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Markov processes with absorption

We consider a Markov process which evolves on a state space
E U {0}, with absorption at O ¢ E, i.e. the process stays in O once
it reached it.
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Markov processes with absorption

We consider a Markov process which evolves on a state space

E U {0}, with absorption at O ¢ E, i.e. the process stays in O once
it reached it.

Denoting by 75 = inf{t > 0, X? = 0} the hitting time of 9, we
thus have

Xta = 0, Vt > 715 almost surely.
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Criterion for the existence and uniqueness of a QSD

Markov processes with absorption

We consider a Markov process which evolves on a state space
E U {0}, with absorption at O ¢ E, i.e. the process stays in O once
it reached it.

Denoting by 75 = inf{t > 0, X? = 0} the hitting time of 9, we
thus have
Xta = 0, Vt > 715 almost surely.
Examples: stochastic models for population sizes.
o Galton-Watson processes on N (discrete time),
@ Birth and death processes on N,
number of types

@ Stochastic Lotka-Volterra system on R’ ,

@ Wright-Fisher processes on [0,1].
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Criterion for the existence and uniqueness of a QSD

Long time behavior of X?

Some assumptions

P(75 < +00) = 1 and P2(5 > t) > 0, V¢ > 0.




uasi-stationary distributions and Yaglom limits e . . T
Q y g Yaglom limits and quasi-stationary distributions

Criterion for the existence and uniqueness of a QSD

Long time behavior of X?

Some assumptions

P(75 < +00) = 1 and P2(5 > t) > 0, V¢ > 0.

X? is an ergodic process whose stationary distribution is ...



Quasi-stationary distributions and Yaglom limits

Yaglom limits and quasi-stationary distributions
Criterion for the existence and uniqueness of a QSD

Long time behavior of X?

Some assumptions

P2(15 < +00) = 1 and P2(r5 > t) > 0, Vt > 0.

X? is an ergodic process whose stationary distribution is ...

We are interested in the distribution of the non-absorbed positions
of the process: P (X7 € -|t < 75).

Definition

A quasi-limiting distribution (QLD) is a probability measure « such
that 3u € M;(E) satisfying

a= tli)rr;OIP’fj (Xt8 €t < Ta)
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Yaglom limits and quasi-stationary distributions

A Yaglom limit for X? is a probability measure v on E such that

a= lim PI(X2 e |t < 15), Vx € E.
t—00
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Yaglom limits and quasi-stationary distributions

Définitions

A Yaglom limit for X? is a probability measure v on E such that
_ [y O
a= lim PI(X{ € .|t <Tp), Vx € E.
t—00

A quasi-stationary distribution (QSD) is a probability measure «
such that

P (X2 € .|t < T5) = / P, (X? € .|t < 19)da(x) = a, Yt > 0.
E
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Yaglom limits and quasi-stationary distributions

Définitions
A Yaglom limit for X? is a probability measure v on E such that

a= lim PI(X2 e |t < 15), Vx € E.
t—00

A quasi-stationary distribution (QSD) is a probability measure «
such that

P (X2 € .|t < T5) = / P, (X? € .|t < 19)da(x) = a, Yt > 0.
E

Questions: Existence and uniqueness, value of the QSD, speed of
convergence.
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Criterion for the existence and uniqueness of a QSD

General properties

Yaglom limit, QLD and QSD
1. The Yaglom limit is a QLD (definition),
2. Any QSD is a QLD (definition),
3. Any QLD is a QSD.

Briefly: Yaglom limit = QLD < QSD.
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Criterion for the existence and uniqueness of a QSD

General properties

Yaglom limit, QLD and QSD

1. The Yaglom limit is a QLD (definition),
2. Any QSD is a QLD (definition),
3. Any QLD is a QSD.

Briefly: Yaglom limit = QLD < QSD.

QSD, QLD, absorption rate

1. If ais a QLD, then 3\g > 0 such that
la. Py (t < 75) = e~ ot
1b. E,(€7) < 400, VO € [0,)0].

2. If ais a QLD for X starting from p, then

absorption rate(t) = Pg(Ta elt,t + 1]|tg > t) —— e 0.

t—o0
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Numerical illustration

Yaglom limits and quasi-stationary distributions
Criterion for the existence and uniqueness of a QSD

Convergence of the absorption rate for a BM in [0,1] absorbed at

{0,1}

rate of absorption
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Quasi-stationary distributions and Yaglom limits

Numerical illustration

Convergence of the absorption rate for a BM in [0,1] absorbed at

{0,1}
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Numerical illustration

