Integrable probability on interlacing particles

Vadim Gorin
MIT, Cambridge and IITP, Moscow

January, 2013

Lozenge tilings: our basic model

Consider an equi-angular hexagon of side lengths a, b, c, a, b, c drawn on the regular triangular lattice.
We are interested in tilings by rhombi with angles $\pi / 3$ and $2 \pi / 3$ and side lengths 1 . Each rhombus ("lozenge") is a union of two elementary triangles.

Overview

Our topic: models related to random lozenge tilings, including KPZ-class growth processes and random matrices.

Overview

Our topic: models related to random lozenge tilings, including KPZ-class growth processes and random matrices.

We aim to see the same $\mathbf{N}^{1 / 3}$.

Overview

Our topic: models related to random lozenge tilings, including KPZ-class growth processes and random matrices.

We aim to see the same $\mathbf{N}^{1 / 3}$.
Our way is through the study of models with two distinctions.

Overview

Our topic: models related to random lozenge tilings, including KPZ-class growth processes and random matrices.

We aim to see the same $\mathbf{N}^{1 / 3}$.
Our way is through the study of models with two distinctions.

- State space can be typically identified with particle configurations subject to interlacing conditions.

Overview

Our topic: models related to random lozenge tilings, including KPZ-class growth processes and random matrices.

We aim to see the same $\mathbf{N}^{1 / 3}$.
Our way is through the study of models with two distinctions.

- State space can be typically identified with particle configurations subject to interlacing conditions.
- Probability measures are "integrable" in the sense that many distributions and expectations of observables admit explicit formulas.

Consider uniformly random lozenge tiling of large hexagon. How does it look like?

Consider uniformly random lozenge tiling of large hexagon. How does it look like?

3 types of lozenges -3 colors

Lozenge tilings: frozen regions
(Cohn-Larsen-Propp, 1998) Tiling is asymptotically frozen outside inscribed ellipse

Lozenge tilings: frozen regions

(Cohn-Larsen-Propp, 1998) Tiling is asymptotically frozen outside inscribed ellipse

How can this fact be proved?

Lozenge tilings: frozen regions

Method 1. (Cohn-Larsen-Propp, Kenyon-Okounkov-Sheffield) "Limit shape" as the side lengths of the hexagon $a, b, c \rightarrow \infty$ can be obtained as a solution of certain variational problem. Analyzing it via Euler-Lagrange equation one proves, in particular, the existence of frozen regions.

Lozenge tilings: frozen regions

Method 1. (Cohn-Larsen-Propp, Kenyon-Okounkov-Sheffield) "Limit shape" as the side lengths of the hexagon $a, b, c \rightarrow \infty$ can be obtained as a solution of certain variational problem. Analyzing it via Euler-Lagrange equation one proves, in particular, the existence of frozen regions.

Advantage. This method extends to describe the global limit behavior (in particular, frozen regions) of tilings of very general domains.

Lozenge tilings: frozen regions

Method 1. (Cohn-Larsen-Propp, Kenyon-Okounkov-Sheffield) "Limit shape" as the side lengths of the hexagon $a, b, c \rightarrow \infty$ can be obtained as a solution of certain variational problem. Analyzing it via Euler-Lagrange equation one proves, in particular, the existence of frozen regions.

Advantage. This method extends to describe the global limit behavior (in particular, frozen regions) of tilings of very general domains.
(Kenyon-Okounkov) Tiling of a large polygon is asymptotically frozen outside inscribed algebraic curve of minimal degree.

Lozenge tilings: frozen regions

Method 1. (Cohn-Larsen-Propp, Kenyon-Okounkov-Sheffield) "Limit shape" as the side lengths of the hexagon $a, b, c \rightarrow \infty$ can be obtained as a solution of certain variational problem. Analyzing it via Euler-Lagrange equation one proves, in particular, the existence of frozen regions.

Advantage. This method extends to describe the global limit behavior (in particular, frozen regions) of tilings of very general domains.
(Kenyon-Okounkov) Tiling of a large polygon is asymptotically frozen outside inscribed algebraic curve of minimal degree.

Disadvantage. While solving the problem for the hexagon, this does not give the answer in explicit form for complicated domains.

