Synchronization in Ensembles of Oscillators: Theory of Collective Dynamics

A. Pikovsky

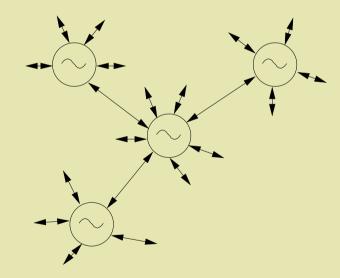
Deapartment of Physics and Astronomy, Potsdam University

Content

- Synchronization in ensembles of coupled oscillators
- Watanabe-Strogatz theory, its relation to Ott-Antonsen equations and its generalization for hierarchical populations
- Partial synchronization due to nonlinear coupling
- Self-organizing chimera
- Populations with resonant and nonresonant coupling

Ensembles of globally (all-to-all) couples oscillators

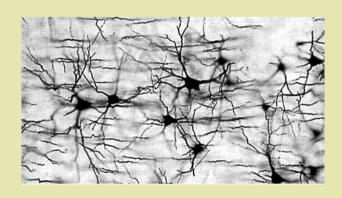
- Physics: arrays of Josephson junctions, multimode lasers,...
- Biology and neuroscience: cardiac pacemaker cells, population of fireflies, neuronal ensembles...
- Social behavior: applause in a large audience, pedestrians on a bridge,...

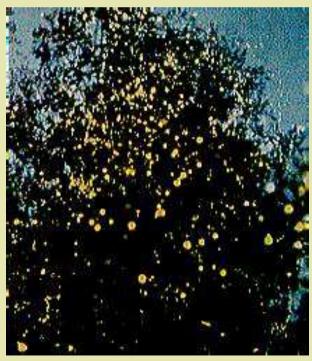


Main effect: Synchronization

Mutual coupling adjusts phases of indvidual systems, which start to keep pace with each other

Synchronization can be treated as a nonequilibrium phase transition!





Attempt of a general formulation

$$\begin{split} & \dot{\vec{x}}_k = \vec{f}(\vec{x}_k, \vec{X}, \vec{Y}) & \text{individual oscillators (microscopic)} \\ & \vec{X} = \frac{1}{N} \sum_k \vec{g}(\vec{x}_k) & \text{mean fields (generalizations possible)} \\ & \dot{\vec{Y}} = \vec{h}(\vec{X}, \vec{Y}) & \text{macroscopic global variables} \end{split}$$

Typical setup for a synchronization problem:

 $\vec{x}_k(t)$ – periodic orchaotic oscillators

 $ec{X}(t), ec{Y}(t)$ periodic or chaotic \Rightarrow collective synchronous rhythm

 $\vec{X}(t), \vec{Y}(t)$ stationary \Rightarrow desynchronization

Description in terms of macroscopic variables

The goal is to describe the ensemble in terms of macroscopic variables \vec{W} , which characterize the distribution of \vec{x}_k ,

$$\dot{\vec{W}}=\vec{q}(\vec{W},\vec{Y})$$
 generalized mean fields $\dot{\vec{Y}}=\vec{h}(\vec{X}(\vec{W}),\vec{Y})$ global variables

as a possibly low-dimensional dynamical system

Below: how this program works for phase oscillators by virtue of Watanabe-Strogatz and Ott-Antonsen approaches

Kuramoto model: coupled phase oscillators

Phase oscillators ($\phi_k \sim x_k$) with all-to-all pair-wise coupling

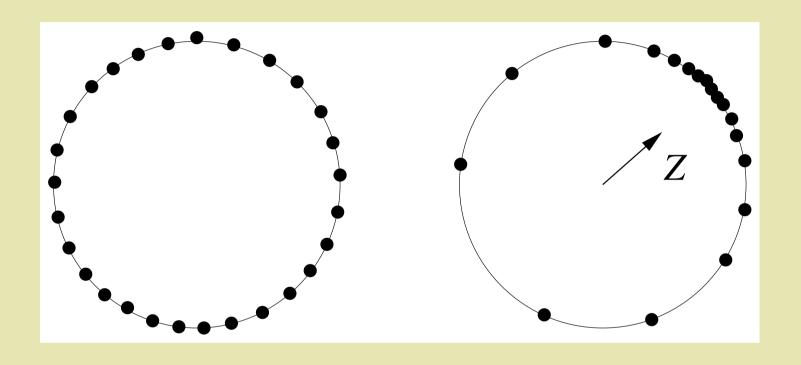
$$\begin{split} \dot{\varphi}_k &= \omega_k + \epsilon \frac{1}{N} \sum_{j=1}^N \sin(\varphi_j - \varphi_k) \\ &= \epsilon \left[\frac{1}{N} \sum_{j=1}^N \sin \varphi_j \right] \cos \varphi_k - \epsilon \left[\frac{1}{N} \sum_{j=1}^N \cos \varphi_j \right] \sin \varphi_k \\ &= \omega_k + \epsilon R(t) \sin(\Theta(t) - \varphi_k) = \omega_k + \epsilon \text{Im}(Ze^{-i\varphi_k}) \end{split}$$

System can be written as a mean-field coupling with the mean field (complex order parameter $Z \sim X$)

$$Z = Re^{i\Theta} = \frac{1}{N} \sum_{k} e^{i\varphi_k}$$

Synchronisation transition

 $\epsilon_c \sim$ width of distribution of frequecies $g(\omega) \sim$ "temperature"



small ϵ : no synchronization, phases are distributed uniformly, mean field vanishes Z=0

large $\ensuremath{\epsilon}$: synchronization, distribution of phases is non-uniform, finite mean field $Z \neq 0$

Watanabe-Strogatz (WS) ansatz

[S. Watanabe and S. H. Strogatz, PRL 70 (2391) 1993; Physica D 74 (197) 1994]

Ensemble of **identical** oscillators driven by the same complex field H(t)

$$\frac{d\varphi_k}{dt} = \omega(t) + \operatorname{Im}\left(He^{-i\varphi_k}\right) \qquad k = 1, \dots, N$$

Möbius transformation to WS variables

$$\rho(t), \quad \Phi(t), \quad \Psi(t), \quad \psi_1 = \text{const}, \dots \psi_N = \text{const}$$

$$e^{i\phi_k} = e^{i\Phi(t)} \frac{\rho(t) + e^{i(\psi_k - \Psi(t))}}{\rho(t)e^{i(\psi_k - \Psi(t))} + 1}$$

yields WS equations

$$\begin{split} \frac{d\rho}{dt} &= \frac{1-\rho^2}{2} \mathrm{Re}(He^{-i\Phi}) \;, \qquad \frac{d\Phi}{dt} = \omega + \frac{1+\rho^2}{2\rho} \mathrm{Im}(He^{-i\Phi}) \;, \\ \frac{d\Psi}{dt} &= \frac{1-\rho^2}{2\rho} \mathrm{Im}(He^{-i\Phi}) \;. \end{split}$$

or in a complex form for $z=\rho e^{i\Phi}$, $\alpha=\Phi-\Psi$

$$\frac{dz}{dt} = i\omega z + \frac{1}{2}(H - z^2H^*) \qquad \frac{d\alpha}{dt} = \omega + \operatorname{Im}(z^*H)$$

Why Möbius?