Convergence of the absorption rate for a BM in [0,1] absorbed at

{0,1}

rate of absorption
A MoAMr
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Convergence to the Yaglom limit, then quasi-stationarity (3D
Brownian motion with drift).
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Criterion for the existence and uniqueness of a QSD

If there exist C,y > 0 such that, for any p and v,

H]P’“ (X2 e-lt<m) -, (X0 €|t <) HTV < Ce™ vt >0,
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If there exist C,y > 0 such that, for any p and v,
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Remark 1: Even if the QSD is unique, there is now insurance that
this mixing property holds.
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Criterion for the existence and uniqueness of a QSD

Proposition

If there exist C,y > 0 such that, for any p and v,
H]P’“ (xt8 e |t < Ta) _P, (x? e |t < Ta) HTV < Ce ™, Yt >0,

then there exists a unique QSD « for X and

HP“ (Xta €t < Ta) — aHTV < Ce ™, vVt >0,

Remark 1: Even if the QSD is unique, there is now insurance that
this mixing property holds.

Remark 2: The mixing property is also interesting when the
semi-group isn't time-homogeneous.
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on for the existence and uniqueness of a QSD

Let E be a bounded and smooth open subset D ¢ R?. Let X? be
defined by

dX? = o(t,X2)dB: + b(t,X0)dt, X{ € D,

with time-periodic, Lipschitz and elliptic coefficients.
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Yaglom limits and quasi-stationary distributions
Criterion for the existence and uniqueness of a QSD

Let E be a bounded and smooth open subset D ¢ R?. Let X? be
defined by

dX? = o(t,X2)dB; + b(t,X?)dt, X{ € D,
with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)
If

Z axk Z)[O'O'*]kl(t7672) = f(t,6,z) + g(t.€,2),

where d)(z) = d(z,0D), f; is positive and of class C1? and
g(taﬁuz) < k0¢(2),
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Yaglom limits and quasi-stationary distributions
Criterion for the existence and uniqueness of a QSD

Let E be a bounded and smooth open subset D ¢ R?. Let X? be
defined by

dX? = o(t,X2)dB: + b(t,X0)dt, X{ € D,

with time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)
If

Z axk Z)[O'O'*]kl(t7672) = f(t,6,z) + g(t.€,2),

where d’(z) = d(z,0D), f; is positive and of class C1? and
g(t,e,z) < ko¢(z), then the mixing property holds.

Existence and uniqueness results can also be found in Pinsky 1985,
Gong, Qian, Zhao 1988, Knobloch, Partzsch 2010.
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Criterion for the existence and uniqueness of a QSD

Let E =N* and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,y))(x,y)enz-

Theorem (Martinez, San Martin, V.)

Assume that P;(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that

inf Q(x,0) + Z Q(y,x) | > sup Q(x,0).

N*\ K
XxEN*\ yekK xEN*

Then the mixing property holds.
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Yaglom limits and quasi-stationary distributions
Criterion for the existence and uniqueness of a QSD

Let E =N* and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,y))(x,y)enz-

Theorem (Martinez, San Martin, V.)

Assume that P;(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that

inf Q(x,0) + Z Q(y,x) | > sup Q(x,0).

N*\ K
XxEN*\ yekK xEN*

Then the mixing property holds.

The existence and uniqueness of the QSD for X? was already
known (Ferrari, Maric 2007) in the subcase

Z inf Q(x,y) > sup Q(x,0).
xeEN* yeN* xEN*
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2. Approximation of conditioned Markov processes
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Uniform convergence in time

The interacting particle system (Burdzy, Holyst, Ingerman, March
1996)

(X2,...;.XM)>0 is a cadlag process:
o Start with N independent copies of X7,

e Wait for the first killing time (71) the killed particle is sent to
the position of one another particle (in E)

@ continue with N independent copies of X? until the next
killing time (72), and so on.
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The interacting particle system (Burdzy, Holyst, Ingerman, March
1996)

(X2,...;.XM)>0 is a cadlag process:
o Start with N independent copies of X7,

e Wait for the first killing time (71) the killed particle is sent to
the position of one another particle (in E)

@ continue with N independent copies of X? until the next
killing time (72), and so on.

Some notations: sequence of killing times 0 <7y < 7 < ...
AV denotes the number of killings up to time t.

