Synchronization in Ensembles of
Oscillators: Theory of Collective
Dynamics

A. Pikovsky

Deapartment of Physics and Astronomy, Potsdam University



Content

e Synchronization in ensembles of coupled oscillators

e \Watanabe-Strogatz theory, its relation to Ott-Antonsen eq
and its generalization for hierarchical populations

e Partial synchronization due to nonlinear coupling

e Self-organizing chimera

e Populations with resonant and nonresonant coupling

uations



Ensembles of globally (all-to-all) couples oscillators

e Physics: arrays of Josephson junctions,
multimode lasers,. ..

e Biology and neuroscience: cardiac
pacemaker cells, population of fireflies,
neuronal ensembles. ..

e Social behavior: applause in a large au-

dience, pedestrians on a bridge,. ..



Main effect: Synchronization

Mutual coupling adjusts phases of indvidual systems, which start to keep

pace with each other

Synchronization can be treated as a nonequilibrium

phase transition!




Attempt of a general formulation

—

i = f( Xk,X Y) individual oscillators (microscopic)

1
=N % mean fields (generalizations possible)
Y = ()2, macroscopic global variables

Typical setup for a synchronization problem:

X (t) — periodic orchaotic oscillators

X (t),Y(t) periodic or chaotic = collective synchronous rhythm
X (t),Y (t) stationary = desynchronization



Description in terms of macroscopic variables

The goal is to describe the ensemble in terms of macroscopic variables

W, which characterize the distribution of Xy,

W G(W,V) generalized mean fields
Y =h(X

(X(W),Y)  global variables

as a possibly low-dimensional dynamical system

Below: how this program works for phase oscillators by virtue of Watanabe-

Strogatz and Ott-Antonsen approaches



Kuramoto model: coupled phase oscillators

Phase oscillators (¢ ~ Xi) with all-to-all pair-wise coupling

1 N
b=octey 3 i)~
1N 1 N |
—¢€ N_lelnq)j cospy — € Njglcosq)j Sindy

— W+ ER() SIN(O() — ) = wy + lm(Ze 19K)

System can be written as a mean-field coupling with the mean field
(complex order parameter Z ~ X))
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Synchronisation transition

€c ~ width of distribution of frequecies g(w) ~ “temperature”

small €& no synchronization, large €: synchronization, distri-
phases are distributed uniformly, bution of phases is non-uniform,

mean field vanishes Z =10 finite mean field Z £ 0



Watanabe-Strogatz (WS) ansatz

[S. Watanabe and S. H. Strogatz, PRL 70 (2391) 1993; Physica D 74 (197) 1994]

Ensemble of identical oscillators driven by the same complex field H (t)

doy _idy. B
W_oo(t)+|m(He ) k=1,...,N

Mobius transformation to WS variables
p(t), d(t), W(t), Yq=-const, ... PN = const

o) p(t) _|_ei(L|Jk—L|J(t))
p(t)eWk—¥1) 11




yields WS equations

dp 1—p? o do 1402 o
a_ 2 Re(He )7 H—(JL) 2p Im(He )’
d¥ 1-p? @
H— 2p Im(He )
or in a complex form for Z = peicb, a=>o-Y
dz . 1 . dq_ )
aZIwZ—I—Q(H—ZZH ) E_OO_I_Im(Z H)



Why M Obius?

Phase equation § = w(t) —i(He '® — H*&?)
can be rewritten for z= €® as 7= iwz+H — H*Z?

This Ricatti equations, for constant coefficients, has as solutions rational

functions Z(t) = éi(((());ig

Combination of rational functions is rational

Even for non-constant coefficients the solution can be represented as a

rational function with time-dependent parameters

cf.. Bicycle rear wheel governed by arbitrary trajectory of the front

wheel, by M. Levi
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Interpretation of WS variables

P measures the width of the bunch:

P = O if the mean field Z = Zkeid)k van-
Ishes

P = 1 if the oscillators are

fully synchronized and |Z| =1
d is the phase of the bunch

W measures positions of individual oscilla-

tors with respect to the bunch
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Synchronization of uncoupled oscillators by external
forces

Ensemble of identical oscillators driven by the same complex field H (t)

d .

% = (t) +1Im (H(t)e—"l’k) k=1,...,N
What happens to the WS variable p?
P — 1. synchronization

P — 0O: desynchronization

Two basic examples oscillators and Jusephson junctions:

h doy

bk = w— & (t) sindy emqr T leSingk=1(1)

12



Hamiltonian reduction

A2
p="PRe(H(t)e )
- 1+ p2 —i®
® = Q(t) 2 Im(H (t) )
In variables
pcosd) oo psin®

Rt Vi-e?

reduces to a Hamiltonian system with Hamiltonian,

2J(2J+1) .
\/ (20 + )SInCD.