Phase equation $\dot{\phi}=\omega(t)-i(He^{-i\phi}-H^*e^{i\phi})$ can be rewritten for $z=e^{i\phi}$ as $\dot{z}=i\omega z+H-H^*z^2$

This Ricatti equations, for constant coefficients, has as solutions rational functions $z(t) = \frac{Az(0) + B}{Cz(0) + D}$

Combination of rational functions is rational

Even for non-constant coefficients the solution can be represented as a rational function with time-dependent parameters

cf.: Bicycle rear wheel governed by arbitrary trajectory of the front wheel, by M. Levi

Interpretation of WS variables

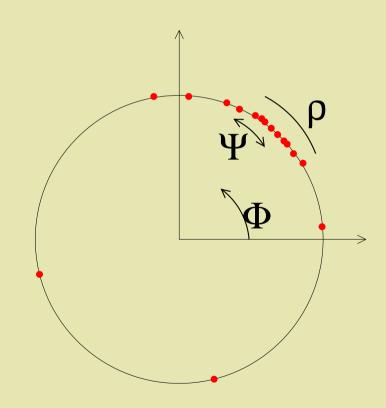
ρ measures the width of the bunch:

ho=0 if the mean field $Z=\sum_k e^{i \phi_k}$ vanishes

ho=1 if the oscillators are fully synchronized and |Z|=1

 Φ is the phase of the bunch

Ψ measures positions of individual oscillators with respect to the bunch



Synchronization of uncoupled oscillators by external forces

Ensemble of **identical** oscillators driven by the same complex field H(t)

$$\frac{d\varphi_k}{dt} = \omega(t) + \operatorname{Im}\left(H(t)e^{-i\varphi_k}\right) \qquad k = 1, \dots, N$$

What happens to the WS variable ρ ?

 $\rho \rightarrow 1$: synchronization

 $\rho \rightarrow 0$: desynchronization

Two basic examples oscillators and Jusephson junctions:

$$\dot{\varphi}_k = \omega - \sigma \xi(t) \sin \varphi_k \qquad \frac{\hbar}{2eR} \frac{d\varphi_k}{dt} + I_c \sin \varphi_k = I(t)$$

Hamiltonian reduction

$$\begin{split} \dot{\mathbf{p}} &= \frac{1-\mathbf{p}^2}{2} \mathrm{Re}(H(t)e^{-i\Phi}) \;, \\ \dot{\Phi} &= \Omega(t) + \frac{1+\mathbf{p}^2}{2\mathbf{p}} \mathrm{Im}(H(t)e^{-i\Phi}) \;. \end{split}$$

in variables

$$q = \frac{\rho \cos \Phi}{\sqrt{1 - \rho^2}}, \qquad p = -\frac{\rho \sin \Phi}{\sqrt{1 - \rho^2}},$$

reduces to a Hamiltonian system with Hamiltonian,

$$\mathcal{H}(J,\Phi,t) = \Omega(t)J - H(t)\frac{\sqrt{2J(2J+1)}}{2}\sin\Phi \ .$$

Action-angle variables

$$J = \frac{\rho^2}{2(1-\rho^2)}, \qquad \Phi$$

Hamiltonian reads

$$\mathcal{H}(J,\Phi,t) = \Omega(t)J - H(t)\frac{\sqrt{2J(2J+1)}}{2}\sin\Phi$$

Synchrony: $\mathcal{H}, J \rightarrow \infty$

Asynchrony: $\mathcal{H}, J \rightarrow 0$

For general noise: "Energy" grows ⇒ synchronization by common noise

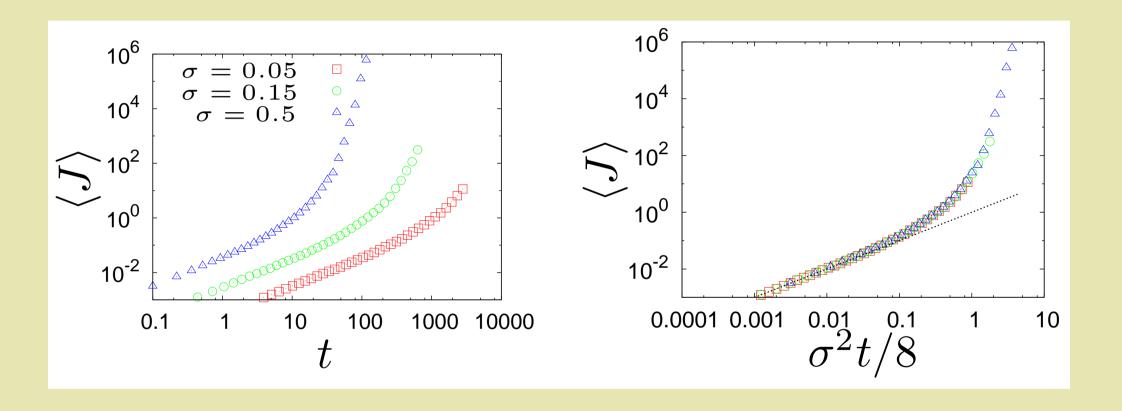
Analytic solution for the initial stage

Close to asynchrony: energy is small, equations can be linearized ⇒ exact solution

$$\mathcal{H}, J \sim \sigma^2 t$$

Close to synchrony:

$$\mathcal{H}, J \sim \exp[\lambda t]$$



Globally coupled ensembles

Kuramoto model with equal frequencies

$$\dot{\varphi}_k = \omega + \varepsilon Im(Ze^{-i\varphi_k})$$

belongs to the WS-class

$$\frac{d\varphi_k}{dt} = \omega(t) + \operatorname{Im}\left(H(t)e^{-i\varphi_k}\right) \qquad k = 1, \dots, N$$

where H is the order parameter

$$Z = Re^{i\Theta} = \frac{1}{N} \sum_{k} e^{i\varphi_k}$$

Complex order parameters via WS variables

Complex order parameter can be represented via WS variables as

$$Z = \sum_{k} e^{i\phi_k} = \rho e^{i\Phi} \gamma(\rho, \Psi)$$
 $\gamma = 1 + (1 - \rho^{-2}) \sum_{l=2}^{\infty} C_l (-\rho e^{-i\Psi})^l$

where $C_l = N^{-1} \sum_k e^{il} \Psi_k$ are Fourier harmonics of the distribution of constants Ψ_k

Important simplifying case (adopted below):

Uniform distribution of constants ψ_k

$$C_l = 0 \Rightarrow \gamma = 1 \Rightarrow Z = \rho e^{i\Phi} = z$$

In this case WS variables yield the order parameter directly!