1 N
' =g 2 Oxi
i=1
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lllustration with 2 particles and E =]0,1]

x2

x1

AV =0
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lllustration with 2 particles and E =]0,1]

x1

AV =1
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lllustration with 2 particles and E =]0,1]

x1

'
il T2

AV =2
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lllustration with 2 particles and E =]0,1]

x1

14 /28



A Fleming-Viot type interacting particle system
Approimation of conditioned Markov processes Convergence_to the conditioned distribution
A non-explosion problem
Uniform convergence in time

lllustration with 2 particles and E =]0,1]

14 /28



A Fleming-Viot type interacting particle system
Approimation of conditioned Markov processes Convergence_to the conditioned distribution
A non-explosion problem
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lllustration with 2 particles and E =]0,1]

X

AV =4
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Theorem (V 2011)

Assume that p) oo Ho € My (E), that P, (t < 79) > 0 and
—00
that
Aiv < +00, YN > 2 almost surely,
then

law

il (dx) s P2 (xt8 € dx|t < Ta) .
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Uniform convergence in time

Approximation of conditioned Markov processes

Theorem (V 2011)

Assume that p) oo Ho € My (E), that P, (t < 79) > 0 and
—00
that

Aiv < +00, YN > 2 almost surely,

then
1N (dx) taw P? (Xt8 € dx|t < Ta) :
N— oo

Moreover we have, for all measurable function f and all time T > 0,

E (|ud(h) ~Ep (FODIT <))

<Al |5 1
- VN POy (T < 79)°
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A non-explosion problem
Uniform convergence in time

About AN < +00 almost surely for all N > 2...

@ Soft obstacle setting with a bounded rate of killing: trivial

@ Hard obstacle setting: not always true and difficult (see
Burdzy, Holyst, March (2000) Lobus (2007), Bienek, Burdzy,
Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))
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About AN < +00 almost surely for all N > 2...

@ Soft obstacle setting with a bounded rate of killing: trivial

@ Hard obstacle setting: not always true and difficult (see
Burdzy, Holyst, March (2000) Lobus (2007), Bienek, Burdzy,
Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A counter example:

pure
drift

Brownian
Motion
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About AN < +00 almost surely for all N > 2...

@ Soft obstacle setting with a bounded rate of killing: trivial

@ Hard obstacle setting: not always true and difficult (see
Burdzy, Holyst, March (2000) Lobus (2007), Bienek, Burdzy,
Finch (2009), V. (2010), Grigorescu, Kang (2011), V. (2011))

A counter example:

pure
drift

Brownian
Motion

/;
(1
\ Xt

A more interesting counter-example (Bienek, Burdzy, Pal, 2011):
dX? = dB; — 5 dt.
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Uniform convergence in time

E = Env x D, with Env € R? (environment), D ¢ R (position).
X9 = (tvet’zt)t€[0,+oo[><EU{8}
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A non-explosion problem
Uniform convergence in time

E = Env x D, with Env € R? (environment), D ¢ R (position).
X9 = (t,er,Zt)re[o,+o0[xEL{0} 1S Such that

det = S(t,et,Zt)dﬁt + m(t,et,Zt)dt
dZt = O'(t,ehzt)dBt + ,Uz(t,et,Zt)dt,
killed when X9 reaches [0, + co[x Env x OD.
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Uniform convergence in time

Approximation of conditioned Markov processes

E = Env x D, with Env € R? (environment), D ¢ R (position).

X9 = (t,er,Zt)re[o,+o0[xEL{0} 1S Such that

det = S(t,et,Zt)d,Bt + m(t,et,Zt)dt
dZt = U(t7et7zt)dBt + ,Uz(t,et,Zt)dt,

killed when X9 reaches [0, + co[x Env x OD.
Theorem (V. 2011)

If OD is of class C?, s,m,o,u are uniformly bounded and
Z z)[aa Jki(t,e,2) = f(t,e,2) + g(t,€,2),
(9xk

where ¢(z) = d(z,0D), f; is positive and of class C12 and
g(t,e,z) < kop(z), then

AN < 400 almost surely.
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Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y},Y?) be a couple of semi-martingale such that
dY] = dM! + bidt + Y] - Y[,

with Y/ — Y/ > 0 (only positive jumps).
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Proof (1) attainability of (0,0) by a semi-martingale

Let (Y},Y?) be a couple of semi-martingale such that
dY] = dM! + bidt + Y] - Y[,

with Y/ — Y/ > 0 (only positive jumps).

Proposition (V 2011)

If (M)i = widt, where 7' is a good semi-martingale, then

'D(T(O,O) < 4o00) =1.
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A non-explosion problem

Uniform convergence in time

Proof (1) attainability of (0,0) by a semi-martingale

Let (Y},Y?) be a couple of semi-martingale such that
dY] = dM! + bidt + Y] - Y[,

with Y/ — Y/ > 0 (only positive jumps).

Proposition (V 2011)

If (M)i = widt, where 7' is a good semi-martingale, then

'D(T(O,O) < 4o00) =1.

