Approximation of Markov processes conditioned on non-absorption

Denis Villemonais with Sylvie Méléard

INRIA - TOSCA Team Institut Élie Cartan, Nancy, France

Tuesday 24th, January 2012 Inhomogeneous Random Systems

Quasi-stationary distributions and Yaglom limits

Quasi-stationary distributions and Yaglom limits

Approximation of conditioned Markov processes
 A Fleming-Viot type interacting particle system

Quasi-stationary distributions and Yaglom limits

(2) Approximation of conditioned Markov processes • A Fleming-Viot type interacting particle system

3 Application: study of a multi-type diffusion process

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

1. Quasi-stationary distributions and Yaglom limits

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Markov processes with absorption

We consider a Markov process which evolves on a state space $E \cup \{\partial\}$, with absorption at $\partial \notin E$, *i.e.* the process stays in ∂ once it reached it.

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Markov processes with absorption

We consider a Markov process which evolves on a state space $E \cup \{\partial\}$, with absorption at $\partial \notin E$, *i.e.* the process stays in ∂ once it reached it.

Denoting by $\tau_{\partial} = \inf\{t \ge 0, X_t^{\partial} = \partial\}$ the hitting time of ∂ , we thus have

$$X^{\partial}_t = \partial, \ orall t \geq au_{\partial}$$
 almost surely.

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Markov processes with absorption

We consider a Markov process which evolves on a state space $E \cup \{\partial\}$, with absorption at $\partial \notin E$, *i.e.* the process stays in ∂ once it reached it.

Denoting by $\tau_{\partial} = \inf\{t \ge 0, X_t^{\partial} = \partial\}$ the hitting time of ∂ , we thus have

$$X^{\partial}_t = \partial, \, orall t \geq au_{\partial}$$
 almost surely.

Examples: stochastic models for population sizes.

- Galton-Watson processes on ℕ (discrete time),
- Birth and death processes on \mathbb{N} ,
- \bullet Stochastic Lotka-Volterra system on $\mathbb{R}^{number \text{ of types}}_+$
- Wright-Fisher processes on [0,1].

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Long time behavior of X^{∂}

Some assumptions

$$\mathbb{P}^\partial_x(au_\partial<+\infty)=1$$
 and $\mathbb{P}^\partial_x(au_\partial>t)>0,\,orall t>0.$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Long time behavior of X^{∂}

Some assumptions

$$\mathbb{P}^{\partial}_x(au_{\partial}<+\infty)=1 ext{ and } \mathbb{P}^{\partial}_x(au_{\partial}>t)>0, \, orall t>0.$$

 X^∂ is an ergodic process whose stationary distribution is $\delta_\partial...$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Long time behavior of X^{∂}

Some assumptions

$$\mathbb{P}^{\partial}_x(au_{\partial}<+\infty)=1$$
 and $\mathbb{P}^{\partial}_x(au_{\partial}>t)>0,\,orall t>0.$

 X^∂ is an ergodic process whose stationary distribution is $\delta_\partial...$

We are interested in the distribution of the non-absorbed positions of the process: $\mathbb{P}^{\partial}_{x} (X_{t}^{\partial} \in \cdot | t < \tau_{\partial})$.

Definition

A quasi-limiting distribution (QLD) is a probability measure α such that $\exists \mu \in \mathcal{M}_1(E)$ satisfying

$$\alpha = \lim_{t \to \infty} \mathbb{P}^{\partial}_{\mu} \left(X^{\partial}_t \in \cdot | t < \tau_{\partial} \right)$$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Yaglom limits and quasi-stationary distributions

Définitions

A Yaglom limit for X^{∂} is a probability measure α on E such that

$$\alpha = \lim_{t \to \infty} \mathbb{P}^{\partial}_{x}(X^{\partial}_{t} \in . | t < \tau_{\partial}), \, \forall x \in E.$$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Yaglom limits and quasi-stationary distributions

Définitions

A Yaglom limit for X^{∂} is a probability measure α on E such that

$$\alpha = \lim_{t \to \infty} \mathbb{P}^{\partial}_{x}(X^{\partial}_{t} \in . | t < \tau_{\partial}), \, \forall x \in E.$$

A quasi-stationary distribution (QSD) is a probability measure α such that

$$\mathbb{P}_{lpha}(X_t^{\partial}\in .|t< au_{\partial})=\int_{E}\mathbb{P}_{x}(X_t^{\partial}\in .|t< au_{\partial})dlpha(x)=lpha,\,orall t\geq 0.$$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Yaglom limits and quasi-stationary distributions

Définitions

A Yaglom limit for X^∂ is a probability measure α on E such that

$$\alpha = \lim_{t \to \infty} \mathbb{P}^{\partial}_{x}(X^{\partial}_{t} \in . | t < \tau_{\partial}), \, \forall x \in E.$$

A quasi-stationary distribution (QSD) is a probability measure α such that

$$\mathbb{P}_{lpha}(X_t^{\partial}\in .|t< au_{\partial})=\int_{E}\mathbb{P}_{\mathbf{x}}(X_t^{\partial}\in .|t< au_{\partial})dlpha(\mathbf{x})=lpha,\,orall t\geq 0.$$

Questions: Existence and uniqueness, value of the QSD, speed of convergence.