Closed equation for the order parameter for the Kuramoto-Sakaguchi model

Individual oscillators:

$$\dot{\mathbf{\phi}}_k = \mathbf{\omega} + \mathbf{\epsilon} \frac{1}{N} \sum_{j=1}^N \sin(\mathbf{\phi}_j - \mathbf{\phi}_k + \mathbf{\beta}) = \mathbf{\omega} + \mathbf{\epsilon} \text{Im}(Ze^{i\mathbf{\beta}}e^{-i\mathbf{\phi}_k})$$

Equation for the order parameter is just the WS equation:

$$\frac{dZ}{dt} = i\omega Z + \frac{\varepsilon}{2}e^{i\beta}Z - \frac{\varepsilon}{2}e^{-i\beta}|Z|^2Z$$

Closed equation for the real order parameter R = |Z|:

$$\frac{dR}{dt} = \frac{\varepsilon}{2}R(1 - R^2)\cos\beta$$

Simple dynamics in the Kuramoto-Sakaguchi model

$$\frac{dR}{dt} = \frac{\varepsilon}{2}R(1 - R^2)\cos\beta$$

Attraction:
$$-\frac{\pi}{2} < \beta < \frac{\pi}{2}$$
 \Longrightarrow

Synchronization, all phases identical $\phi_1 = \ldots = \phi_N$, order parameter large R=1

Repulsion:
$$-\pi < \beta < -\frac{\pi}{2}$$
 and $\frac{\pi}{2} < \beta < \pi$ \Longrightarrow

Asynchrony, phases distributed uniformely, order parameter vanishes R=0

Linear vs nonlinear coupling I

- Synchronization of a periodic autonomous oscillator is a nonlinear phenomenon
- it occurs already for infinitely small forcing
- because the unperturbed system is singular (zero Lyapunov exponent)

In the Kuramoto model "linearity" with respect to forcing is assumed

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) + \varepsilon_1 \mathbf{f}_1(t) + \varepsilon_2 \mathbf{f}_2(t) + \cdots$$
$$\dot{\mathbf{\phi}} = \mathbf{\omega} + \varepsilon_1 q_1(\mathbf{\phi}, t) + \varepsilon_2 q_2(\mathbf{\phi}, t) + \cdots$$

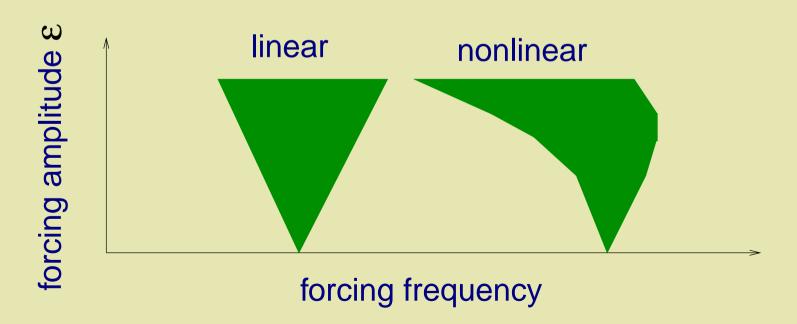
Linear vs nonlinear coupling II

Strong forcing leads to "nonlinear" dependence on the forcing amplitude

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) + \varepsilon \mathbf{f}(t)$$

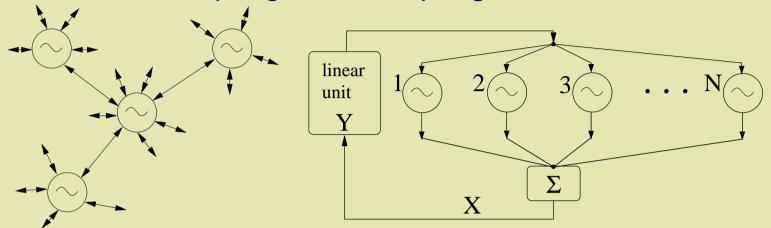
$$\dot{\mathbf{\phi}} = \omega + \varepsilon q^{(1)}(\mathbf{\phi}, t) + \varepsilon^2 q^{(2)}(\mathbf{\phi}, t) + \cdots$$

Nonlineraity of forcing manifests itself in the deformation/skeweness of the Arnold tongue and in the amplitude depnedence of the phase shift

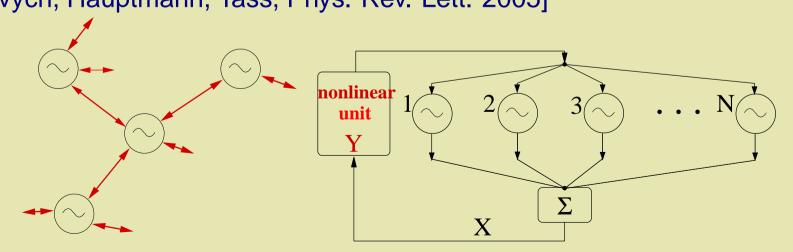


Linear vs nonlinear coupling III

Small each-to-each coupling \iff coupling via linear mean field



Strong each-to-each coupling \iff coupling via nonlinear mean field [cf. Popovych, Hauptmann, Tass, Phys. Rev. Lett. 2005]



Nonlinear coupling: a minimal model

We take the standard Kuramoto-Sakaguchi model

$$\dot{\phi}_k = \omega + \operatorname{Im}(He^{-i\phi_k}) \qquad H \sim \varepsilon e^{-i\beta}Z \qquad Z = \frac{1}{N}\sum_j e^{i\phi_j} = Re^{i\Theta_j}$$

and assume dependence of the acting force H on the "amplitude" of the mean field R:

$$\dot{\varphi}_k = \omega + A(\varepsilon R)\varepsilon R\sin(\Theta - \varphi_k + \beta(\varepsilon R))$$