To verify “n' is a good semi-martingale” is a simple application of
[t6's formula when Y and Y? are C? functions of 1t&’s diffusion
processes. In our case, Y! = ¢(X?) and Y2 = ¢(X?).
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Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.
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Approximation of conditioned Markov processes

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

X;

AN
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Assume that AN = +oo0.

X;

\
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Approximation of conditioned Markov processes

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

\\“\‘\M
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A non-explosion problem

Uniform convergence in time

Approximation of conditioned Markov processes

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

X! §

We deduce that

lim  @(X}) =0

n—oo
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Uniform convergence in time

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

We deduce that

lim (¢(X}).6(X2)) = (0,0)

n—oo

19/28



A Fleming-Viot type interacting particle system
Approximation of conditioned Markov processes Convergence_to ilie exadhidzmed) dis oz
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Uniform convergence in time

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

\\X:
e

We deduce that

Tim (6(X2).00X2)) = (0.0)

Denoting (Y1,Y?2) = (¢(X1),6(X?)), we get

P(AN = x) < P(T(0,0) < +o0)
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Uniform convergence in time

Proof (2) AV = +00 = attainability of (0,0)

Assume that AN = +oo0.

\\X:
e

We deduce that

n“_>moo (¢(X’}n)’¢(X3ﬂ)) = (0,0)
Denoting (Y1,Y?2) = (¢(X1),6(X?)), we get
P(AY = 00) < P(T(0,0) < +0)

By our assumptions, (Y1,Y2) cannot reach (0,0).
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Uniform convergence in time

Let E be a bounded and smooth open subset D C RY. Let X? be
defined by dX? = o(t,X?)dB; + b(t,X2)dt, X¢ € D, with
time-periodic, Lipschitz and elliptic coefficients.
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Approximation of conditioned Markov processes

Uniform convergence in time

Let E be a bounded and smooth open subset D C RY. Let X? be
defined by dX? = o(t,X?)dB; + b(t,X2)dt, X¢ € D, with
time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

If

9¢

o >—(2 )7(2)[00 Ju(t.e.z) = f(t.e,2) + g(t,€,2),

where f is positive and of class C12 and g(t,6,2) < koo(2),
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Uniform convergence in time

Let E be a bounded and smooth open subset D C RY. Let X? be
defined by dX? = o(t,X?)dB; + b(t,X2)dt, X¢ € D, with
time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

If
gf @) G @)oo lu(tez) = f(t.e2) + g te.2),

where f is positive and of class C1? and g(t,e,z) < ko¢(z), then

sup sup E|uN(A) - P <Xt‘9 €At < Ta)’ Y 0.

te[0,+o00[ ACD
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Uniform convergence in time

Let E be a bounded and smooth open subset D C RY. Let X? be
defined by dX? = o(t,X?)dB; + b(t,X2)dt, X¢ € D, with
time-periodic, Lipschitz and elliptic coefficients.

Theorem (Del Moral, V. 2011)

If

9¢

o >—(2 )7(2)[00 Ju(t.e.z) = f(t.e,2) + g(t,€,2),

where f is positive and of class C1? and g(t,e,z) < ko¢(z), then
Y (A) =B (X? e Alt < ra)’ — 0.
(! N—o0

sup sup E
te[0,+o00[ ACD

In particular, if X2 is time homogeneous then
lim lim ! = o (the unique QSD of X?).

N— o0 t—00
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process on E U {0}, with transition rate matrix (Q(x,¥))(x,y)en2-
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Approximation of conditioned Markov processes

Let E=N*and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,¥))(x,y)en2-

Theorem

Assume that P(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that
infen=\k (Q(X,O) + > ek Q(y,x)) > sup,en- Q(x,0).
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Approximation of conditioned Markov processes

Let E=N*and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,¥))(x,y)en2-

Theorem

Assume that P(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that

infen=\k (Q(X,O) + > ek Q(y,x)) > sup,en- Q(x,0).

Then

sup sup E

Y (A) =P (X? e Alt < ra)’ — o
te[0,4-00] ACD ° N—o0
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Approximation of conditioned Markov processes

Let E=N*and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,¥))(x,y)en2-

Theorem

Assume that P(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that

infen=\k (Q(X,O) + > ek Q(y,x)) > sup,en- Q(x,0).

Then

sup sup E
te[0,+o00[ ACD

Y (A) =P (X? e Alt < r@)’ — o
0 N—oco

Moreover, limpy o0 lim; oo ulV =  (the unique QSD of X9).
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Let E=N*and 9 = 0. Let X? be a non-explosive strong Markov
process on E U {0}, with transition rate matrix (Q(x,¥))(x,y)en2-

Theorem

Assume that P(x,y) > 0, Vx,y € N* and that there exists a finite
subset K C N* such that

infen=\k (Q(X,O) + > ek Q(y,x)) > sup,en- Q(x,0).