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

General properties

Yaglom limit, QLD and QSD

- 1. The Yaglom limit is a QLD (definition),
- 2. Any QSD is a QLD (definition),
- 3. Any QLD is a QSD.

Briefly: Yaglom limit \Rightarrow QLD \Leftrightarrow QSD.

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

General properties

Yaglom limit, QLD and QSD

- 1. The Yaglom limit is a QLD (definition),
- 2. Any QSD is a QLD (definition),
- 3. Any QLD is a QSD.

Briefly: Yaglom limit \Rightarrow QLD \Leftrightarrow QSD.

QSD, QLD, absorption rate

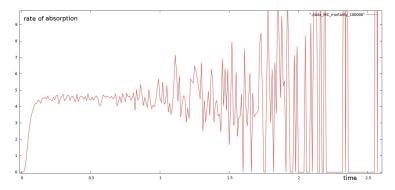
1. If
$$\alpha$$
 is a QLD, then $\exists \lambda_0 > 0$ such that
1a. $\mathbb{P}_{\alpha}(t < \tau_{\partial}) = e^{-\lambda_0 t}$,
1b. $\mathbb{E}_{\alpha}(e^{\theta \tau_{\partial}}) < +\infty, \forall \theta \in [0, \lambda_0[.$

2. If α is a QLD for X starting from μ , then absorption rate $(t) \stackrel{\text{def}}{=} \mathbb{P}^{\partial}_{\mu}(\tau_{\partial} \in]t, t+1] | \tau_{\partial} > t) \xrightarrow[t \to \infty]{} e^{-\lambda_{0}}.$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Numerical illustration

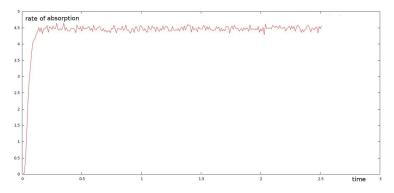
Convergence of the absorption rate for a BM in [0,1] absorbed at $\{0,1\}$



Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Numerical illustration

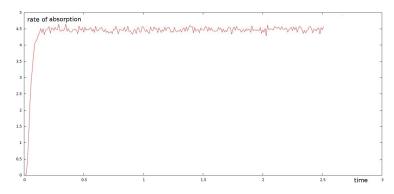
Convergence of the absorption rate for a BM in [0,1] absorbed at $\{0,1\}$



Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Numerical illustration

Convergence of the absorption rate for a BM in [0,1] absorbed at $\{0,1\}$



Convergence to the Yaglom limit, then quasi-stationarity (3D Brownian motion with drift).

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Criterion for the existence and uniqueness of a QSD

Proposition

If there exist $C,\gamma>0$ such that, for any μ and u,

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \mathbb{P}_{\nu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right)\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Criterion for the existence and uniqueness of a QSD

Proposition

If there exist ${\it C},\gamma>0$ such that, for any μ and u,

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \mathbb{P}_{\nu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right)\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

then there exists a unique QSD α for X and

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \alpha\right\|_{TV} \leq C e^{-\gamma t}, \, \forall t \geq 0,$$

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Criterion for the existence and uniqueness of a QSD

Proposition

If there exist ${\it C},\gamma>0$ such that, for any μ and u,

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \mathbb{P}_{\nu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right)\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

then there exists a unique QSD α for X and

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \alpha\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

Remark 1: Even if the QSD is unique, there is now insurance that this mixing property holds.

Yaglom limits and quasi-stationary distributions Criterion for the existence and uniqueness of a QSD

Criterion for the existence and uniqueness of a QSD

Proposition

If there exist ${\it C},\gamma>0$ such that, for any μ and u,

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \mathbb{P}_{\nu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right)\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

then there exists a unique QSD α for X and

$$\left\|\mathbb{P}_{\mu}\left(X_{t}^{\partial} \in \cdot | t < \tau_{\partial}\right) - \alpha\right\|_{TV} \leq Ce^{-\gamma t}, \, \forall t \geq 0,$$

Remark 1: Even if the QSD is unique, there is now insurance that this mixing property holds.