E.g. attraction for small R vs repulsion for large R

WS equations for the nonlinearly coupled ensemble

$$\frac{dR}{dt} = \frac{1}{2}R(1 - R^2)\varepsilon A(\varepsilon R)\cos\beta(\varepsilon R)$$

$$\frac{d\Phi}{dt} = \omega + \frac{1}{2}(1 + R^2)\varepsilon A(\varepsilon R)\sin\beta(\varepsilon R)$$

$$\frac{d\Psi}{dt} = \frac{1}{2}(1 - R^2)\varepsilon A(\varepsilon R)\sin\beta(\varepsilon R)$$

Full vs partial synchrony

All regimes follow from the equation for the order parameter

$$\frac{dR}{dt} = \frac{1}{2}R(1 - R^2)\varepsilon A(\varepsilon R)\cos\beta(\varepsilon R)$$

Fully synchronous state: R = 1, $\dot{\Phi} = \omega + \varepsilon A(\varepsilon) \sin \beta(\varepsilon)$

Asynchronous state: R = 0

Partially synchronous bunch state

0 < R < 1 from the condition $A(\varepsilon R) = 0$:

No rotations, frequency of the mean field = frequency of the oscillations

Partially synchronized quasiperiodic state

0 < R < 1 from the condition $\cos \beta(\epsilon R) = 0$:

Frequency of the mean field $\Omega = \dot{\phi} = \omega \pm A(\epsilon R)(1 + R^2)/2$

Frequency of oscillators $\omega_{osc} = \omega \pm A(\epsilon R)R^2$

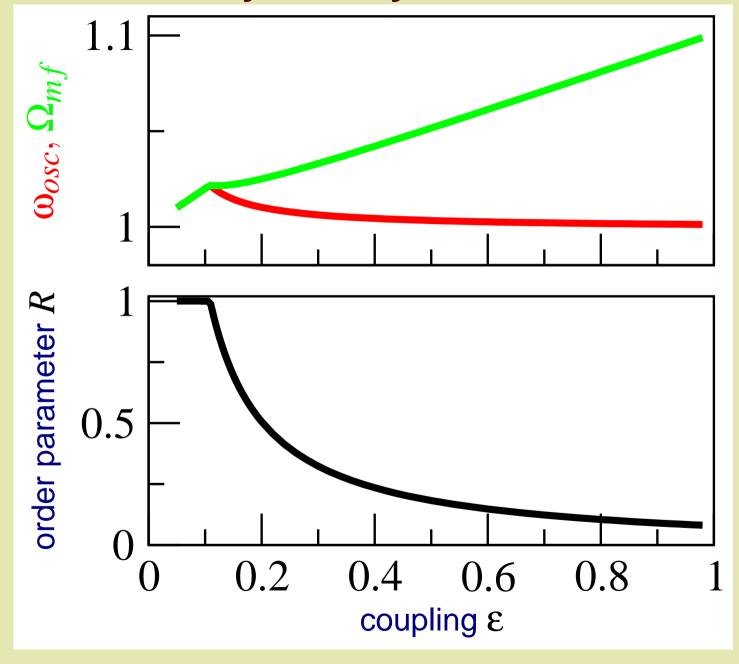
Self-organized quasiperiodicity

- ullet frequencies Ω and ω_{OSC} depend on ϵ in a smooth way
 - generally we observe a quasiperiodicity
- attraction for small mean field vs repulsion for large mean field \implies ensemble is always at the stabilty border $\beta(\epsilon R)=\pm\pi/2$, i.e. in a

self-organized critical state

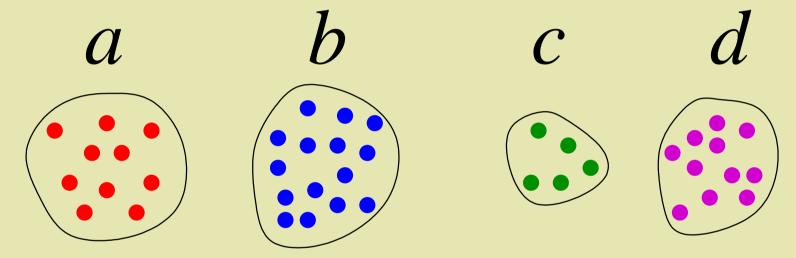
- critical coupling for the transition from full to partial synchrony: $\beta(\epsilon_q) = \pm \pi/2$
- transition at "zero temperature" like quantum phase transition

Simulation: loss of synchrony with increase of coupling



Hierarchically organized populations of oscillators

We consider populations consisting of M identical subgroups (of different sizes)



Each subgroup is described by WS equations

 \Rightarrow system of 3M equations completely describes the ensemble

$$\begin{split} \frac{d\rho_a}{dt} &= \frac{1-\rho_a^2}{2} \mathrm{Re}(H_a e^{-i\Phi_a}) \;, \\ \frac{d\Phi_a}{dt} &= \omega_a + \frac{1+\rho_a^2}{2\rho_a} \mathrm{Im}(H_a e^{-i\Phi_a}) \;, \\ \frac{d\Psi_a}{dt} &= \frac{1-\rho_a^2}{2\rho_a} \mathrm{Im}(H_a e^{-i\Phi_a}) \;. \end{split}$$

General force acting on subgroup *a*:

$$H_a = \sum_{b=1}^{M} n_b E_{a,b} Z_b + F_{ext,a}(t)$$

 n_b : relative subgroup size

 $E_{a,b}$: coupling between subgroups a and b

Thermodynamic limit

If the number of subgroups M is very large, one can consider a as a continuous parameter and get a system

$$\begin{split} \frac{\partial \rho(a,t)}{\partial t} &= \frac{1-\rho^2}{2} \mathrm{Re}(H(a,t)e^{-i\Phi}) \\ \frac{\partial \Phi(a,t)}{\partial t} &= \omega(a) + \frac{1+\rho^2}{2\rho} \mathrm{Im}(H(a,t)e^{-i\Phi}) \\ \frac{\partial \Psi(a,t)}{\partial t} &= \frac{1-\rho^2}{2\rho} \mathrm{Im}(H(a,t)e^{-i\Phi}) \\ H(a,t) &= F_{ext}(a,t) + \int db \, E(a,b) n(b) Z(b) \end{split}$$