Lozenge tilings: frozen regions

Method 2. ("Integrable") Consider horizontal lozenges of a tiling (they form an interlacing particle configuration).

nth correlation function:
$\rho_{n}\left(\left(x_{1}, t_{1}\right) \ldots\left(x_{n}, t_{n}\right)\right)=\operatorname{Prob}\{$ horiz. lozenges in given n positions $\}$

Lozenge tilings: frozen regions

Method 2. ("Integrable")
Proposition. Correlation functions for the uniform measure on tilings of a hexagon have determinantal form

$$
\rho_{n}=\operatorname{det}_{i, j=1, \ldots, n}\left\{K\left(t_{i}, x_{i} ; t_{j}, x_{j}\right)\right\},
$$

where correlation kernel K does not depend on n.
Thus, horizontal lozenges form a determinantal point process.

Lozenge tilings: frozen regions

Method 2A. (Johannson-Nordenstam; Gorin) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed through Hahn (hypergeometric) orthogonal polynomials.

Lozenge tilings: frozen regions

Method 2A. (Johannson-Nordenstam; Gorin) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed through Hahn (hypergeometric) orthogonal polynomials.

Asymptotic analysis of this kernel
(Baik-Kriecherbauer-McLaughlin-Miller; Gorin), in particular, proves (again) that the tiling is frozen outside inscribed ellipse.

Lozenge tilings: frozen regions

Method 2A. (Johannson-Nordenstam; Gorin) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed through Hahn (hypergeometric) orthogonal polynomials.

Asymptotic analysis of this kernel
(Baik-Kriecherbauer-McLaughlin-Miller; Gorin), in particular, proves (again) that the tiling is frozen outside inscribed ellipse.

Advantage. This method can be generalized to more complicated measures on tilings of hexagons. Still there are explicit formulas for the boundaries of frozen regions (Borodin-Gorin-Rains-2009).

Lozenge tilings: frozen regions
Method 2A: Non-uniform measures - one example.

Lozenge tilings: frozen regions

Method 2A: Non-uniform measures - one example.

Disadvantage. Breaks down if we change the domain.
General feature. We can have rich models and answers, but methods are not resistent to small fluctuations.

Lozenge tilings: frozen regions

Method 2B. (Petrov-2012) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed as a double contour integral of elementary functions.
Remark. In the context of Schur processes related to random tilings, double contour representations for correlation kernels were found in (Okounkov-Reshetikhin-2001).

Lozenge tilings: frozen regions

Method 2B. (Petrov-2012) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed as a double contour integral of elementary functions.
Remark. In the context of Schur processes related to random tilings, double contour representations for correlation kernels were found in (Okounkov-Reshetikhin-2001).

Asymptotic analysis of this kernel via steepest descent (Petrov-2012), in particular, proves (again) that the tiling is frozen outside inscribed ellipse.

Lozenge tilings: frozen regions

Method 2B. (Petrov-2012) The correlation kernel K describing positions of horizontal lozenges in uniformly random lozenge tilings of a hexagon can be expressed as a double contour integral of elementary functions.
Remark. In the context of Schur processes related to random tilings, double contour representations for correlation kernels were found in (Okounkov-Reshetikhin-2001).

Asymptotic analysis of this kernel via steepest descent (Petrov-2012), in particular, proves (again) that the tiling is frozen outside inscribed ellipse.

Advantage. This method can be generalized to a class of polygonal domains with horizontal boundaries on two straight lines. Still there are explicit formulas (rational parameterization) for the boundaries of frozen regions (Petrov-2012).

Lozenge tilings: frozen regions
Method 2B: Class of polygonal domains - one example.

Lozenge tilings: frozen regions
Method 2B: Class of polygonal domains - one example.

Disadvantage. Breaks down if we change either class of domains or measure.

Lozenge tilings: appearance of $N^{1 / 3}$

What are the fluctuations of the boundary of the frozen region of $N a \times N b \times N c$ hexagon?

Lozenge tilings: appearance of $N^{1 / 3}$

What are the fluctuations of the boundary of the frozen region of $N a \times N b \times N c$ hexagon?
(Baik-Kriecherbauer-McLaughlin-Miller; Petrov) For the uniformly random tilings the right scaling is $N^{1 / 3}$ in normal direction and $N^{2 / 3}$ in tangent direction to the frozen boundary.

