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Plan

• SOS: a random discrete interface model

• Hard wall and entropic repulsion

• Macroscopic shape

• Level lines as interacting random polymers, and cube-root
fluctuations

• Heuristics, difficulties and methods

• Relations with other 1/3’s (open discussion...)

• Open problems



(2+1)Dimensional SOS model

Discrete height: ϕ = {ϕx , x ∈ Z
2}, with ϕx ∈ Z.

Λ square of side L in Z
2 centered at 0.

0 boundary condition: ϕx = 0 for all x ∈ Z
2 \ Λ.

Gibbs measure: β > 0

π(ϕ) = πβ,L(ϕ) =
1

Zβ,L
exp

(

− β
∑

x∼y

|ϕx − ϕy |
)
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Roughening transition:

Low temperature (large β, rigid phase): localization
πβ,L(ϕ

2
0) 6 Cβ (exponential tails, via Peierls argument)

High temperature (small β, rough phase): delocalization
πβ,L(ϕ

2
0) ≈ log L (difficult! see Fröhlich-Spencer CMP 1981).

[One expects convergence to Gaussian Free Field]



(2 + 1)D SOS with a wall: Entropic repulsion

ϕx ∈ Z and
π+(ϕ) = π(ϕ |ϕx > 0 ∀x ∈ Λ)

Entropic repulsion heuristics (β large):

• shift heights h → h + 1 at energy loss −4βL (boundary)

• full downward spikes at x give the gain in entropy +L2 e−4βh.

• surface grows until 4βL ≈ L2 e−4βh or h ≈ 1
4β log L.

Bricmont, El Mellouki, Fröhlich ’82:

1

|Λ|
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x∈Λ

π+[ϕx ] ∈
[

c1

β
log L,

c2

β
log L
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We will see: most heights are either at height ⌊ 1
4β log L⌋ or

⌊ 1
4β log L⌋ − 1, according to the fractional part of 1

4β log L.



Results 1: typical height
From now on, β is sufficiently large (so that we are deep in the
rigid phase) and δ is a small constant, tending to zero if β → ∞.

Let H(L), α(L) be the integer/fractional part of 1/(4β) log L

and Eh = {ϕ : #{x : ϕx = h} ≥ (1 − δ)L2}.



Results 1: typical height
From now on, β is sufficiently large (so that we are deep in the
rigid phase) and δ is a small constant, tending to zero if β → ∞.

Let H(L), α(L) be the integer/fractional part of 1/(4β) log L

and Eh = {ϕ : #{x : ϕx = h} ≥ (1 − δ)L2}.
Theorem
One has limL→∞ π+(EH(L)−1 ∪ EH(L)) = 1.
Moreover, consider a subsequence Lk such that α(Lk) → α.

There exists αc(β) such that:

• if α > αc(β) then

lim
k→∞

π+(EH(Lk )) = 1

• if α < αc(β) then

lim
k→∞

π+(EH(Lk )−1) = 1.



Results 2: macroscopic shape

For j ∈ Z, let Lj be the collection of closed level lines (loops) at
height H(Lk) − j , of length ≫ log Lk .



Results 2: macroscopic shape

For j ∈ Z, let Lj be the collection of closed level lines (loops) at
height H(Lk) − j , of length ≫ log Lk .

Theorem
There exist deterministic shapes Wj , j ≥ 0 such that the following

holds with probability → 1 as Lk → ∞:

• for j < 0, the collection of loops Lj is empty

• assume that α > αc(β). Then every Lj , j ≥ 0 contains a

single loop Γj . Rescaling, (1/Lk )Γj tends to Wj

• assume that α < αc(β). The same holds, except that L0 is

empty.
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We will see in a moment how the Wj are related to a Wulff
construction. ∂Wj has both flat and curved portions.



Results 3: Cube-root fluctuations

Γj

j = ξH(L)

L(1−ξ)/3

L



Results 3: Cube-root fluctuations

Distance from flat part of the boundary
(say (0, 0) is midpoint of the bottom side of Λ):

∆j(L) = min{y : (0, y) ∈ Γj}

Theorem (simplified version)

Say that α > αc (β). For every ε > 0, w.h.p.

L1/3−ε < ∆0(L) < L1/3+ε.

For 0 ≤ ξ < 1, j = ⌊ξH(L)⌋: For every ε > 0, w.h.p.

∆j(L) < L(1−ξ)/3+ε.



The basic fact: probability of a large contour

γ

Λ

< n

≥ n



The basic fact: probability of a large contour

γ

Λ

< n

≥ n

Basic observation:

π+(γ is a n-contour ) ∼ exp [−β|γ| + A(γ)π(ϕx = n)]



Link with Ising with small external field

Now, π(ϕx = n)
n→∞∼ Cβ exp(−4βn).

If n = H(L) = 1/(4β) log L − α(L),

π+(γ is a H(L)-contour) ∼ exp

(

−β|γ| + λ

L
A(γ)

)

where λ(β,L) = Cβe4βα(L).

It is like Ising with 1/L magnetic field (Schonmann, Shlosman ’95).

If λ exceeds a critical λc , a macroscopic H(L)-contour is favorable.

For (H(L) − j)-contours, λ is replaced by λe4βj .



