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Consider the stochastic delay equation
mi + v& + ax + bx(t — 7) = £(t)
where £(t) is a Gaussian white noise, with<< £(£)&(t') >= 24To(t — t')

We regard this equation as describing the motion of a Brownian particle (or
«systemy») in contact with a heat bath at temperature T, confined by a
harmonic potential, and submitted to a feedback force Fy(t) o< x(t — 7)

Suppose that the system has reached a nonequilibrium steady state (NESS)
where heat is permanently exchanged with the environment.

Questions: Can we define and compute the corresponding entropy

production and study its fluctuations ? What is the expression of the 2nd
law of thermodynamics !
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Stochastic Sensor
F fb (t) > system >

x(t)

Measurement
outcome
r + noise 7

Actuator ‘

mi + i — F(x) — Frp(t) = (1)

F(x) = _ V(@) conservative force
dx

Ffb(t) feedback control force, that depends on the past state of
the system

lundi 27 janvier 14



r\lnformation

[ System ] [ Demon ]

Feed back\J

Feedback control is ubiquitous in physics, biology, and engineering.

(Maxwell’s
demon, Szilard engine, etc...)

Can we quantify this modification ?

This question, at the crossroad of information theory and statistical

physics, has been extensively studied in recent years, in the framework of
the stochastic thermodynamics of small systems (for a review, see e.g. U. Seifert,

Rep. Prog. Phys. 75, 126001 (2012)). Experiments are now possible.
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Relevant application: Active feedback cooling (or cold

damping) technique

Objective: reduce the effective noise temperature of (nano-)
mechanical oscillators well below their operating temperature

Example: cold damping of the cantilever of an AFM

(a) fiber spectrum

interferometer analyzer
x(t) + x, (1)

cantilever ..........

piezo
drive
Ffb (1) =
— gl (#(1) + %, (1))
If the resonator frequency is high, the feedback circuit cannot follow

instantaneously the system dynamics => The feedback becomes non-
Markovian, which degrades the cooling performance.
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Plan:

|) Stochastic thermodynamics (for systems described by a
Markov dynamics) : a brief overview

2) Entropy production and fluctuation theorems in the
presence of continuous non-Markovian feedback control

3) Application to linear stochastic delay equations
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|) Stochastic thermodynamics: a (very) brief reminder

: extend the thermodynamic concepts of heat, work, entropy to the
nano-world and systems that
a) have only a few degrees of freedom so that fluctuations play a dominant
role (and observables are described by probability distributions).
b) stay far from equilibrium because of mechanical of chemical «forcesy.
b) are in contact with heat bath at temperature T (or several baths)
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Fluctuating thermodynamic quantities are then described by probability
distributions and the 2nd law can be violated along some stochastic
trajectories.
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Fluctuation theorems

(e.g. Jarzynski equality, Crooks relation, etc...) These are exact identities
obeyed by the probability distribution of an observable (e.g. heat, work,
entropy production) integrated over a trajectory during some time t .

We shall focus here on the entropy production.

How can one define the entropy production along a single stochastic
trajectory !
For simplicity consider a process described by the overdamped Langevin

equation Z(t) — F(th, )\t) =+ €(t)

where the force F depends on some time-dependent protocol A(1) that
is repeated many times. For each realization of the noise, the system
follows a different path x(s)
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One can then define a trajectory-dependent entropy production which is
the sum of two contributions:

Asior|{Zs}] = Asp[{2s}] + Asgys

. _ ql{ws]]
where | Asp|{zs}] = T

is the change in the medium entropy, i.e. the heat exchanged with the
thermal bath divided by its temperature (kg = 1) .

According to the first law at the level of an individual trajectory, the heat is
the work done on the system minus the variation of the internal energy.

1

» As, [{z.}] = [{:vs}] _ T/Otds F(xs,\s) 0 i

and 2°  Asgys = —Inp(a(t)) + In(p(x(0))
is the change in the stochastic (Shannon) entropy of the system (Seifert, 1995)
defined by Ssys(t) = —Inp(z(t), )

where p(x,t) is the solution of the Fokker-Planck equation evaluated along
the trajectory x(t). ONLY VALID FOR A MARKOVIAN DYNAMICS
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Then, one can prove that As:|[{zs}] satisfies an integral fluctuation theorem
(IFT) | (e Sseorlizsdly —

By Jensen’s inequality, the IFT implies the 2nd Law of thermodynamics:

(Asiot[1Ts}]) =0

(but the IFT implies that the entropy production is negative along certain
trajectories)

There are also stronger fluctuation relations (detailed fluctuation
theorems), such as

PF(‘|‘ASt0t) _ 6A3tot
PR(_AStot)
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Key point: dissipation is related to the time reversibility of the trajectories.

Asp[{xs}] = q[{;’?}] — % / ds F(z, \s) 0 s

can also be written as the logratio of the probabilities of the trajectory and
its time-reversal (for the time-reversed protocol)

ol i 0 2
Probability of the Prl{z}|z;] — A [Yds [Zs—F(xs,)s)]

forward trajectory:
(Onsager—Macthp action functional)

A

Time reversal: 7 T A

z(s) — x27(s) = x(t — s)
A(s) — A(s) = At —s) o

0 T t

0 T t
m=) Pil{al}af] oc e Ji dr i Fla AL
* As,,[{zs}] = In Pr ;{z]f J mi]
PB {CIZS} x]

1
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Now multiply by the numerator and the denominator by the probabilities o
the initial and final states

Prlizs|zip(:) — As. [ In p(xi)
Pel{al}z]]p(a]) it p(z])

=

In

Prli%s}.