Relation to Ott-Antonsen equations

[E. Ott and T. M. Antonsen, CHAOS 18 (037113) 2008]

- in the case when subgroups differ only by frequency
- the coupling is global but nonlinear $E(\omega,\omega')=\epsilon A(\epsilon R)e^{i\beta(\epsilon R)}$
- for a particular case when the complex order parameter for each subgroup is expressed via the WS variables as $Z(\omega)=\rho(\omega)e^{i\Phi(\omega)}$

we obtain Ott-Antonsen integral equations

$$\frac{\partial Z(\omega, t)}{\partial t} = i\omega Z + \frac{1}{2}H - \frac{Z^2}{2}H^*$$

$$H = \varepsilon A(\varepsilon R)e^{i\beta(\varepsilon R)}Y$$
 $Y = Re^{i\Phi} = \int d\omega n(\omega)Z(\omega)$

OA equations for Lorentzian distribution of frequencies

If

$$n(\omega) = \frac{\Delta}{\pi((\omega - \omega_0)^2 + \Delta^2)}$$

then the integral $Y=\int d\omega n(\omega)Z(\omega)$ can be calculated via residues as $Y=Z(\omega_0+i\Delta)$

This yields an ordinary differential equation for the order parameter Y

$$\frac{dY}{dt} = (i\omega_0 - \Delta)Y + \frac{1}{2}\varepsilon A(\varepsilon R)(e^{i\beta(\varepsilon R)} - e^{-i\beta(\varepsilon R)}|Y|^2)Y$$

Hopf normal form / Landau-Stuart equation/ Poincaré oscillator

$$\frac{dY}{dt} = (a+ib-(c+id)|Y|^2)Y$$

Nonidentical oscillators with nonlinear coupling

Lorentzian distribution of natural frequencies $n(\omega)$

⇒ standard "finite temperature" Kuramoto model of globally coupled oscillators with nonlinear coupling

(attraction for a small force, repulsion for a large force)

Novel effect: Multistability

Different partially synchronized states coexist for the same parameter range

Multistability of synchronous and asynchronous states in a Kuramoto model with nonlinear coupling

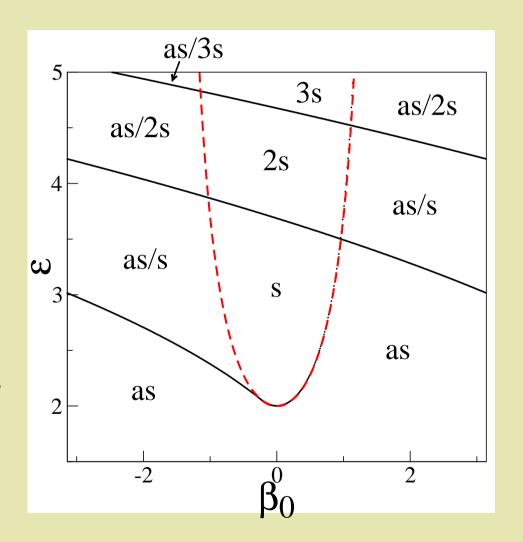
Nonlinear phase shift:

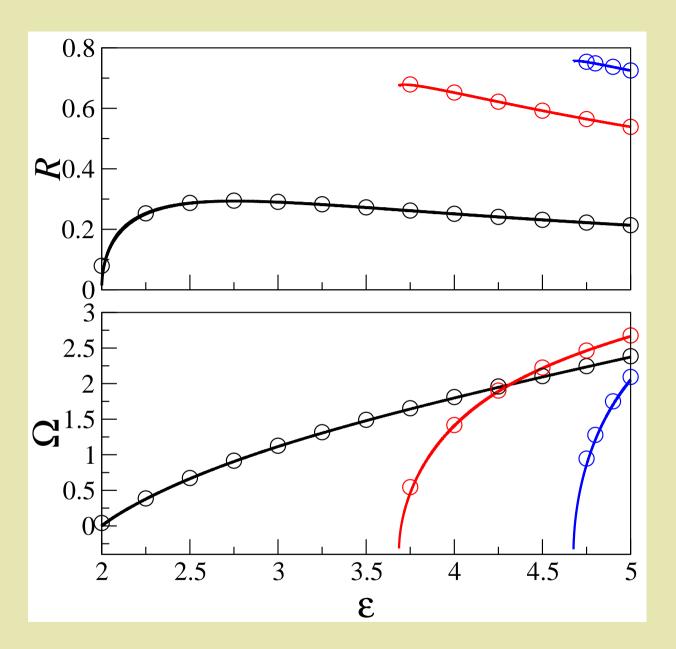
$$\beta = \beta_0 + \varepsilon^2 R^2$$

as: asynchronous

s: (partially) synchronous

ns: *n* coexisting synchronous states

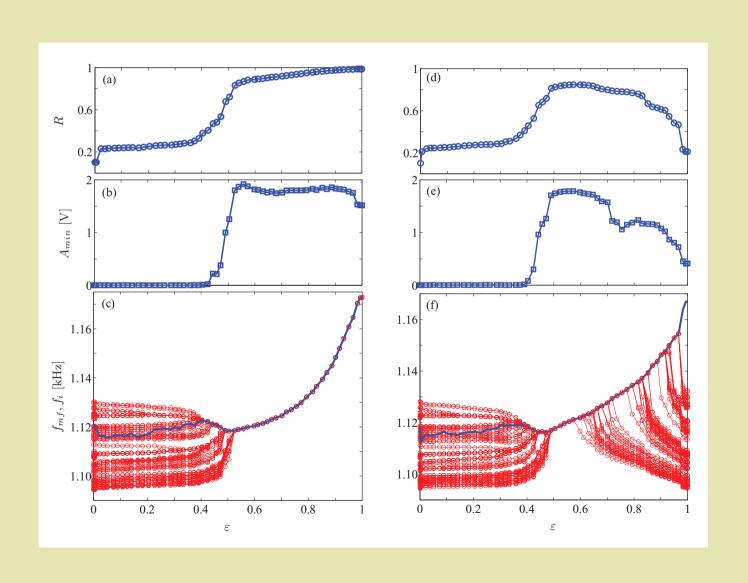




Experiment

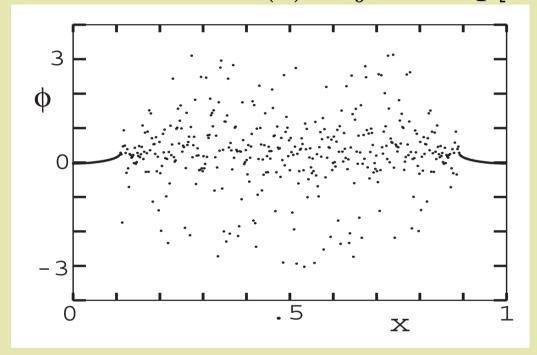
[Temirbayev et al, PRE, 2013]