After rescaling the limit fluctuations of the frozen boundary are governed by the Tracy-Widom distribution F_{2}.
The whole 2D picture is governed by the extended Airy kernel.

Lozenge tilings: appearance of $N^{1 / 3}$

The existing proofs are based on the asymptotic analysis of the correlation kernel.

Lozenge tilings: appearance of $N^{1 / 3}$

The existing proofs are based on the asymptotic analysis of the correlation kernel.

Baik-Kriecherbauer-McLaughlin-Miller: a partial result via orthogonal polynomials.

Lozenge tilings: appearance of $N^{1 / 3}$

The existing proofs are based on the asymptotic analysis of the correlation kernel.

Baik-Kriecherbauer-McLaughlin-Miller: a partial result via orthogonal polynomials.

Petrov: complete result via the steepest descent analysis of the double contour integrals.
The proof again extends to a class of polygonal domains with
 horizontal boundaries on two straight lines.

Question. Is this $N^{1 / 3}$ the same as that for TASEP and, more generally, KPZ-class growth models?

From lozenge tilings to TASEP

Relation to KPZ is obtained through the construction of a growth model for tilings.

From lozenge tilings to TASEP

Relation to KPZ is obtained through the construction of a growth model for tilings.

Theorem. (Borodin-Gorin-2009) There exists a simple discrete time Markov chain which relates uniformly distributed tilings of hexagons of various sizes. Elementary step of this chain changes the size of hexagon from $a \times b \times c$ to $a \times(b-1) \times(c+1)$. Algorithmically, one step involves generating some independent one-dimensional random variables.

Observation. There is exactly one way to tile $a \times b \times 0$ hexagon.
Remark. The construction can be generalized to more complicated elliptic weights on tilings of hexagon (Borodin-Gorin-Rains-2009; Betea-2011)
$30 \times 60 \times 0$

$30 \times 59 \times 1$

$30 \times 58 \times 2$

$30 \times 50 \times 10$

$$
30 \times 10 \times 50
$$

$$
30 \times 1 \times 59
$$

$$
30 \times 0 \times 60
$$

From lozenge tilings to TASEP

Description of Markov chain in terms of (interlacing) horizontal lozenges

From lozenge tilings to TASEP

Description of Markov chain in terms of (interlacing) horizontal lozenges

- Left to right sequential update

From lozenge tilings to TASEP

Description of Markov chain in terms of (interlacing) horizontal lozenges

- Left to right sequential update
- Each lozenge jumps down according to (explicit, position-dependent) hypergeometric-type distribution

From lozenge tilings to TASEP

Description of Markov chain in terms of (interlacing) horizontal lozenges

- Left to right sequential update
- Each lozenge jumps down according to (explicit, position-dependent) hypergeometric-type distribution
- Interlacing preserved through block/push interaction

From lozenge tilings to TASEP

Description of Markov chain in terms of (interlacing) horizontal lozenges

- Left to right sequential update
- Each lozenge jumps down according to (explicit, position-dependent) hypergeometric-type distribution
- Interlacing preserved through block/push interaction

Works for more complicated measures, but only for hexagon.

From lozenge tilings to TASEP

This Markov chain is simplified in the limit transition $a, b, c \rightarrow \infty$, $a b / c \rightarrow t$ (time).
(leftmost horizontal lozenges)

From lozenge tilings to TASEP

This Markov chain is simplified in the limit transition $a, b, c \rightarrow \infty$, $a b / c \rightarrow t$ (time).
(leftmost horizontal lozenges)

From lozenge tilings to TASEP

$$
\begin{aligned}
& \bullet x_{1}^{5} \quad \bullet x_{2}^{5} \cdot x_{3}^{5} \quad \bullet x_{4}^{5} \quad \bullet x_{5}^{5} \\
& \text { - } x_{1}^{4} \cdot{ }^{4} x_{2}^{4} \\
& \text { - } x_{3}^{4} \cdot x_{4}^{4} \\
& \text { - } x_{1}^{3} \\
& \text { - } x_{2}^{3} \bullet x_{3}^{3} \\
& \text { - } x_{1}^{2} \\
& \text { - } x_{2}^{2} \\
& \text { - } x_{1}^{1}
\end{aligned}
$$

In the limit we get a continuous time dynamics $Y(t)$ on particle configurations with integer coordinates subject to interlacing conditions $x_{i-1}^{j}<x_{i-1}^{j-1} \leq x_{i}^{j}$.

