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Synchronization

First recognized in 1665 by Christiaan Huygens, synchronization phenomena are

abundant in science, nature, engineering, and social life. Systems as diverse as

clocks, singing crickets, cardiac pacemakers, firing neurons, and applauding

audiences exhibit a tendency to operate in synchrony. These phenomena are

universal and can be understood within a common framework based on modern

nonlinear dynamics. [Pikovsky, Rosenblum, and Kurths 2001]
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First recognized in 1665 by Christiaan Huygens, synchronization phenomena are

abundant in science, nature, engineering, and social life. Systems as diverse as

clocks, singing crickets, cardiac pacemakers, firing neurons, and applauding

audiences exhibit a tendency to operate in synchrony. These phenomena are

universal and can be understood within a common framework based on modern

nonlinear dynamics. [Pikovsky, Rosenblum, and Kurths 2001]

Extremely many facets:

Notion of unit (cell, component, individual,. . .)

We are interested in system of two, three,. . . , 1010, . . . ,∞ interacting
units

Which type of interaction?

What does an isolated unit? Noisy or deterministic dynamics?

Units need not being identical (probably, should not)
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A first example and the general structure

Single unit dynamics

Ẋ = Fa(X ), X ∈ R
d
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Example: FitzHugh-Nagumo system d = 2, X =

(

x

y

)

εẋ = x −
x3

3
− y ẏ = x + a
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y

)

εẋ = x −
x3

3
− y ẏ = x + a

X =

(

−a

−a + a3/3

)

is globally attractive for |a| > 1.

For |a| < 1 a stable limit cycle appears

For |a| > 1 close to 1: moderate excitations produce large pulses
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A first example and the general structure

N interaction units: j = 1, . . . ,N

Ẋj = Faj
(Xj) + interaction termj(X1, . . . ,XN) + noisej

The interaction works in favor of synchrony among the units.
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A first example and the general structure

N interaction units: j = 1, . . . ,N

Ẋj = Faj
(Xj) + interaction termj(X1, . . . ,XN) + noisej

The interaction works in favor of synchrony among the units.

With reference to the example: two main cases

Isolated units are oscillators (asymptotically periodic behavior): can
one identify a synchronization transition?

Isolated units are static (globally stable stationary solution for each
unit): possible emergence of periodic behavior for N large

From a mathematical standpoint, very limited understanding: but
[Scheutzow 85-86] has to be mentioned
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Phase reduction and Kuramoto models

Isolated unit dynamics
ϕ̇(t) = U(ϕ(t))

with ϕ ∈ S := R/2πZ and U : S→ R smooth.
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Examples

U(ϕ) = ω = const. so ϕ(t) = ϕ0 + ωt

U(θ) = a sin(θ)− 1

Case |a| < 1: Case |a| > 1: 0

Case |a| > 1: toy excitable unit.
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ϕ̇(t) = U(ϕ(t))

with ϕ ∈ S := R/2πZ and U : S→ R smooth.

Examples

U(ϕ) = ω = const. so ϕ(t) = ϕ0 + ωt

U(θ) = a sin(θ)− 1

Case |a| < 1: Case |a| > 1: 0

Case |a| > 1: toy excitable unit.

Stochastic isolated unit dynamics: dϕ(t) = U(ϕ(t))dt + σ dw(t)
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Phase reduction and Kuramoto models

Consider the diffusion on S
N (where S := R/2πZ)

dϕj (t) = Uj(ϕj (t))dt −
K

N

N
∑

i=1

sin (ϕj (t)− ϕi (t)) dt + σ dwj (t) ,

for j = 1, 2, . . . ,N and σ,K ≥ 0
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dϕj (t) = Uj(ϕj (t))dt −
K

N

N
∑

i=1

sin (ϕj (t)− ϕi (t)) dt + σ dwj (t) ,

for j = 1, 2, . . . ,N and σ,K ≥ 0 with

1 Simplest type of mean field interaction: sine interaction

2 {wj(·)}j=1,2,... are IID standard Brownian motions

3 Uj(·) smooth function from S to R

Generalized prototypical examples:

Uj(ϕ) = ωj (Obs.: rotation invariance)

Uj(ϕ) = aj sin(ϕ)− 1 (Obs.: no rotation invariance)

IID choice of {ω1, ω2, . . .} and {a1, a2, . . .}
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A statistical mechanics model?

If σ > 0, for every N

dϕj(t) = Uj(ϕj(t))dt −
K

N

N
∑

i=1

sin (ϕj (t)− ϕi(t)) dt + σ dwj(t) ,

has a unique stationary probability measure.

G.G. (Paris Diderot and LPMA) Inhomogeneous Random Systems 2014 7 / 1



A statistical mechanics model?

If σ > 0, for every N

dϕj(t) = Uj(ϕj(t))dt −
K

N

N
∑

i=1

sin (ϕj (t)− ϕi(t)) dt + σ dwj(t) ,

has a unique stationary probability measure.