Remark 2: The mixing property is also interesting when the semi-group isn't time-homogeneous.

Let E be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^∂ be defined by

$$dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt, X_0^{\partial} \in D,$$

with time-periodic, Lipschitz and elliptic coefficients.

Let E be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^∂ be defined by

$$dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt, X_0^{\partial} \in D,$$

with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

lf

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where $\phi(z) = d(z, \partial D)$, f_i is positive and of class $C^{1,2}$ and $g(t, \epsilon, z) \leq k_0 \phi(z)$,

Let E be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^∂ be defined by

$$dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt, X_0^{\partial} \in D,$$

with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

lf

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where $\phi(z) = d(z, \partial D)$, f_i is positive and of class $C^{1,2}$ and $g(t, \epsilon, z) \le k_0 \phi(z)$, then the mixing property holds.

Let E be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^∂ be defined by

$$dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt, X_0^{\partial} \in D,$$

with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

lf

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where $\phi(z) = d(z, \partial D)$, f_i is positive and of class $C^{1,2}$ and $g(t, \epsilon, z) \le k_0 \phi(z)$, then the mixing property holds.

Existence and uniqueness results can also be found in Pinsky 1985, Gong, Qian, Zhao 1988, Knobloch, Partzsch 2010.

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem (Martínez, San Martín, V.)

Assume that $P_t(x,y) > 0$, $\forall x,y \in \mathbb{N}^*$ and that there exists a finite subset $K \subset \mathbb{N}^*$ such that

$$\inf_{x\in\mathbb{N}^*\setminus\mathcal{K}}\left(Q(x,0)+\sum_{y\in\mathcal{K}}Q(y,x)
ight)>\sup_{x\in\mathbb{N}^*}Q(x,0).$$

Then the mixing property holds.

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem (Martínez, San Martín, V.)

Assume that $P_t(x,y) > 0$, $\forall x,y \in \mathbb{N}^*$ and that there exists a finite subset $K \subset \mathbb{N}^*$ such that

$$\inf_{x\in\mathbb{N}^*\setminus K}\left(Q(x,0)+\sum_{y\in K}Q(y,x)
ight)>\sup_{x\in\mathbb{N}^*}Q(x,0).$$

Then the mixing property holds.

The existence and uniqueness of the QSD for X^{∂} was already known (Ferrari, Marič 2007) in the subcase

$$\sum_{x\in\mathbb{N}^*}\inf_{y\in\mathbb{N}^*}Q(x,y)>\sup_{x\in\mathbb{N}^*}Q(x,0).$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

2. Approximation of conditioned Markov processes

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

The interacting particle system (Burdzy, Holyst, Ingerman, March 1996)

- $(X_t^1,...,X_t^N)_{t\geq 0}$ is a càdlàg process:
 - Start with N independent copies of X_t^∂ ,
 - Wait for the first killing time (τ_1) the killed particle is sent to the position of one another particle (in E)
 - continue with N independent copies of X^{∂} until the next killing time (τ_2) , and so on.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

The interacting particle system (Burdzy, Holyst, Ingerman, March 1996)

- $(X_t^1,...,X_t^N)_{t\geq 0}$ is a càdlàg process:
 - Start with N independent copies of X_t^∂ ,
 - Wait for the first killing time (τ_1) the killed particle is sent to the position of one another particle (in E)
 - continue with N independent copies of X^{∂} until the next killing time (τ_2) , and so on.

Some notations: sequence of killing times $0 < \tau_1 < \tau_2 < ...$ A_t^N denotes the number of killings up to time t.

$$\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

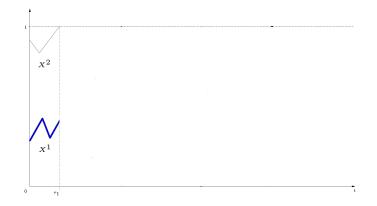
A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Illustration with 2 particles and E =]0,1[

 $A_t^N = 0$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

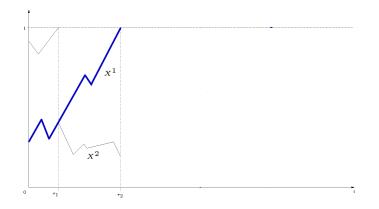
Illustration with 2 particles and E =]0,1[



 $A_t^N = 1$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

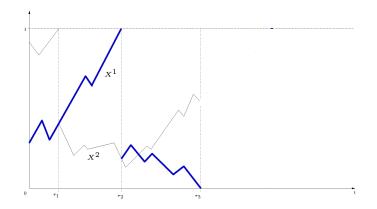
Illustration with 2 particles and E =]0,1[