H(I,®,t) = Q(t)I —H(t)
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Action-angle variables

Hamiltonian reads

2J+ 1)

sin®
2

H(I,D,1) = Q(t)I — H(t) V2

Synchrony: H ,J — o0
Asynchrony: H,J — 0

For general noise: “Energy” grows = synchronization by common noise
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Analytic solution for the initial stage

Close to asynchrony: energy is small, equations can be linearized =-

exact solution

7, J ~ ot

Close to synchrony:

H,J ~ expt]
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Globally coupled ensembles

Kuramoto model with equal frequencies
b = W+ 8|m(Ze_i¢k)

belongs to the WS-class

o _
dt

where H is the order parameter

C0d0 L o
Z — R€ _N%e

w(t) 4 Im (H (t)e—“i’k) k=1,...
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Complex order parameters via WS variables

Complex order parameter can be represented via WS variables as
Z%""k pe®y(p,W) y=1+(1-p" ZCl Y

where Cj = N_lzkei“pk are Fourier harmonics of the distribution of
constants Y

Important simplifying case (adopted below):

Uniform distribution of constants Yy
=0 = y=1 = Z:peiq’_

In this case WS variables yield the order parameter directly !
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Closed equation for the order parameter for the
Kuramoto-Sakaguchi model

Individual oscillators:
b = w+ e— Z sin(§j — o+ B) = w+ eim(Z2€Pe™Pk)

Equation for the order parameter is just the WS equation:

dz
—iwZ+ 6Pz — ZeBz|2Z
P M M
Closed equation for the real order parameter R= |Z|:
dR ¢

Fra QR(l_ R%) cosp
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Simple dynamics in the Kuramoto-Sakaguchi model

dRs

praat R(1—R%)cosB

T T

Attraction: —5 <P <3 —

Synchronization, all phases identical 1 = ... = ¢y, order parameter
large R=1

. T Tl
Repulsion: —T<B < —5 and 5<B<TT —
Asynchrony, phases distributed uniformely, order parameter vanishes

R=0
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Linear vs nonlinear coupling |

e Synchronization of a periodic autonomous oscillator is a nonlinear
phenomenon

e it occurs already for infinitely small forcing

e because the unperturbed system is singular (zero Lyapunov expo-

nent)

In the Kuramoto model “linearity” with respect to forcing is assumed

X =F(X)+¢&qf1(t) +eofo(t) + - -
b = w+€191(,t) +200(P, 1) + -
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Linear vs nonlinear coupling |

Strong forcing leads to “nonlinear” dependence on the forcing amplitude
X = F(x) + f(t)
(b = W+ Eq(l) (¢7t) T Ezq(Z) (¢7t) T

Nonlineraity of forcing manifests itself in the deformation/skeweness of
the Arnold tongue and in the amplitude depnedence of the phase shift

linear nonlinear

forcing amplitude €

forcing frequency
22



Linear vs nonlinear coupling Il

Small each-to-each coupling <= coupling via linear mean field
N .

NYF S m
=Y Y S

WA

Strong each-to-each coupling <= coupling via nonlinear mean field
[cf. Popovych, Hauptmann, Tass, Phys. Rev. Lett. 2005]

J/
@H s nonlinea
0@“
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Nonlinear coupling: a minimal model

We take the standard Kuramoto-Sakaguchi model

1

d=w+ImHe'®) H~ee Pz Z= NZei‘l’i — Rd®

J

and assume dependence of the acting force H on the “amplitude” of the

mean field R:

b = w+ A(ER)eERSIN(O — ¢y + B(ER))

E.g. attraction for small R vs repulsion for large R
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WS equations for the nonlinearly coupled ensemble

dR _ }R(l — RZ)aA(aR) cosB(eR)

dt 2
dod 1 -
o =0+ §(1+ R*)eA(eR) sinB(eR)

dv 1 -
= é(1— RZ)aA(aR) sinB(eR)
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Full vs partial synchrony

All regimes follow from the equation for the order parameter

dR 1
R(1— R?)€A(€R) cosB(eR)
dt 2
Fully synchronous state: R=1, ® = w+eA(g) sinf(¢)
Asynchronous state: R=0

Partially synchronous bunch state

0 < R < 1 from the condition A(€R) = O

No rotations, frequency of the mean field = frequency of the oscillations
Partially synchronized quasiperiodic state

0 < R < 1 from the condition COS(eR) = O:

Frequency of the mean field Q= ¢ = W+ A(eR)(1+R?) /2
Frequency of oscillators ~ Wpsc= WEA(ER) R2
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e frequencie

Self-organized quasiperiodicity

s QQ and Wpscdepend on € in a smooth way

—> generally we observe a quasiperiodicity

e attraction for small mean field vs repulsion for large mean field
—> ensemble is always at the stabilty border B(eR) = +T11/2, i.e.