Such a measure is reversible if (and only if)

Uj = V ′

j ←− not an innocent condition!

in particular for the case Uj(·) ≡ ωj the dynamics is stochastically

reversible only if ωj = 0 for every j .
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Of course there would be plenty to say about the case σ = 0 case!
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Statistical mechanics: plane rotator model

Let us focus on the reversible and rotation invariant case

dϕj (t) = −
K

N

N
∑

i=1

sin (ϕj(t)− ϕi (t)) dt + σ dwj(t) ,

which is a classical statistical mechanics model.
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
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N
∏

j=1

dϕj

Exactly solvable: it has phase transition for N →∞

for K ≤ Kc = σ2: {ϕj}j=1,2,... under µ∞,K are independent random
variables uniform on S

for K > Kc = σ2: µ∞,K is a superposition of product measures
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The empirical measure and the N →∞ limit

Useful tool: the empirical measure

νN,t(dθ) =
1

N

N
∑

j=1

δϕj (t)(dθ)
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In fact, as N →∞, we have νN,t(dθ)
N→∞

=⇒ pt(θ)dθ where pt(θ) solves a
Fokker-Planck (McKean-Vlasov) PDE.
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The empirical measure and the N →∞ limit

We start with

dϕj(t) = −
K

N

N
∑

i=1

sin (ϕj(t)− ϕi (t)) dt + σ dwj(t) (SD)
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2
∂2
θpt(θ)− ∂θ [pt(θ)(J ∗ pt)(θ)] (FP)

Important observations

No space and no time rescaling

The result holds for t finite, to be precise we can consider
νN,· ∈ C 0([0,T ];M1), M1 space of probability measures with weak
convergence, and the convergence is in this space [. . .].
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∂pt(θ) =
σ2

2
∂2
θpt(θ)− ∂θ [pt(θ)(J ∗ pt)(θ)] (FP)

Important observations

No space and no time rescaling

The result holds for t finite, to be precise we can consider
νN,· ∈ C 0([0,T ];M1), M1 space of probability measures with weak
convergence, and the convergence is in this space [. . .].

(FP) inherits the rotation symmetry: pt(·+ ψ) solves (FP) too
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How much do we understand of the Fokker-Planck PDE?

From [Silver, Frankel, Ninham, Pearce, Kuramoto,. . .], [Bertini, G,
Pakdaman 2010] and [G, Pakdaman, Pellegrin 2012]

Punchline: good global understanding of the Fokker-Planck PDE
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How much do we understand of the Fokker-Planck PDE?

From [Silver, Frankel, Ninham, Pearce, Kuramoto,. . .], [Bertini, G,
Pakdaman 2010] and [G, Pakdaman, Pellegrin 2012]

Punchline: good global understanding of the Fokker-Planck PDE

Essential ingredients:

Gradient structure (inherited from reversibility): the evolution is
driven by a free energy functional

We know all the stationary solutions and their stability properties (in
a strong sense)

The stationary solutions are (σ = 1)

qψ(θ) ∝ exp (c(K ) cos(θ − ψ))

with c(K ) ≥ 0 coming out of a fixed point problem
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N =∞ (Fokker-Planck), K = 2, σ = 1
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N = 1000, K = 2, σ = 1, but much faster
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Finite but very large N

Considered in physics/complex system literature: Pikovsky, Ruffo 1999 and
Pikovsky, Rosenblum, Kurths 2001
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Finite but very large N

Considered in physics/complex system literature: Pikovsky, Ruffo 1999 and
Pikovsky, Rosenblum, Kurths 2001
Can be made into rigorous results:

Informal version of [Bertini, G., Poquet 2014]

In the empirical measure at time 0 is close for N large to a density
profile p0 such that

∫

S
p0(θ) exp(iθ)dθ 6= 0, in a finite (i.e. N

independent) time the empirical measure reaches any given
neighborhood of qψ, where ψ is determined by p0
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Pikovsky, Rosenblum, Kurths 2001
Can be made into rigorous results:

Informal version of [Bertini, G., Poquet 2014]

In the empirical measure at time 0 is close for N large to a density
profile p0 such that

∫

S
p0(θ) exp(iθ)dθ 6= 0, in a finite (i.e. N

independent) time the empirical measure reaches any given
neighborhood of qψ, where ψ is determined by p0

the empirical measure remains close to a qψ for much longer times
(notably, Nc , any c > 0), though the center of synchronization ψ may
change
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In the empirical measure at time 0 is close for N large to a density
profile p0 such that

∫

S
p0(θ) exp(iθ)dθ 6= 0, in a finite (i.e. N

independent) time the empirical measure reaches any given
neighborhood of qψ, where ψ is determined by p0

the empirical measure remains close to a qψ for much longer times
(notably, Nc , any c > 0), though the center of synchronization ψ may
change

and in fact the center of synchronization, speeded up by a time factor
N, converges as N →∞ to a Brownian motion on the circle (and we
have a formula for the diffusion coefficient)