 $A_t^N = 2$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

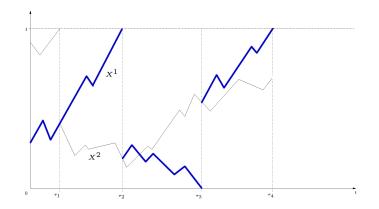
Illustration with 2 particles and E =]0,1[



 $A_{t}^{N} = 3$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

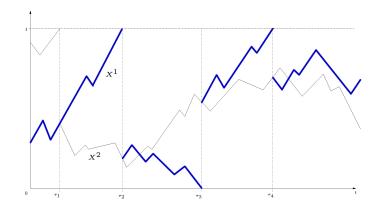
Illustration with 2 particles and E =]0,1[



 $A_t^N = 4$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Illustration with 2 particles and E =]0,1[



 $A_t^N = 4$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Theorem (V 2011)

Assume that
$$\mu_0^N \xrightarrow[N \to \infty]{} \mu_0 \in \mathcal{M}_1(E)$$
, that $P_{\mu_0}(t < \tau_\partial) > 0$ and that $A_*^N < +\infty, \forall N \geq 2$ almost surely.

then

$$\mu_t^N(dx) \xrightarrow[N \to \infty]{law} \mathbb{P}_x^\partial \left(X_t^\partial \in dx | t < \tau_\partial \right).$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Theorem (V 2011)

Assume that
$$\mu_0^N \xrightarrow[N \to \infty]{} \mu_0 \in \mathcal{M}_1(E)$$
, that $P_{\mu_0}(t < \tau_\partial) > 0$ and that

 $A_t^N < +\infty, \, \forall N \geq 2$ almost surely,

then

$$\mu_t^N(dx) \xrightarrow[N \to \infty]{law} \mathbb{P}_x^{\partial} \left(X_t^{\partial} \in dx | t < \tau_{\partial} \right).$$

Moreover we have, for all measurable function f and all time T > 0,

$$egin{aligned} \mathbb{E}\left(\left|\mu_T^N(f)-\mathbb{E}_{\mu_0^N}\left(f(X_T^\partial)|\,T< au_\partial
ight)
ight|
ight)\ &\leq rac{4\|f\|_\infty}{\sqrt{N}}\sqrt{\mathbb{E}\left(rac{1}{\mathbb{P}^\partial_{\mu_0^N}\left(T< au_\partial
ight)^2
ight)}. \end{aligned}$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

About $A_t^N < +\infty$ almost surely for all $N \ge 2...$

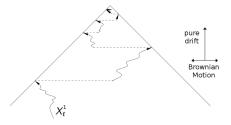
- Soft obstacle setting with a bounded rate of killing: trivial
- Hard obstacle setting: not always true and difficult (see Burdzy, Holyst, March (2000) Löbus (2007), Bienek, Burdzy, Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

About $A_t^N < +\infty$ almost surely for all $N \ge 2...$

- Soft obstacle setting with a bounded rate of killing: trivial
- Hard obstacle setting: not always true and difficult (see Burdzy, Holyst, March (2000) Löbus (2007), Bienek, Burdzy, Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A counter example:

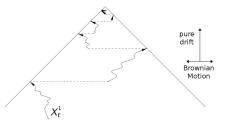


A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

About $A_t^N < +\infty$ almost surely for all $N \ge 2...$

- Soft obstacle setting with a bounded rate of killing: trivial
- Hard obstacle setting: not always true and difficult (see Burdzy, Holyst, March (2000) Löbus (2007), Bienek, Burdzy, Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A counter example:



A more interesting counter-example (Bienek, Burdzy, Pal, 2011): $dX_t^{\partial} = dB_t - \frac{1}{X_t^{\partial}} dt.$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

$E = Env \times D$, with $Env \subset \mathbb{R}^d$ (environment), $D \subset \mathbb{R}^{d'}$ (position). $X^{\partial} = (t, e_t, Z_t)_{t \in [0, +\infty[\times E \cup \{\partial\}]}$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

 $E = Env \times D$, with $Env \subset \mathbb{R}^d$ (environment), $D \subset \mathbb{R}^{d'}$ (position). $X^{\partial} = (t, e_t, Z_t)_{t \in [0, +\infty[\times E \cup \{\partial\}]}$ is such that $de_t = s(t, e_t, Z_t) d\beta_t + m(t, e_t, Z_t) dt$ $dZ_t = \sigma(t, e_t, Z_t) dB_t + \mu(t, e_t, Z_t) dt$,

killed when X^{∂} reaches $[0, +\infty[\times Env \times \partial D]$.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