Each particle has an exponential clock of rate 1. All clocks are independent. When the clock rings, the particle attempts to jump to the right.

From lozenge tilings to TASEP

$$
\begin{aligned}
& \bullet_{1}^{5} \cdots x_{2}^{5} \cdot x_{3}^{5} \quad \bullet x_{4}^{5} \quad \bullet x_{5}^{5} \\
& \text { - } x_{1}^{4} \quad \bullet x_{2}^{4} \\
& \text { - } x_{3}^{4} \cdot x_{4}^{4} \\
& \text { - } x_{1}^{3} \\
& \text { - } x_{2}^{3} \bullet x_{3}^{3} \\
& \text { - } x_{1}^{2} \\
& \text { - } x_{2}^{2} \\
& \text { - } x_{1}^{1}
\end{aligned}
$$

In the limit we get a continuous time dynamics $Y(t)$ on particle configurations with integer coordinates subject to interlacing conditions $x_{i-1}^{j}<x_{i-1}^{j-1} \leq x_{i}^{j}$.

Each particle has an exponential clock of rate 1. All clocks are independent. When the clock rings, the particle attempts to jump to the right.

The interlacing conditions are preserved by the rule "if higher, then lighter".

From lozenge tilings to TASEP

Block:

From lozenge tilings to TASEP
Block:

From lozenge tilings to TASEP

Block:

From lozenge tilings to TASEP
Block:

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.
Boundary of the frozen region in random lozenge tilings corresponds to leftmost and rightmost particles.

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.
Boundary of the frozen region in random lozenge tilings corresponds to leftmost and rightmost particles.

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.
Boundary of the frozen region in random lozenge tilings corresponds to leftmost and rightmost particles.

Totally Asymmetric Simple Exclusion Process.

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.
Boundary of the frozen region in random lozenge tilings corresponds to leftmost and rightmost particles.

Totally Asymmetric Simple Exclusion Process.

Evolution of rightmost particles is Long Range TASEP (or PushASEP).

From lozenge tilings to TASEP

This dynamics was first introduced by Borodin and Ferrari in 2008.
Boundary of the frozen region in random lozenge tilings corresponds to leftmost and rightmost particles.

Totally Asymmetric Simple Exclusion Process.

Evolution of rightmost particles is Long Range TASEP (or PushASEP).

Both TASEP and PushASEP are known to belong to the KPZ universality class of growth models.

Lozenge tilings: appearance of $N^{1 / 3}$

What are the fluctuations of the boundary of the frozen region of $N a \times N b \times N c$ hexagon?
(Baik-Kriecherbauer-McLaughlin-Miller; Petrov) For the uniformly random tilings the right scaling is $N^{1 / 3}$ in normal direction and $N^{2 / 3}$ in tangent direction to the frozen boundary.

After rescaling the limit fluctuations of the frozen boundary are governed by the Tracy-Widom distribution F_{2}.

Lozenge tilings: appearance of $N^{1 / 3}$

What are the fluctuations of the boundary of the frozen region of $N a \times N b \times N c$ hexagon?
(Baik-Kriecherbauer-McLaughlin-Miller; Petrov) For the uniformly random tilings the right scaling is $N^{1 / 3}$ in normal direction and $N^{2 / 3}$ in tangent direction to the frozen boundary.

After rescaling the limit fluctuations of the frozen boundary are governed by the Tracy-Widom distribution F_{2}.
Question. Is this $N^{1 / 3}$ the same as that for eigenvalues of random matrices?

$N^{1 / 3}$ in random matrices

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$
\rho(X) \sim \exp \left(-\operatorname{Trace}\left(X^{2}\right) / 2\right)
$$

$N^{1 / 3}$ in random matrices

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$
\rho(X) \sim \exp \left(-\operatorname{Trace}\left(X^{2}\right) / 2\right)
$$

Alternatively, real and imaginary parts of the matrix elements above the diagonal are i.i.d. Gaussians with variance $1 / 2$ and diagonal elements are i.i.d. Gaussians with variance 1.