G.G. (Paris Diderot and LPMA) Inhomogeneous Random Systems 2014 15 / 1



What about the non-equilibrium case?

dϕj (t) = U(ϕj (t))dt −
K

N

N
∑

i=1

sin (ϕj (t)− ϕi (t)) dt + σ dwj(t)
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1 For N =∞ any initial configuration converges to a stationary
solution: synchronization if K > σ2. No periodic phenomena, just
convergence to stationarity (direct consequence of the equilibrium
nature of the model: free energy is a Liapunov functional)
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For U ≡ 0 we have observed:

1 For N =∞ any initial configuration converges to a stationary
solution: synchronization if K > σ2. No periodic phenomena, just
convergence to stationarity (direct consequence of the equilibrium
nature of the model: free energy is a Liapunov functional)

2 Fancier phenomena appear for N finite (we control N large): for
K > σ2 synchronization happens quickly and on a longer scale time
the center of synchronization makes a stochastic movement

3 We register in any case the remarkable stability of the family of
stationary solutions M0 := {qψ(·) : ψ ∈ S} (a circle in the space of
density functions)

Let us now look at the non-equilibrium case U(ϕ) = a sin(ϕ) − 1
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U(θ) = (a sin(θ)− 1)/2, N = 4000, K = 2, a = 0.7,σ = 1

G.G. (Paris Diderot and LPMA) Inhomogeneous Random Systems 2014 17 / 1



Reminder for U(θ) = a sin(θ)− 1

The single unit (no noise, no interaction) dynamics for a > 1 is:

0
π
2 2π

ϕ̇ = a sin(ϕ)− 1, a > 1

Stable point

Unstable point
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U(θ) = (a sin(θ)− 1)/2, N = 4000, K = 2, a = 1.4, σ = 1
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U(θ) = (a sin(θ)− 1)/2, N = 4000, K = 2, a = 1.1, σ = 1
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U(θ) = (a sin(θ)− 1)/2, K = 2, N =∞, a = 1.1, σ = 1
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Periodic motion from non periodic units

Of course the last simulations are an instance of the general phenomenon
mentioned at the beginning: interacting noisy excitable systems may
display periodic behavior
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mentioned at the beginning: interacting noisy excitable systems may
display periodic behavior

For the specific model this has been observed (numerics, heuristics) by
Kuramoto, Shinomoto and Sakaguchi (end of 80s, early 90s)

We retain form the simulations:

1 emergence of synchronization (and of a natural synchronization
center)

2 the synchronization center may have various dynamics, but the circle
of stationary solutions of the U ≡ 0 case, M0, has not completely
disappeared
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How can we get our hands on these phenomena?

The new Fokker-Planck PDE is now

∂pt(θ) =
σ2

2
∂2
θpt(θ)− ∂θ [pt(θ)(J ∗ pt)(θ)]−δ ∂θ [pt(θ)U(θ)]

where we have introduced a parameter δ ∈ R

G.G. (Paris Diderot and LPMA) Inhomogeneous Random Systems 2014 23 / 1



How can we get our hands on these phenomena?

The new Fokker-Planck PDE is now

∂pt(θ) =
σ2

2
∂2
θpt(θ)− ∂θ [pt(θ)(J ∗ pt)(θ)]−δ ∂θ [pt(θ)U(θ)]

where we have introduced a parameter δ ∈ R

the invariant set (and stable: normally contracting) of solutions M0
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It keeps the (local) stability property, but (in general) it is no longer a
set of stationary solutions: the dynamics is locally attracted by Mδ

and if we are on Mδ we stay on it (and we can still define a center of
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where we have introduced a parameter δ ∈ R

the invariant set (and stable: normally contracting) of solutions M0

for the PDE with δ = 0 changes to a new set Mδ when we switch to
δ 6= 0 but it persists, at least if δ is not too large.

It keeps the (local) stability property, but (in general) it is no longer a
set of stationary solutions: the dynamics is locally attracted by Mδ

and if we are on Mδ we stay on it (and we can still define a center of
synchronization)

We can get a quantitative characterization on Mδ and we can get
sharp control on the dynamics on Mδ (notably: the dynamics of the
center of synchronization) in the limit of small δ by perturbation
technics [G., Pakdaman, Pellegrin, Poquet 2012], [G., Lucon, Poquet]
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Sum-up

Viewpoint on synchronization of noisy units via Kuramoto type
models
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The question appears to be fundamental, but it has been remarkably little
considered by mathematicians: [Scheutzow 85-86], [Rybko, Shlosman,
Vladimirov 09], [Dai Pra, Fischer, Regoli 13], and always mean field.

Our results on Kuramoto type models have a flare of generality, but rely
heavily on the fact that in this class of model there is a reversible case.

qualitatively this is not a serious restriction (if Kuramoto type models
capture the essence of much more general cases)

quantitatively this is a substantial restriction: typical biological
models aren’t so naturally linked to reversible cases
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