 $E = Env \times D, \text{ with } Env \subset \mathbb{R}^d \text{ (environment), } D \subset \mathbb{R}^{d'} \text{ (position).}$ $X^{\partial} = (t, e_t, Z_t)_{t \in [0, +\infty[\times E \cup \{\partial\}]} \text{ is such that}$ $de_t = s(t, e_t, Z_t) d\beta_t + m(t, e_t, Z_t) dt$ $dZ_t = \sigma(t, e_t, Z_t) dB_t + \mu(t, e_t, Z_t) dt,$

killed when X^{∂} reaches $[0, +\infty[\times Env \times \partial D]$.

Theorem (V. 2011)

If ∂D is of class C^2 , s,m,σ,μ are uniformly bounded and

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where $\phi(z) = d(z, \partial D)$, f_i is positive and of class $C^{1,2}$ and $g(t,\epsilon,z) \le k_0 \phi(z)$, then

 $A_t^N < +\infty$ almost surely.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y_t^1, Y_t^2) be a couple of semi-martingale such that

$$dY_t^i = dM_t^i + b_t^i dt + Y_t^i - Y_{t-}^i,$$

with $Y_t^i - Y_{t-}^i > 0$ (only positive jumps).

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y_t^1, Y_t^2) be a couple of semi-martingale such that

$$dY_t^i = dM_t^i + b_t^i dt + Y_t^i - Y_{t-}^i,$$

with $Y_t^i - Y_{t-}^i > 0$ (only positive jumps).

Proposition (V 2011)

If $\langle M \rangle_t^i = \pi_t^i dt$, where π^i is a *good* semi-martingale, then

 $P(T_{(0,0)} < +\infty) = 1.$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y_t^1, Y_t^2) be a couple of semi-martingale such that

$$dY_t^i = dM_t^i + b_t^i dt + Y_t^i - Y_{t-}^i,$$

with $Y_t^i - Y_{t-}^i > 0$ (only positive jumps).

Proposition (V 2011)

If $\langle M \rangle_t^i = \pi_t^i dt$, where π^i is a good semi-martingale, then

$$P(T_{(0,0)} < +\infty) = 1.$$

To verify " π^i is a good semi-martingale" is a simple application of Itô's formula when Y^1 and Y^2 are C^2 functions of Itô's diffusion processes. In our case, $Y^1 = \phi(X^1)$ and $Y^2 = \phi(X^2)$.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

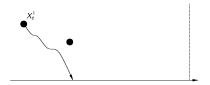
Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

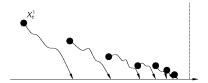


A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

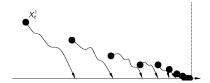
A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)



A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

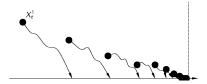
Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)



A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

Assume that $A_t^N = +\infty$.



$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

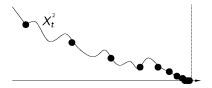
Assume that $A_t^N = +\infty$.

$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

Assume that $A_t^N = +\infty$.

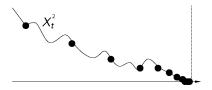


$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

Assume that $A_t^N = +\infty$.

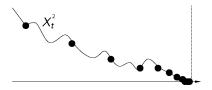


$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

Assume that $A_t^N = +\infty$.



We deduce that

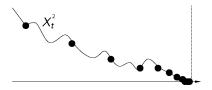
$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

Denoting $(Y^1,Y^2) = (\phi(X^1),\phi(X^2))$, we get $P(\mathcal{A}_t^N = \infty) \le P(T_{(0,0)} < +\infty)$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Proof (2) $A_t^N = +\infty \Rightarrow$ attainability of (0,0)

Assume that $A_t^N = +\infty$.



We deduce that

$$\lim_{n\to\infty} \left(\phi(X^1_{\tau_n}),\phi(X^2_{\tau_n})\right) = (0,0)$$

Denoting $(Y^1,Y^2)=(\phi(X^1),\phi(X^2))$, we get

$$P(A_t^N = \infty) \le P(T_{(0,0)} < +\infty)$$

By our assumptions, (Y^1, Y^2) cannot reach (0,0).