In a

self-organized critical state

e critical coupling for the transition from full to partial synchrony:

B(eq) = -

:T[/2

e transition at “zero temperature” like quantum phase transition

27



Simulation: loss of synchrony with increase of coupling
1.1

Woso
H
|
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o
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o
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Hierarchically organized populations of oscillators

We consider populations consisting of M identical subgroups (of different

a b C d
D o

Each subgroup is described by WS equations

sizes)

= system of 3M equations completely describes the ensemble

29



dpa 1—p§

—— = Re(Hae ' P2

g 2 relHa® ).
dd, 1+ p% i
—— = Wa Im(Hae " 72) ,
dt = 2Pa m(Ha )
dWa 1—p§ —id
—— = Im(Ha€ " 72) .

dt 2Pa m(Ha )

General force acting on subgroup a:
M

Hy = Z nbanbe + FexLa(t)
b=1

Np: relative subgroup size

Ea,b3 coupling between subgroups aand b



Thermodynamic limit

If the number of subgroups M is very large, one can consider a as a

continuous parameter and get a system

ap(a7t) _ 1_p2Re(H( ’ )e—iCD)

ot 2 at
GCD(a,t) L | 1‘|‘ p2 ()
p» = w(a) 1 2 Im(H(a,t)e ™)
OLIJ(a,t) - 1— p2 _id
X 2o Im(H(a,t)e ")

H(a,t) = Fext(at) + / dbE(a, b)n(b)Z(b)
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Relation to Ott-Antonsen equations
[E. Ott and T. M. Antonsen, CHAOS 18 (037113) 2008]

e In the case when subgroups differ only by frequency

e the coupling is global but nonlinear E(w, o) = eA(eR)e/P(ER)

e for a particular case when the complex order parameter for each sub-
group Is expressed via the WS variables as Z(oo) — p(oo)eiq’(w)

we obtain Ott-Antonsen integral equations

0Z(w,t) . 1 72
) —jwZ+=H—=H*
ot TN

H = eA(eR)eP(ER)Y Y=Rd® = / down(w)Z(w)
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OA equations for Lorentzian distribution of frequencies

If

B A
") = (0= w02+ 27

then the integral Y = | dwn(w)Z(w) can be calculated via residues as
Y =Z(wg+14)

This yields an ordinary differential equation for the order parameter Y

dy . 1 - -
o = (i0n—B)Y + JeAER) (eBER) _ e~ 1B(eR) 1y |2)y
Hopf normal form / Landau-Stuart equation/ Poincaré oscillator

‘Z—Tz (a+ib— (c+id)[Y[?)Y

33



Nonidentical oscillators with nonlinear coupling

Lorentzian distribution of natural frequencies N(w)
—> standard “finite temperature” Kuramoto model of globally coupled
oscillators with nonlinear coupling

(attraction for a small force, repulsion for a large force)

Novel effect. Multistability

Different partially synchronized states coexist for the same parameter

range

34



Multistability of synchronous and asynchronous states

In a Kuramoto model with nonlinear coupling

Nonlinear phase shift:
B=PBo+&°RA
as. asynchronous

s. (partially) synchronous

ns: N coexisting synchronous states
2
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Experiment

[Temirbayev et al, PRE, 2013]

Linear coupling Nonlinear coupling

Arnin [V}

fmy, fi [kHe]
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Chimera states

Y. Kuramoto and D. Battogtokh observed in 2002 a symmetry breaking
in non-locally coupled oscillators H(X) = [ dX expX' — X]Z(X)

] | ] | ]
3 . .. . oo _
. .o . . o« o o 4
q) . ‘:. :'.. ot <. L : . . e
e . "‘. ..’ oo :. . . .o .-..... .'. ...-..." RN .'. s . -._" . —
o] )"'v;'c - - e S e UYL {"_.,\
. <~ .
-3 —
1 1 1 1 1 1 1 1 1
O .5 ~¢ 1

This regime was called “chimera” by Abrams and Strogatz
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Chimera in two subpopulations

Model by Abrams et al:

Of = -+ pg ,-;S'”( - 0f+a)+(1—p) J;sm«b?— dR+ )
N N
0=t 3 S a+a)+(1-w) 3 sin¢f-of+a)

Two coupled sets of WS equations: p% = 1 and pb(t) quasiperiodic are

observed

39



Chimera in experiments |

Tinsley et al: two populations of chemical oscillators

C 2T




Chimera in experiments |l

Erik A. Martens,

MPI fir Dynamik und Selbstorganisation

B TS

—L
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Self-emerging and turbulent chimera states at nonlinear

coupling (with G. Bordyugov)

A one-dimensional array of oscillators with non-local coupling

%;? =A— |A]°+ eelPotiB1/BI°g

|
B(x,t) = /_ dX G(x—X)AKX,)

[31 = O corresponds to linear coupling where chimera states (part of
oscillator synchronous, part quasiperiodic) coexist with a stable syn-

chronous state [Y. Kuramoto and D. Battogtokh, 2002].

42



Transition to static and turbulent chimera
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Multifrequency populations

Each subpopulation is described by WS/OA equations for an effective
"oscillator”

Equivalent to many coupled oscillators

Amplitude = order parameter in the subpopulation

Phases = collective phases of mean fields
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Multifrequency I: Non-resonantly interacting ensembles

[M. Komarov, A. P., Phys. Rev. E, v. 84, 016210 (2011)] Frequencies are different

— all interactions are non-resonant

Only amplitudes of the order parameters can be involved in the coupling

between subpopulations

General equations are of type

P = (=0 —FimPm)Pr + (& + AmPm) (1—p)p, 1=1,...,L
where ['|m and Ajm decsribe the coupling
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Competition for synchrony

Only one ensemble is synchronous — depending on initial conditions
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Heteroclinic synchrony cycles

Sequential synchrony (partial or full) in populations

| Lyr "
o, -----Q', ? :!
i B LI pl ::
. . =Py i N
0.6 : 1 4 0.6 ’ : _p2
o T4 i i —Pz ™ P : i
3 L ! S s P3
< oaflfds b . i1l S < o4l |
afi i B : s L
o2 it " v 02k |
difr i : |: N
Uil ‘- oft:
00 500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000 10000

(C) time (d) time
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Chaotic synchrony cycles

Order parameters demonstrate chaotic oscillations

0 2000 4000 6000 8000 10000
time
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Multifrequency Il: Resonantly interacting ensembles

[M. Komarov and A. P,, Phys. Rev. Lett. 110, 134101 (2013)]

W3

Most elementary nontrivial resonance W1 + Wy = W3
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On the level of individual oscillators (phase @ from w1, phase W from
(W», phase O from W3 = Wy + Wq) one has to take into account triple

Interactions :
O=...+T S 1 SiNGm— W — @+ PBa)
P=...+1> Zm,l Sin(Bm—@ — Wk + Bo)
B =...+ 3 > m SIN(@m+ W — B+ Ba)
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Set of three OA equations

On the level of effective oscillators describing order parameters, one has

a triplet of Stuart-Landau equations with resonant coupling terms

- (€121 -
- (€220 -

71 = 77(i0 — 01) -
Zp = Zp(itp — Op) -
73 = 73(i03 — O3) -

- e
-VoZi23 — Z5(€575 -

- (€323 -

-V12023) )
-Y52123))

V32120 — Z5(€523 -

Y34 2))
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Regions of synchronizing and desynchronizing effect

from triple coupling

233+ PB1+B2
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Bifurcations in dependence on phase constants

Different transitions from full to partial to oscillating synchrony

1.0———@-- - et et e

| | | - /TC
~+ |® e Limit cycle amplitude
06 T — ] 0.6l & | = stable fixed point | J |
p3 p3 : - Unstable fixed point
04 |® ® Limit cycle amplitude 04
— Stable fixed point | ‘ ‘ ‘ ‘
02 == Unstable flxe‘d point | ~ \ 02
: : : : : : A-H
2.4 2.6 2.8 3.0 7T 20 22 24 26 28 30 T
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Chaos of order parameters
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Conclusions

e Closed system for order parameters evolution (WS variables for iden-
tical, OA for non-identical)

e Nonlinear coupling I: “nonequilibrium quantum phase transition” from
full to partial synchrony

e Nonlinear coupling Il: self-organized chimera

e Multifrequency populations can be described in terms of order pa-
rameters as "coupled oscillators”

e Resonantly and nonresonantly interacting populations — quasiperi-
odic partial synchrony, competition for synchrony and synchroniza-
tion death, heteroclinic synchrony cycles, chaotic synchrony dinam-
ICS
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