$N^{1 / 3}$ in random matrices

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$
\rho(X) \sim \exp \left(-\operatorname{Trace}\left(X^{2}\right) / 2\right)
$$

Alternatively, real and imaginary parts of the matrix elements above the diagonal are i.i.d. Gaussians with variance $1 / 2$ and diagonal elements are i.i.d. Gaussians with variance 1. All eigenvalues are real. GUE-eigenvalues density is (Weyl, 20-30s)

$$
\rho\left(x_{1}^{N}, \ldots, x_{N}^{N}\right) \sim \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{N} e^{-x_{i}^{2} / 2}
$$

$N^{1 / 3}$ in random matrices

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$
\rho(X) \sim \exp \left(-\operatorname{Trace}\left(X^{2}\right) / 2\right)
$$

Alternatively, real and imaginary parts of the matrix elements above the diagonal are i.i.d. Gaussians with variance $1 / 2$ and diagonal elements are i.i.d. Gaussians with variance 1. All eigenvalues are real. GUE-eigenvalues density is (Weyl, 20-30s)

$$
\rho\left(x_{1}^{N}, \ldots, x_{N}^{N}\right) \sim \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{N} e^{-x_{i}^{2} / 2}
$$

For $N=1$ we get a standard Gaussian.

$N^{1 / 3}$ in random matrices

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$
\rho(X) \sim \exp \left(-\operatorname{Trace}\left(X^{2}\right) / 2\right)
$$

Alternatively, real and imaginary parts of the matrix elements above the diagonal are i.i.d. Gaussians with variance $1 / 2$ and diagonal elements are i.i.d. Gaussians with variance 1. All eigenvalues are real. GUE-eigenvalues density is (Weyl, 20-30s)

$$
\rho\left(x_{1}^{N}, \ldots, x_{N}^{N}\right) \sim \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{N} e^{-x_{i}^{2} / 2}
$$

For $N=1$ we get a standard Gaussian.
Wigner (1955): spacing between eigenvalues model the spacings between the lines in the "spectrum" of a heavy atom.

$N^{1 / 3}$ in random matrices

$$
\left(\begin{array}{ll|l|l}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\cline { 1 - 2 } a_{31} & a_{32} & a_{33} & a_{34} \\
\cline { 1 - 2 } a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

Let x_{i}^{k} be i th eigenvalue of top-left $k \times k$ corner of GUE. Interlacing condition:

$$
x_{i-1}^{j} \leq x_{i-1}^{j-1} \leq x_{i}^{j}
$$

$N^{1 / 3}$ in random matrices

$$
\left(\begin{array}{c|c|c|c}
\left.\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{14} \\
\hline a_{21} & a_{22} & a_{23} \\
a_{24} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \begin{array}{c}
\text { Let } x_{i}^{k} \text { be } i \text { th eigenvalue of } \\
\text { top-left } k \times k \text { corner of GUE. } \\
\hline \begin{array}{l}
41
\end{array} \\
a_{42}
\end{array} & a_{43} & a_{44}
\end{array}\right) \quad \begin{gathered}
\text { Interlacing condition: } \\
x_{i-1}^{j} \leq x_{i-1}^{j-1} \leq x_{i}^{j}
\end{gathered}
$$

The joint distribution of x_{i}^{j} is known as GUE-minors process (although, correct name would be GUE-corners) Given $x_{1}^{N}, \ldots, x_{N}^{N}$, the distribution of $x_{i}^{j}, j<N$ is uniform on the polytope defined by interlacing conditions (Baryshnikov, 2001)

$N^{1 / 3}$ in random matrices

Theorem. (Tracy-Widom-1994)
$N^{1 / 6}\left(x_{N}^{N}-2 N^{1 / 2}\right)$ converges as $N \rightarrow \infty$ towards the distribution F_{2}.

$N^{1 / 3}$ in random matrices

Theorem. (Tracy-Widom-1994)
$N^{1 / 6}\left(x_{N}^{N}-2 N^{1 / 2}\right)$ converges as $N \rightarrow \infty$ towards the distribution F_{2}.
Where is $N^{1 / 3}$?