Linear coupling Nonlinear coupling



Chimera states

Y. Kuramoto and D. Battogtokh observed in 2002 a symmetry breaking in non-locally coupled oscillators $H(x) = \int dx' \exp[x' - x] Z(x')$



This regime was called "chimera" by Abrams and Strogatz

Chimera in two subpopulations

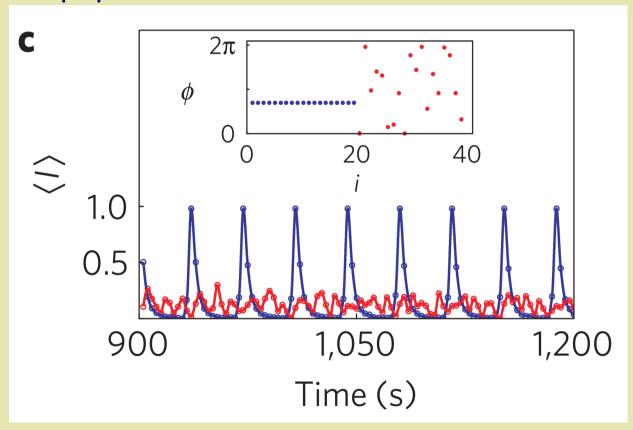
Model by Abrams et al:

$$\begin{split} \dot{\phi}_{k}^{a} &= \omega + \mu \frac{1}{N} \sum_{j=1}^{N} \sin(\phi_{j}^{a} - \phi_{k}^{a} + \alpha) + (1 - \mu) \sum_{j=1}^{N} \sin(\phi_{j}^{b} - \phi_{k}^{a} + \alpha) \\ \dot{\phi}_{k}^{b} &= \omega + \mu \frac{1}{N} \sum_{j=1}^{N} \sin(\phi_{j}^{b} - \phi_{k}^{b} + \alpha) + (1 - \mu) \sum_{j=1}^{N} \sin(\phi_{j}^{a} - \phi_{k}^{b} + \alpha) \end{split}$$

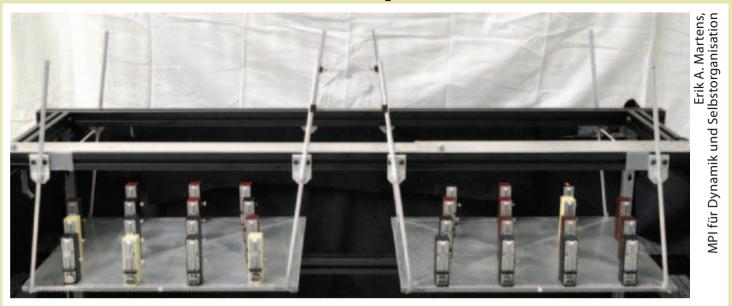
Two coupled sets of WS equations: $\rho^a=1$ and $\rho^b(t)$ quasiperiodic are observed

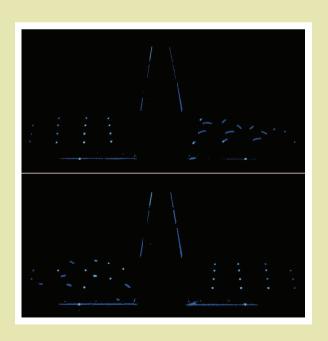
Chimera in experiments I

Tinsley et al: two populations of chemical oscillators



Chimera in experiments II





Self-emerging and turbulent chimera states at nonlinear coupling (with G. Bordyugov)

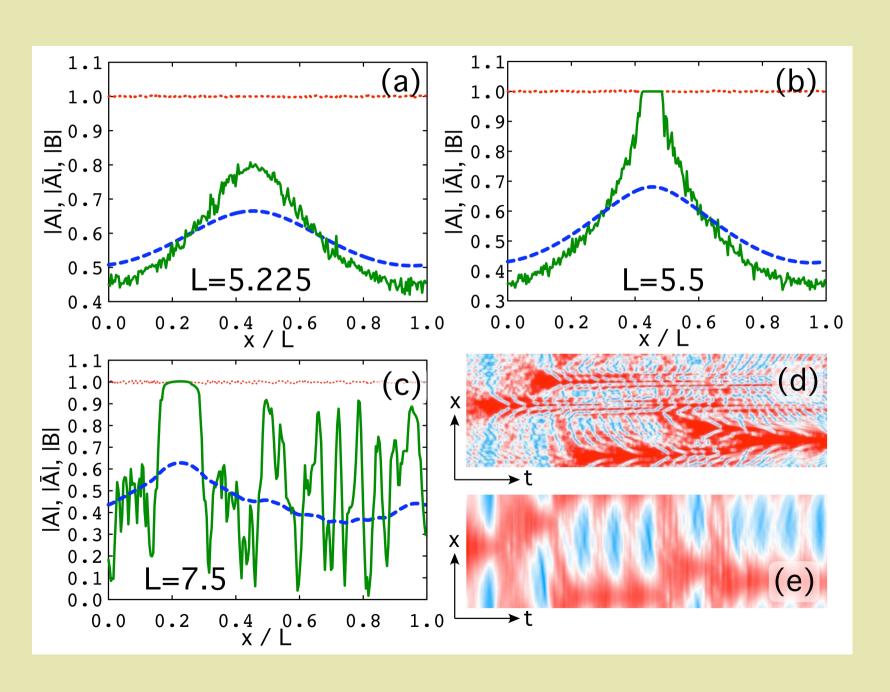
A one-dimensional array of oscillators with non-local coupling

$$\frac{\partial A}{\partial t} = A - |A|^2 + \varepsilon e^{i\beta_0 + i\beta_1 |B|^2} B$$

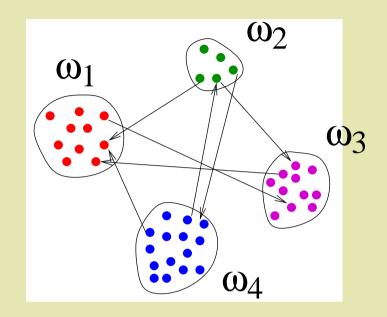
$$B(x,t) = \int_{-1}^{l} dx' \ G(x - x') A(x',t)$$

 $eta_1=0$ corresponds to linear coupling where chimera states (part of oscillator synchronous, part quasiperiodic) coexist with a stable synchronous state [Y. Kuramoto and D. Battogtokh, 2002].