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Uniform convergence in time

Let *E* be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^∂ be defined by $dX_t^\partial = \sigma(t, X_t^\partial) dB_t + b(t, X_t^\partial) dt$, $X_0^\partial \in D$, with time-periodic, Lipschitz and elliptic coefficients.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Uniform convergence in time

Let *E* be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^{∂} be defined by $dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt$, $X_0^{\partial} \in D$, with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

lf

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where f is positive and of class $C^{1,2}$ and $g(t,\epsilon,z) \leq k_0 \phi(z)$,

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Uniform convergence in time

Let *E* be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^{∂} be defined by $dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt$, $X_0^{\partial} \in D$, with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where f is positive and of class $C^{1,2}$ and $g(t,\epsilon,z) \leq k_0 \phi(z)$, then $\sup_{t \in [0,+\infty[} \sup_{A \subset D} \mathbb{E} \left| \mu_t^N(A) - \mathbb{P}_{\mu_0^N}\left(X_t^\partial \in A | t < \tau_\partial \right) \right| \xrightarrow[N \to \infty]{} 0.$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Uniform convergence in time

Let *E* be a bounded and smooth open subset $D \subset \mathbb{R}^d$. Let X^{∂} be defined by $dX_t^{\partial} = \sigma(t, X_t^{\partial}) dB_t + b(t, X_t^{\partial}) dt$, $X_0^{\partial} \in D$, with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

$$\sum_{k,l} \frac{\partial \phi}{\partial x_k}(z) \frac{\partial \phi}{\partial x_l}(z) [\sigma \sigma^*]_{kl}(t,\epsilon,z) = f(t,\epsilon,z) + g(t,\epsilon,z),$$

where f is positive and of class $C^{1,2}$ and $g(t,\epsilon,z) \leq k_0 \phi(z)$, then $\sup_{t \in [0,+\infty[} \sup_{A \subset D} \mathbb{E} \left| \mu_t^N(A) - \mathbb{P}_{\mu_0^N}\left(X_t^\partial \in A | t < \tau_\partial \right) \right| \xrightarrow[N \to \infty]{} 0.$

In particular, if X^{∂} is time homogeneous then

$$\lim_{N\to\infty}\lim_{t\to\infty}\mu_t^N=\alpha \text{ (the unique QSD of } X^\partial).$$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem

Assume that $P_t(x,y) > 0$, $\forall x,y \in \mathbb{N}^*$ and that there exists a finite subset $K \subset \mathbb{N}^*$ such that $\inf_{x \in \mathbb{N}^* \setminus K} \left(Q(x,0) + \sum_{y \in K} Q(y,x) \right) > \sup_{x \in \mathbb{N}^*} Q(x,0).$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem

Assume that
$$P_t(x,y) > 0$$
, $\forall x, y \in \mathbb{N}^*$ and that there exists a finite
subset $K \subset \mathbb{N}^*$ such that
 $\inf_{x \in \mathbb{N}^* \setminus K} \left(Q(x,0) + \sum_{y \in K} Q(y,x) \right) > \sup_{x \in \mathbb{N}^*} Q(x,0).$
Then
 $\sup_{t \in [0,+\infty[A \subset D]} \sup \mathbb{E} \left| \mu_t^N(A) - \mathbb{P}_{\mu_0^N} \left(X_t^\partial \in A | t < \tau_\partial \right) \right| \xrightarrow[N \to \infty]{} 0.$

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem

Assume that $P_t(x,y) > 0$, $\forall x,y \in \mathbb{N}^*$ and that there exists a finite subset $K \subset \mathbb{N}^*$ such that $\inf_{x \in \mathbb{N}^* \setminus K} \left(Q(x,0) + \sum_{y \in K} Q(y,x) \right) > \sup_{x \in \mathbb{N}^*} Q(x,0).$ Then $\sup_{t \in [0,+\infty[} \sup_{A \subset D} \mathbb{E} \left| \mu_t^N(A) - \mathbb{P}_{\mu_0^N} \left(X_t^\partial \in A | t < \tau_\partial \right) \right| \xrightarrow[N \to \infty]{} 0.$ Moreover, $\lim_{N \to \infty} \lim_{t \to \infty} \mu_t^N = \alpha$ (the unique QSD of X^∂).

A Fleming-Viot type interacting particle system Convergence to the conditioned distribution A non-explosion problem Uniform convergence in time

Let $E = \mathbb{N}^*$ and $\partial = 0$. Let X^{∂} be a non-explosive strong Markov process on $E \cup \{\partial\}$, with transition rate matrix $(Q(x,y))_{(x,y) \in \mathbb{N}^2}$.