$N^{1 / 3}$ in random matrices

Theorem. (Tracy-Widom-1994)
$N^{1 / 6}\left(x_{N}^{N}-2 N^{1 / 2}\right)$ converges as $N \rightarrow \infty$ towards the distribution F_{2}.
Where is $N^{1 / 3}$?
We have N eigenvalues in the interval $[-2 \sqrt{N}, 2 \sqrt{N}]$.
Rescale the picture so that a typical spacing becomes of order 1 (as in lozenge tilings).

$$
N^{-1 / 6} \cdot N^{1 / 2}=N^{1 / 3}!
$$

$N^{1 / 3}$ in random matrices

Theorem. (Tracy-Widom-1994)
$N^{1 / 6}\left(x_{N}^{N}-2 N^{1 / 2}\right)$ converges as $N \rightarrow \infty$ towards the distribution F_{2}.
Where is $N^{1 / 3}$?
We have N eigenvalues in the interval $[-2 \sqrt{N}, 2 \sqrt{N}]$.
Rescale the picture so that a typical spacing becomes of order 1 (as in lozenge tilings).

$$
N^{-1 / 6} \cdot N^{1 / 2}=N^{1 / 3}!
$$

How can a lozenge tiling become a random matrix?

From lozenge tilings to random matrices

General conjecture. For the domain of linear size N near the point where frozen boundary is tangent to the boundary of the domain, the fluctuations are of order \sqrt{N}. After rescaling, the distribution of position of one type of lozenges converges to GUE-corners process.

From lozenge tilings to random matrices

General conjecture. For the domain of linear size N near the point where frozen boundary is tangent to the boundary of the domain, the fluctuations are of order \sqrt{N}. After rescaling, the distribution of position of one type of lozenges converges to GUE-corners process.

Stated by Okounkov and Reshetikhin in 2006. They also gave an informal argument explaining why this should be true.

From lozenge tilings to random matrices

Away from the boundary the fluctuations are of order $N^{1 / 3}$, with limit governed by Tracy-Widom distribution $F_{2}(s)$.
Near the boundary fluctuations of the frozen curve of lozenge tiling are of order $N^{1 / 2}$ with Gaussian limit. GUE-corners process glues $N^{1 / 2}$ and $N^{1 / 3}$ classes together.

From lozenge tilings to random matrices

Away from the boundary the fluctuations are of order $N^{1 / 3}$, with limit governed by Tracy-Widom distribution $F_{2}(s)$.
Near the boundary fluctuations of the frozen curve of lozenge tiling are of order $N^{1 / 2}$ with Gaussian limit. GUE-corners process glues $N^{1 / 2}$ and $N^{1 / 3}$ classes together.

The conjecture itself is now proved in several cases.

From lozenge tilings to random matrices

Theorem. (Johansson-Nordenstam, 2006; Nordenstam, 2009) For the hexagon the fluctuations near the point where inscribed ellipse touches the boundary are of order \sqrt{N} and after rescaling the point process formed by positions of one type of lozenges converges to GUE-corners process.

From lozenge tilings to random matrices

Theorem. (Johansson-Nordenstam, 2006; Nordenstam, 2009) For the hexagon the fluctuations near the point where inscribed ellipse touches the boundary are of order \sqrt{N} and after rescaling the point process formed by positions of one type of lozenges converges to GUE-corners process.

Method: Computation based on Lindström-Gessel-Viennot formula for the number of non-intersecting paths + certain determinant evaluations. The asymptotics itself is a shadow of the convergence of Hahn (hypergeometric) orthogonal polynomials toward Hermite orthogonal polynomials.

From lozenge tilings to random matrices

Theorem.

(Okounkov-Reshetikhin, 2006)
Conjecture is valid for skew plane partitions (this corresponds to lozenge tilings of certain infinite domains) with measure $q^{\text {volume }}$.
(picture from
Okounkov-Reshetikhin, 2006)

From lozenge tilings to random matrices

Theorem.

(picture from
Okounkov-Reshetikhin, 2006)
(Okounkov-Reshetikhin, 2006)
Conjecture is valid for skew plane partitions (this corresponds to lozenge tilings of certain infinite domains) with measure $q^{\text {volume }}$.

Method: Determinantal point processes + formalism of Schur processes which leads to double contour integral representation of the correlation kernel + steepest descent analysis of double contour integrals.

From lozenge tilings to random matrices

Theorem. (Gorin-Panova, 2013) GUE-convergence conjecture holds for the following class of domains.