Transition to static and turbulent chimera



Multifrequency populations



Each subpopulation is described by WS/OA equations for an effective "oscillator"

Equivalent to many coupled oscillators

Amplitude = order parameter in the subpopulation

Phases = collective phases of mean fields

Multifrequency I: Non-resonantly interacting ensembles

[M. Komarov, A. P., Phys. Rev. E, v. 84, 016210 (2011)] Frequencies are different – all interactions are non-resonant

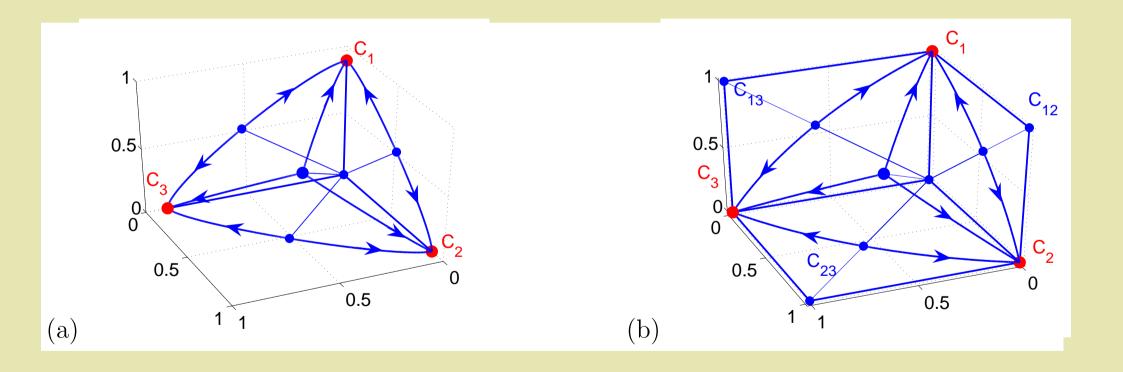
Only amplitudes of the order parameters can be involved in the coupling between subpopulations

General equations are of type

$$\dot{\rho}_l = (-\Delta_l - \Gamma_{lm} \rho_m^2) \rho_l + (a_l + A_{lm} \rho_m^2) (1 - \rho_l^2) \rho_l, \qquad l = 1, \dots, L$$

where Γ_{lm} and A_{lm} decsribe the coupling

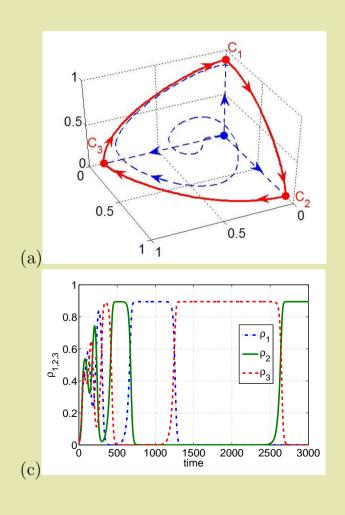
Competition for synchrony

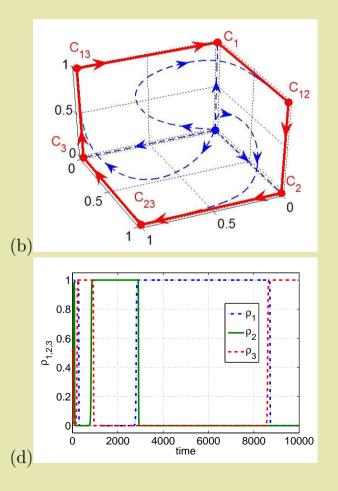


Only one ensemble is synchronous – depending on initial conditions

Heteroclinic synchrony cycles

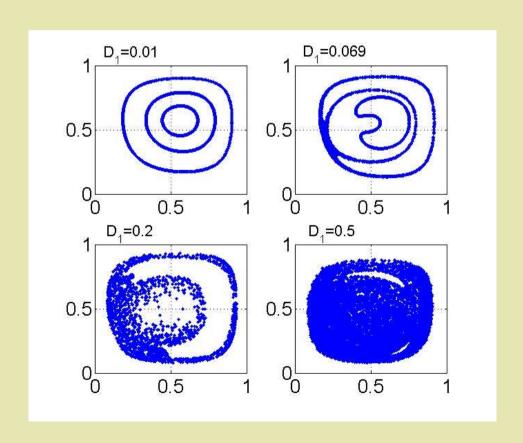
Sequential synchrony (partial or full) in populations

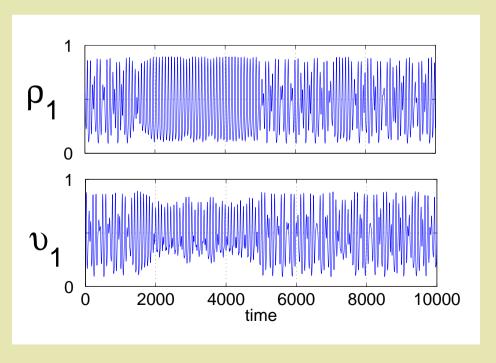




Chaotic synchrony cycles

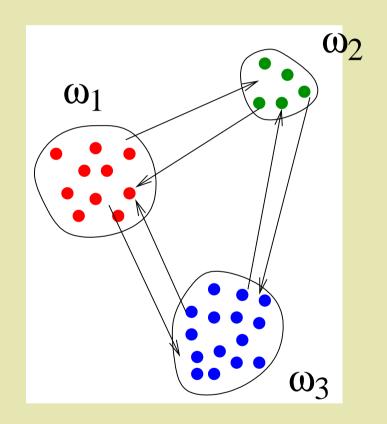
Order parameters demonstrate chaotic oscillations





Multifrequency II: Resonantly interacting ensembles

[M. Komarov and A. P., Phys. Rev. Lett. 110, 134101 (2013)]



Most elementary nontrivial resonance $\omega_1 + \omega_2 = \omega_3$

On the level of individual oscillators (phase ϕ from ω_1 , phase ψ from ω_2 , phase θ from $\omega_3 = \omega_2 + \omega_1$) one has to take into account **triple** interactions:

$$\dot{\phi}_k = \dots + \Gamma_1 \sum_{m,l} \sin(\theta_m - \psi_l - \phi_k + \beta_1)$$

$$\dot{\psi}_k = \dots + \Gamma_2 \sum_{m,l} \sin(\theta_m - \phi_l - \psi_k + \beta_2)$$