Then

sup sup E
te[0,+o00[ ACD

Y (A) =P (X? e Alt < r@)’ — o
0 N—oco

Moreover, limpy o0 lim; oo ulV =  (the unique QSD of X9).

Under the condition Y~ . infyens Q(x,y) > sup,en+ Q(x,0),
Ferrari and Mari¢ showed firstly that limpy_ o0 lim; 00 ,u,’_y exists and
identified it as a QSD (see also Asselah, Ferrari, Groisman 2011).
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3 types competitive Lotka-Volterra system

X? is a 3-tuple process (Z%, 72, Z%) (0 = (0,0,0))
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3 types competitive Lotka-Volterra system

X% is a 3-tuple process (Z1, 22, Z%) (0 = (0,0,0)) which evolves as

dZtl = \/'ythl dB} + (rlztl — C11(Zt1)2 — Clzztlztz — C13Ztlzt3) dt,
dth = \/’yQthdB? + (I’ta2 — c21Ztth2 — C22(Zt2)2 — C23Zt22§) dt,
dZE’ = \/’}/325’6/8? + (I‘3Z? — C312tth3 — C32Zt22t3 — C33(Z§’)2) dt,
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3 types competitive Lotka-Volterra system

X% is a 3-tuple process (Z1, 22, Z%) (0 = (0,0,0)) which evolves as

dZtl = \/712,:1 dB} + (rlztl — C11(Zt1)2 — Clzztlztz — C13Z}Zt3) dt,
dth = \/’yQthdB? + (I’ta2 — c21Ztth2 — C22(Zt2)2 — C23Zt22§) dt,
dZE’ = \/’}/325’6/8? + (I‘3Z? — C312tth3 — C32Zt22t3 — C33(Z§’)2) dt,

with v; = 1, ¢; = 10, Cjj = 05, Vi#£j € {1,273}, and
n = 1.5, rn = 1, r3 = 0.5.
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3 types competitive Lotka-Volterra system

X% is a 3-tuple process (Z1, 22, Z%) (0 = (0,0,0)) which evolves as
dZtl = \/712,:1 dB} + (rlztl — C11(Zt1)2 — Clzztlztz — C13Z}Zt3) dt,
dth = \/’ygztdetz + (rQth — c21Ztth2 — C22(Zt2)2 — C23Zt22§) dt,
dZE’ = \/’}/325’6/8? + (I‘3Z? — C312tth3 — C322t22? — C33(Z§’)2) dt,

with v; = 1, ¢; = 10, Cjj = 05, Vi#£j € {1,273}, and
n = 1.5, rn = 1, r3 = 0.5.

Theorem (Cattiaux, Méléard 2010, Méléard, V. 2011)

For any initial distribution ; which charges RY x R% x R%, we
have lim P, (X € |t < 79) = a1 ® 8o @ o,
t—o0

where oy is the unique QSD for the one-dimensional dynamic

dZ; = /1 Z:dB: + (rlzt - Cll(Zt)2) dt.
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Evolution of the number of types:

@ The process starts with three types {1,2,3},

@ Then one (and only one) type disappears. It remains two types
{1,2}, {1,3} or {2,3}.

@ Then an other type disappears. It remains one type 1, 2 or 3.
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component being absorbed when it hits € or 1/
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Natural questions answered by numerical approximation

1. At a fixed time t > 0, what is the probability to have three
types, two types or one type ? Which types ?
2. What is the value of @« = a1 ® §g ® 0 7

Difficulty: The FV process isn't well defined (AN ; +00).

We restrict the process to [e,1/¢[3, with 0 < € < 1, each
component being absorbed when it hits € or 1/¢ and we use:
Theorem (V. 2011)

We have

X2 e |t < 1) — P20z (X € o[t < )

( (
(21,22,23)

and - o
e—0




Application: study of a multi-type diffusion process

Numerical results

Py (2> 0.27 > 0,28 > 0| To > 1)

Poan (2 > 028 > 0,78 =0| Ty > 1)

(b)

0 Poagy (2 > 0.2} =02} > 0|T, > 1)
Foan (ZH =022 > 020 > 0| Ty > 1)
’ o o (2 > 028 = 0,2} =0Ty > 1)
o Puuy (2 =022 >02 =0T, > 1)
/
- J By (7 = 0,72 =07} > 0| Ty > 1)

4
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Thank you!
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