Theorem

Assume that $P_t(x,y) > 0$, $\forall x,y \in \mathbb{N}^*$ and that there exists a finite subset $K \subset \mathbb{N}^*$ such that $\inf_{x \in \mathbb{N}^* \setminus K} \left(Q(x,0) + \sum_{y \in K} Q(y,x) \right) > \sup_{x \in \mathbb{N}^*} Q(x,0).$ Then $\sup_{t \in [0,+\infty[A \subset D]} \mathbb{E} \left| \mu_t^N(A) - \mathbb{P}_{\mu_0^N} \left(X_t^\partial \in A | t < \tau_\partial \right) \right| \xrightarrow[N \to \infty]{} 0.$ Moreover, $\lim_{N \to \infty} \lim_{t \to \infty} \mu_t^N = \alpha$ (the unique QSD of X^∂).

Under the condition $\sum_{x \in \mathbb{N}^*} \inf_{y \in \mathbb{N}^*} Q(x,y) > \sup_{x \in \mathbb{N}^*} Q(x,0)$, Ferrari and Maric showed firstly that $\lim_{N \to \infty} \lim_{t \to \infty} \mu_t^N$ exists and identified it as a QSD (see also Asselah, Ferrari, Groisman 2011).

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

3. Application: study of a multi-type diffusion process

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

3 types competitive Lotka-Volterra system

 X^{∂} is a 3-tuple process (Z^1, Z^2, Z^3) $(\partial = (0,0,0))$

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

3 types competitive Lotka-Volterra system

 X^∂ is a 3-tuple process (Z^1,Z^2,Z^3) $(\partial=(0,0,0))$ which evolves as

$$\begin{aligned} dZ_t^1 &= \sqrt{\gamma_1 Z_t^1} dB_t^1 + \left(r_1 Z_t^1 - c_{11} (Z_t^1)^2 - c_{12} Z_t^1 Z_t^2 - c_{13} Z_t^1 Z_t^3 \right) dt, \\ dZ_t^2 &= \sqrt{\gamma_2 Z_t^2} dB_t^2 + \left(r_2 Z_t^2 - c_{21} Z_t^1 Z_t^2 - c_{22} (Z_t^2)^2 - c_{23} Z_t^2 Z_t^3 \right) dt, \\ dZ_t^3 &= \sqrt{\gamma_3 Z_t^3} dB_t^3 + \left(r_3 Z_t^3 - c_{31} Z_t^1 Z_t^3 - c_{32} Z_t^2 Z_t^3 - c_{33} (Z_t^3)^2 \right) dt, \end{aligned}$$

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

3 types competitive Lotka-Volterra system

 X^∂ is a 3-tuple process (Z^1,Z^2,Z^3) $(\partial=(0,0,0))$ which evolves as

$$\begin{aligned} dZ_t^1 &= \sqrt{\gamma_1 Z_t^1} dB_t^1 + \left(r_1 Z_t^1 - c_{11} (Z_t^1)^2 - c_{12} Z_t^1 Z_t^2 - c_{13} Z_t^1 Z_t^3 \right) dt, \\ dZ_t^2 &= \sqrt{\gamma_2 Z_t^2} dB_t^2 + \left(r_2 Z_t^2 - c_{21} Z_t^1 Z_t^2 - c_{22} (Z_t^2)^2 - c_{23} Z_t^2 Z_t^3 \right) dt, \\ dZ_t^3 &= \sqrt{\gamma_3 Z_t^3} dB_t^3 + \left(r_3 Z_t^3 - c_{31} Z_t^1 Z_t^3 - c_{32} Z_t^2 Z_t^3 - c_{33} (Z_t^3)^2 \right) dt, \end{aligned}$$

with $\gamma_i = 1$, $c_{ii} = 10$, $c_{ij} = 0.5$, $\forall i \neq j \in \{1, 2, 3\}$, and $r_1 = 1.5$, $r_2 = 1$, $r_3 = 0.5$.

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

3 types competitive Lotka-Volterra system

 X^∂ is a 3-tuple process (Z^1,Z^2,Z^3) $(\partial=(0,0,0))$ which evolves as

$$\begin{aligned} dZ_t^1 &= \sqrt{\gamma_1 Z_t^1} dB_t^1 + \left(r_1 Z_t^1 - c_{11} (Z_t^1)^2 - c_{12} Z_t^1 Z_t^2 - c_{13} Z_t^1 Z_t^3 \right) dt, \\ dZ_t^2 &= \sqrt{\gamma_2 Z_t^2} dB_t^2 + \left(r_2 Z_t^2 - c_{21} Z_t^1 Z_t^2 - c_{22} (Z_t^2)^2 - c_{23} Z_t^2 Z_t^3 \right) dt, \\ dZ_t^3 &= \sqrt{\gamma_3 Z_t^3} dB_t^3 + \left(r_3 Z_t^3 - c_{31} Z_t^1 Z_t^3 - c_{32} Z_t^2 Z_t^3 - c_{33} (Z_t^3)^2 \right) dt, \end{aligned}$$

with $\gamma_i = 1$, $c_{ii} = 10$, $c_{ij} = 0.5$, $\forall i \neq j \in \{1, 2, 3\}$, and $r_1 = 1.5$, $r_2 = 1$, $r_3 = 0.5$.

