) + g(t,ε,z),

where f is positive and of class C 1,2 and g(t,ε,z) ≤ k0φ(z), then

sup
t∈[0,+∞[

sup
A⊂D

E
∣∣∣µNt (A)− PµN0

(
X ∂
t ∈ A|t < τ∂

)∣∣∣ −−−−→
N→∞

0.

In particular, if X ∂ is time homogeneous then

lim
N→∞

lim
t→∞

µNt = α (the unique QSD of X ∂).
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Let E = N∗ and ∂ = 0. Let X ∂ be a non-explosive strong Markov

process on E ∪ {∂}, with transition rate matrix (Q(x ,y))(x ,y)∈N2 .

Theorem

Assume that Pt(x ,y) > 0, ∀x ,y ∈ N∗ and that there exists a �nite

subset K ⊂ N∗ such that

infx∈N∗\K

(
Q(x ,0) +

∑
y∈K Q(y ,x)

)
> supx∈N∗ Q(x ,0).

Then

sup
t∈[0,+∞[

sup
A⊂D

E
∣∣∣µNt (A)− PµN0

(
X ∂
t ∈ A|t < τ∂

)∣∣∣ −−−−→
N→∞

0.

Moreover, limN→∞ limt→∞ µ
N
t = α (the unique QSD of X ∂).

Under the condition
∑

x∈N∗ infy∈N∗ Q(x ,y) > supx∈N∗ Q(x ,0),
Ferrari and Mari�c showed �rstly that limN→∞ limt→∞ µ

N
t exists and

identi�ed it as a QSD (see also Asselah, Ferrari, Groisman 2011).
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3 types competitive Lotka-Volterra system

X ∂ is a 3-tuple process (Z 1,Z 2,Z 3) (∂ = (0,0,0))

which evolves as

dZ 1
t =

√
γ1Z 1

t dB
1
t +

(
r1Z

1
t − c11(Z

1
t )

2 − c12Z
1
t Z

2
t − c13Z

1
t Z

3
t

)
dt,

dZ 2
t =

√
γ2Z 2

t dB
2
t +

(
r2Z

2
t − c21Z

1
t Z

2
t − c22(Z

2
t )

2 − c23Z
2
t Z

3
t

)
dt,

dZ 3
t =

√
γ3Z 3

t dB
3
t +

(
r3Z

3
t − c31Z

1
t Z

3
t − c32Z

2
t Z

3
t − c33(Z

3
t )

2
)
dt,

with γi = 1, cii = 10, cij = 0.5, ∀ i 6= j ∈ {1, 2, 3}, and
r1 = 1.5, r2 = 1, r3 = 0.5.

Theorem (Cattiaux, Méléard 2010, Méléard, V. 2011)

For any initial distribution µ which charges R∗+ × R∗+ × R∗+, we
have lim

t→∞
Pµ (Xt ∈ ·|t < τ∂) = α1 ⊗ δ0 ⊗ δ0,

where α1 is the unique QSD for the one-dimensional dynamic

dZt =
√
γ1ZtdBt +

(
r1Zt − c11(Zt)

2
)
dt.
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Evolution of the number of types:

The process starts with three types {1,2,3},
Then one (and only one) type disappears. It remains two types

{1,2}, {1,3} or {2,3}.
Then an other type disappears. It remains one type 1, 2 or 3.

24 / 28



Quasi-stationary distributions and Yaglom limits
Approximation of conditioned Markov processes

Application: study of a multi-type di�usion process

3 types competitive Lotka-Volterra system
Evolution of the number of types
Numerical results

Evolution of the number of types:

The process starts with three types {1,2,3},
Then one (and only one) type disappears. It remains two types

{1,2}, {1,3} or {2,3}.
Then an other type disappears. It remains one type 1, 2 or 3.

24 / 28



Quasi-stationary distributions and Yaglom limits
Approximation of conditioned Markov processes

Application: study of a multi-type di�usion process

3 types competitive Lotka-Volterra system
Evolution of the number of types
Numerical results

Natural questions answered by numerical approximation

1. At a �xed time t > 0, what is the probability to have three

types, two types or one type ? Which types ?

2. What is the value of α = α1 ⊗ δ0 ⊗ δ0 ?

Di�culty: The FV process isn't well de�ned (AN
t

?
< +∞).

Solution: We restrict the process to [ε,1/ε[3, with 0 < ε� 1, each

component being absorbed when it hits ε or 1/ε and we use:

Theorem (V. 2011)

We have

Pε(z1,z2,z3)(X
∂
t ∈ ·|t < τ∂) −−→

ε→0
P(z1,z2,z3)(X

∂
t ∈ ·|t < τ∂)

and αε −−→
ε→0

α

.
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1. Probability of presence of each types:
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2. Approximation of α1:
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Thank you!
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