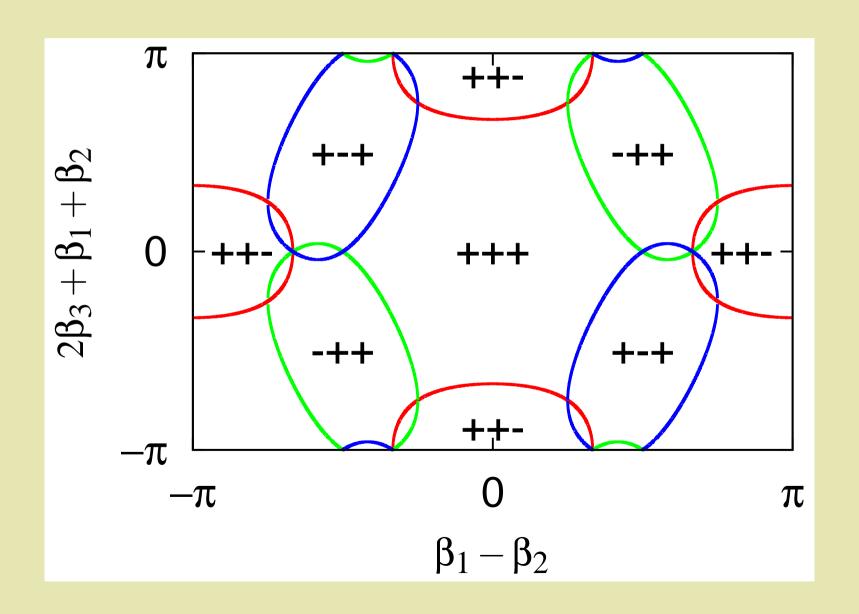
$$\dot{\theta}_k = \dots + \Gamma_3 \sum_{m,l} \sin(\phi_m + \psi_l - \theta_k + \beta_3)$$

Set of three OA equations

On the level of effective oscillators describing order parameters, one has a triplet of Stuart-Landau equations with resonant coupling terms

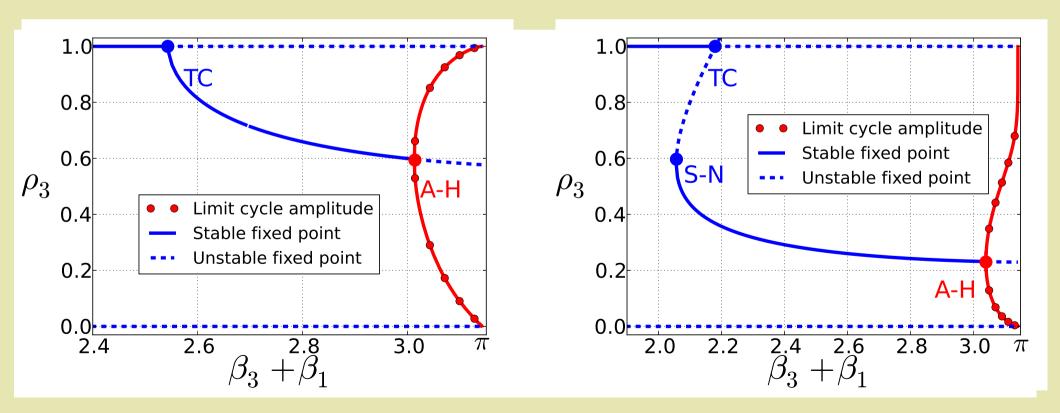
$$\dot{z}_1 = z_1(i\omega_1 - \delta_1) + (\varepsilon_1 z_1 + \gamma_1 z_2^* z_3 - z_1^2 (\varepsilon_1^* z_1^* + \gamma_1^* z_2 z_3^*))
\dot{z}_2 = z_2(i\omega_2 - \delta_2) + (\varepsilon_2 z_2 + \gamma_2 z_1^* z_3 - z_2^2 (\varepsilon_2^* z_2^* + \gamma_2^* z_1 z_3^*))
\dot{z}_3 = z_3(i\omega_3 - \delta_3) + (\varepsilon_3 z_3 + \gamma_3 z_1 z_2 - z_3^2 (\varepsilon_3^* z_3^* + \gamma_3^* z_1^* z_2^*))$$

Regions of synchronizing and desynchronizing effect from triple coupling

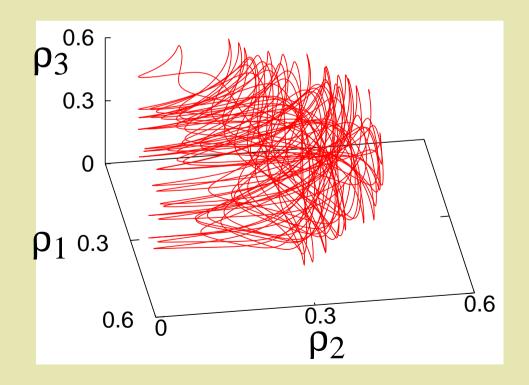


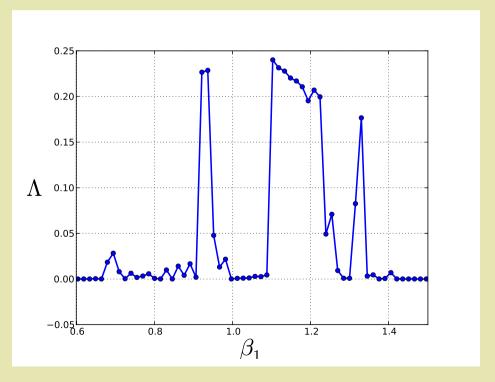
Bifurcations in dependence on phase constants

Different transitions from full to partial to oscillating synchrony



Chaos of order parameters





Conclusions

- Closed system for order parameters evolution (WS variables for identical, OA for non-identical)
- Nonlinear coupling I: "nonequilibrium quantum phase transition" from full to partial synchrony
- Nonlinear coupling II: self-organized chimera
- Multifrequency populations can be described in terms of order parameters as "coupled oscillators"
- Resonantly and nonresonantly interacting populations quasiperiodic partial synchrony, competition for synchrony and synchronization death, heteroclinic synchrony cycles, chaotic synchrony dinamics