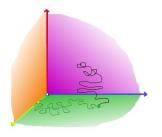
Theorem (Cattiaux, Méléard 2010, Méléard, V. 2011)

For any initial distribution μ which charges $\mathbb{R}^*_+ \times \mathbb{R}^*_+ \times \mathbb{R}^*_+$, we have $\lim_{t \to \infty} \mathbb{P}_{\mu} \left(X_t \in \cdot | t < \tau_{\partial} \right) = \alpha_1 \otimes \delta_0 \otimes \delta_0,$

where α_1 is the unique QSD for the one-dimensional dynamic $dZ_t = \sqrt{\gamma_1 Z_t} dB_t + (r_1 Z_t - c_{11} (Z_t)^2) dt$.

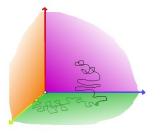
3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

Evolution of the number of types:



3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

Evolution of the number of types:



- The process starts with three types $\{1,2,3\}$,
- Then one (and only one) type disappears. It remains two types {1,2}, {1,3} or {2,3}.
- Then an other type disappears. It remains one type 1, 2 or 3.

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

Natural questions answered by numerical approximation

- 1. At a fixed time t > 0, what is the probability to have three types, two types or one type ? Which types ?
- 2. What is the value of $\alpha = \alpha_1 \otimes \delta_0 \otimes \delta_0$?

3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

Natural questions answered by numerical approximation

- 1. At a fixed time t > 0, what is the probability to have three types, two types or one type ? Which types ?
- 2. What is the value of $\alpha = \alpha_1 \otimes \delta_0 \otimes \delta_0$?

Difficulty: The FV process isn't well defined $(A_t^N \stackrel{?}{<} +\infty)$.

Natural questions answered by numerical approximation

- 1. At a fixed time t > 0, what is the probability to have three types, two types or one type ? Which types ?
- 2. What is the value of $\alpha = \alpha_1 \otimes \delta_0 \otimes \delta_0$?

Difficulty: The FV process isn't well defined $(A_t^N < +\infty)$.

Solution: We restrict the process to $[\epsilon, 1/\epsilon[^3, \text{ with } 0 < \epsilon \ll 1, \text{ each component being absorbed when it hits } \epsilon \text{ or } 1/\epsilon$

Natural questions answered by numerical approximation

- 1. At a fixed time t > 0, what is the probability to have three types, two types or one type ? Which types ?
- 2. What is the value of $\alpha = \alpha_1 \otimes \delta_0 \otimes \delta_0$?

Difficulty: The FV process isn't well defined $(A_t^N \stackrel{?}{<} +\infty)$.

Solution: We restrict the process to $[\epsilon, 1/\epsilon[^3, \text{ with } 0 < \epsilon \ll 1, \text{ each component being absorbed when it hits } \epsilon \text{ or } 1/\epsilon \text{ and we use:}$

Theorem (V. 2011)

We have

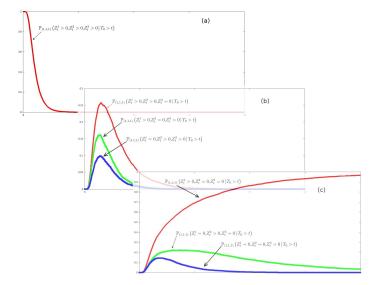
$$\mathbb{P}^{\epsilon}_{(z_1,z_2,z_3)}(X^{\partial}_t \in \cdot | t < au_{\partial}) \xrightarrow[\epsilon
ightarrow 0]{} \mathbb{P}_{(z_1,z_2,z_3)}(X^{\partial}_t \in \cdot | t < au_{\partial})$$

and

$$\alpha_{\epsilon} \xrightarrow[\epsilon \to 0]{} \alpha$$

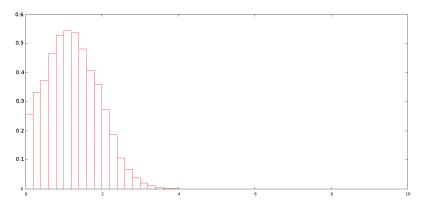
3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

1. Probability of presence of each types:



3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

2. Approximation of α_1 :



3 types competitive Lotka-Volterra system Evolution of the number of types Numerical results

Thank you!