Macroscopic shape and λc : Heuristics

To minimize energy, a H(L)-contour γ of area u2 will have a Wulff
shape and an energy cost −uWβ = −L

(

u
L

)

Wβ ≈ −4L(u
L
)β.
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Macroscopic shape and λc : Heuristics

To minimize energy, a H(L)-contour γ of area u2 will have a Wulff
shape and an energy cost −uWβ = −L

(

u
L

)

Wβ ≈ −4L(u
L
)β.

The entropic gain is λ
L
A(γ) = λ

L
u2 = λL(u

L
)2.

Energy-entropy competition when r = (u/L) is of order 1.

rc

r∗ =
Wβ

λ

r
r∗

rc =
Wβ

2λ
≈

2β
λ

−rWβ + λr2

r∗ < 1 ⇔ λ > Wβ



Macroscopic shape and λc : Heuristics

The previous argument would give λc = Wβ.

A more careful analysis reveals that the macroscopic shape W0 of
Γ0 is

critical Wulff shape of radius rc

λc is the value of λ such that, for W0, the area term exactly
compensates energy loss.



Macroscopic shape and λc : Heuristics

The previous argument would give λc = Wβ.

A more careful analysis reveals that the macroscopic shape W0 of
Γ0 is

critical Wulff shape of radius rc

λc is the value of λ such that, for W0, the area term exactly
compensates energy loss.

For H(L) − j contour, λ → λe4βj and rc → rce
−4βj .
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Technical difficulty

log P(Γ0,Γ1, . . . ) ≃ −β|Γ0| − β|Γ1| + . . .

(negative lenght term, like in the Peierls argument)

+
λ

L
A(Γ0) +

λe4β

L
A(Γ1 \ Γ0) + . . .

(positive area term from entropic repulsion)

+Φ(Γ0,Γ1, . . . )

(interaction term, with no definite sign).

Φ is small with β and decays fast with distance, but still, it is the
main technical pain.



Why cube-root fluctuations?

Basic step: conditionally on the H(L)-contour containing a Wulff
shape of radius ℓ > rcL, it contains w.h.p. a Wulff shape of radius
ℓ + L1/3.

r > Lrc

r′ = r + L1/3

Works as long as the blue shape is at distance at least L1/3+ǫ from
the boundary.



Why cube-root fluctuations?

Local analysis of contour

H(L)

H(L) − 1

H(L)

H(L) − 1

y ∆

L2/3+ǫ
y ∼ c1(β)L1/3+2ǫ

∂Λ

If ∆ is with high probability ≫ y , we win (argument to be
repeated all around the red shape).
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exp(+(λ/L)Area(γ))

with Area(γ) the signed area below γ.
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Distribution of height ∆ is approximately

P (∆) ∝ exp
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−
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+ λ
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Area termDiffusion constant depends on surface tension

Typical fluctuation of ∆ is of order L1/3+ǫ/2, negligible w.r.t. its
average E (∆) ∼ c2(β)L1/3+2ǫ.



Why cube-root fluctuations?

Contour γ behaves like random walk with area term

exp(+(λ/L)Area(γ))

with Area(γ) the signed area below γ.
Distribution of height ∆ is approximately

P (∆) ∝ exp
[

−
∆2

L2/3+ǫσ2(β)
+ λ

LL2/3+ǫ∆
]

Area termDiffusion constant depends on surface tension

Typical fluctuation of ∆ is of order L1/3+ǫ/2, negligible w.r.t. its
average E (∆) ∼ c2(β)L1/3+2ǫ.

Fact: if ℓ/L > rc , then c2(β) > c1(β) so that ∆ ≫ y .
Entropic repulsion wins against curvature, H(L)-contour grows



Why not less than L
1/3?

For a contour portion of longitudinal size L2/3−ǫ, area term

Area(γ)

L

is of order 1 =⇒ negligible.

Transversal fluctuations are normal, of order
√

L2/3−ǫ = L1/3−ǫ/2.

Non-trivial technical difficulty: rule out pinning to the boundary
∂Λ.



Connections with other 1/3’s

1 K. Alexander, CMP ’01: subcritical FK cluster conditioned to
have large area

2 Ferrari-Spohn, AoP ’05: Brownian bridge conditioned to stay
above a circular/parabolic barrier

3 Velenik, PTRF ’04: random walk with penalizing area term.

4 Johansson, CMP ’03: Dyson’s non-intersecting Brownian
motions (say, fluctuations of the top path).
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Connections with other 1/3’s

1 K. Alexander, CMP ’01: subcritical FK cluster conditioned to
have large area

2 Ferrari-Spohn, AoP ’05: Brownian bridge conditioned to stay
above a circular/parabolic barrier

3 Velenik, PTRF ’04: random walk with penalizing area term.

4 Johansson, CMP ’03: Dyson’s non-intersecting Brownian
motions (say, fluctuations of the top path).

In cases 1 to 3, the area term is put “by hand”. For SOS, it comes
by itself, from entropic repulsion.

In case 4, exact solvability via determinantal representation. In our
case, no hope to have exact solution (because of interactions,
overhangs, etc).



Open problems

• Order of fluctuations along the curved portions of the limit
shapes:

√
L (as opposed to L1/3)?

• Is the fluctuation upper bound L(1−ξ)/3 for the line at height
ξH(L) optimal?

• What is limit process of the line ensemble? Connection with
Airy line ensembles? (random matrices, TASEP, ...)

Γ0

Γ1

L2/3

L1/3

Λ

etc.

Γ0

Γ1

Γ2