Domain $\Omega_{N, y(N)}$ is parameterized by its width N and positions $y(N)_{1}<y(N)_{2}<\cdots<y(N)_{N}$ of N horizontal lozenges at the right boundary. Tiling this domain is the same as tiling a certain polygon.

Here $N=5$ and $y(5)=(0<1<5<6<8)$.

From lozenge tilings to random matrices

Method.

How to compute the distribution of k horizontal lozenges $\lambda_{1}^{k}, \ldots, \lambda_{k}^{k}$ on k th vertical line in uniformly random tiling of $\Omega_{y(N), N}$?

From lozenge tilings to random matrices

Method.

How to compute the distribution of k horizontal lozenges $\lambda_{1}^{k}, \ldots, \lambda_{k}^{k}$ on k th vertical line in uniformly random tiling of $\Omega_{y(N), N}$?

The distribution itself is complicated. But there are formulas for certain generating functions.

From lozenge tilings to random matrices

Given $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}$ the corresponding Schur function is a symmetric polynomial in x_{1}, \ldots, x_{k} given by (note a bit non-standard notation)

$$
s_{\lambda}\left(x_{1}, \ldots, x_{j}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}}\right]_{i, j=1}^{k}}{\prod_{i<j}\left(x_{j}-x_{i}\right)}
$$

Proposition. Let $\lambda^{(k)}=\lambda_{1}^{k}, \ldots, \lambda_{k}^{k}$ encode k horizontal lozenges on k th vertical line in uniformly random tiling of $\Omega_{y(N), N}$.

$$
\mathbb{E}\left(\frac{s_{\lambda^{(k)}}\left(x_{1}, \ldots, x_{k}\right)}{s_{\lambda^{(k)}}(1, \ldots, 1)}\right)=\frac{s_{y(N)}\left(x_{1}, \ldots, x_{k}, 1, \ldots, 1\right)}{s_{y(N)}(\underbrace{1, \ldots, 1}_{N})}
$$

From lozenge tilings to random matrices

Given $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}$ the corresponding Schur function is a symmetric polynomial in x_{1}, \ldots, x_{k} given by (note a bit non-standard notation)

$$
s_{\lambda}\left(x_{1}, \ldots, x_{j}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}}\right]_{i, j=1}^{k}}{\prod_{i<j}\left(x_{j}-x_{i}\right)}
$$

Proposition. Let $\lambda^{(k)}=\lambda_{1}^{k}, \ldots, \lambda_{k}^{k}$ encode k horizontal lozenges on k th vertical line in uniformly random tiling of $\Omega_{y(N), N}$.

$$
\mathbb{E}\left(\frac{s_{\lambda^{(k)}}\left(x_{1}, \ldots, x_{k}\right)}{s_{\lambda^{(k)}}(1, \ldots, 1)}\right)=\frac{s_{y(N)}\left(x_{1}, \ldots, x_{k}, 1, \ldots, 1\right)}{s_{y(N)}(\underbrace{1, \ldots, 1}_{N})}
$$

Now the limit theorem boils down to the (still non-trivial!) study of asymptotics of Schur functions as the number of variables tends to infinity, which we do.

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

1. Determinantal point processes

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

1. Determinantal point processes
2. Correlation kernels expressed via orthogonal polynomials or as double contour integrals

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

1. Determinantal point processes
2. Correlation kernels expressed via orthogonal polynomials or as double contour integrals
3. Markov-fashion decompositions of complicated measures into 1-dimensional random variables.

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

1. Determinantal point processes
2. Correlation kernels expressed via orthogonal polynomials or as double contour integrals
3. Markov-fashion decompositions of complicated measures into 1-dimensional random variables.
4. Expectations of observables via Schur symmetric polynomials

Integrable probability on interlacing particles

We have seen a number of algebraic structures which, in particular, helped to see the connection of $N^{1 / 3}$ scaling exponents among different models.

1. Determinantal point processes
2. Correlation kernels expressed via orthogonal polynomials or as double contour integrals
3. Markov-fashion decompositions of complicated measures into 1-dimensional random variables.
4. Expectations of observables via Schur symmetric polynomials

One of the reasons for the existence of rich structures: Interlacing particle configurations are Gelfand-Tsetlin patterns from representation theory.
(E.g. they parameterize bases of irreducible representations of unitary groups.)