Asiot|{xs}] = In D {mi}

=

(e~ Bsvorllra 1)) = / Dary Pr{s}Jeoeoclizal) — |
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Generalization in the presence of a Markovian, discrete feedback control
(Sagawa-Ueda 2010, Horowitz-Vaikuntanthan 201 O)

The information obtained through the measurement of the state of the
system modifies the IFT and the second law. One finds that

< e APl 5

where | is the mutual information between the state of the system and the
measurement outcome (depends on the error in the measurement)

* Generalized second law <A3tot[{$s}]> + <I> >0

We want to extend this type of results for a non-Markovian and
continuous feedback control.

Our study is restricted to the case of a deterministic feedback (no
measurement errors). Therefore the mutual information does not
come into play. However we expect that

< g PBtot >=£1
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(T. Munakata and M.L. R, cond-mat:1401.0/71)
(We only focus on the behavior in a nonequilibrium steady state, NESS)
mi +yx — F(v) — Fpp(t) = &§(t) eg, Fpp(t) x x(t —7)

Consider a trajectory X = {x;, 2} during the time interval [-T,T].
Like in Markov systems, we seek to relate the heat or, equivalently, the
change in the medium entropy

T : :
Asp, | X, X_] = ﬂf_T dt vty — & |y
T . .
=—0 ) . dt {mxt — F(z¢) — Frp| X, X_]}xt
to the time irreversibility of the trajectories, and thus to the probability of X

and its time reversal (here, X _ denotes the trajectory for t<-T, e.g,, in the
time interval |—1T — 7, —T)
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The probability of observing X for a given initial state =; = (z_7, T _7)
and a given past trajectory X _ is determined by the noise history in the
time interval [-T,T] and given by

PX|x;, X_] o | J| e o dt SX X

1 2
where S[X,X | = ;- [msz}t +ydy — F(x) — Fro[X, X_]}

is a generalized Onsager-Machlup functional and 7 is the Jacobian of the
transformation from the noise to x. It is independent of x (for m # 0):

(the Jacobian matrix is lower
triangular)

Time-reversal: {zf(t), #T(1)} = {2(—t), —@(—t)} = P[Xt|x!, X' ]

In order to recover the heat from the logratio of the probabilities,
one must define a new feedback force £'¢;, such that

ﬁ’fb[XtXT—]tH—t — Ffb[X7X—]

e.g. Frp(t) oc ot + 1) T — —T
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The «conjugate» dynamics is non-causal but the corresponding conditiona
probability

~

D 8T gt §IxXT X1
PXi|x!, X1 | o | F[X]| e 0 7r @ SXTXL]

. ~ 1 ~
with S[XTv XT_] — 4_ |:m$t o ’th o F(th) T Ffb[XTa X]L_]t—>—t:|
/y
is a well-defined mathematical object !

On the other hand, the Jacobian matrix is no longer lower-triangular and J | X]
is in general a nontrivial (positive) functional of the path.

== A5, XX | =l ooreX), JIX
PXf|x!, X ] J

and we define the total fluctuating entropy production (which measures the
actual irreversibility of the trajectory) by

R.y|X] =1In =

<€_RCQ[X]> — 1

By construction
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Asymptotic relations: when 2T is much larger than the time constant
characterizing the non-Markovian feedback (e.g. 7 ), one can neglect terms
non extensive in time when computing expectation values

X
= (R[]}~ (BsnlX]) ~ (0T,
. : 1
Defining the rates S, = Th_r)noo 5T (S| X]) st
: 1 ~
Sy = qlgnoo ﬁ@n TIX]/JT) st

(Reg|X])st >0 » S’m > S'j Generalized second law
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Expression of the Jacobian 7 [X]| = det §&(t)/0x(t') associated to the

conjugate Langevin equation

mi + i — F(x) — Fpp(t) = &(1)

- or 0? 0 0 F ot (1)
JX] =detImzmz +75; 5z(t) |

~

JIX] =T exp Trln[d;_y — M|

© 1 (T ) . .
:jexp—Z—/ dt{MoMo...M}
nzln _T I Vo tt

n times

T
where  M(t,') = {G o Fl,, i = / at" G(t — )L, (1" ¢)
_T

G(t) is the Green function for the inertial and dissipative terms in the
Langevin equation : G(t) = 11 — e /™ O(1)

(see e.g. C.Aron et al., ]. Stat. Mech.P11018,2010)
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For linear systems, the Jacobian becomes path-independent !

» The operation o becomes a convolution and In 7 /J
is proportional to 2T

. 1 .
In the long-time limit, the asymptotic rate S; = Tlim ﬁﬂn TIX]/JT) st

is then obtained as a Laplace transfom :

. 1 c+100 N
= In[1 — M
S7= 5 s ds In] (s)]

c+100

1 <1 .
- - ds [M(s)|"
271 ; n /Cioo > [ (S)]

~

where 5 = ctiw, M(s)= [ dt M(t)e " = G(s)F,,(s)

G(s) = (ms® +~s)~ ! (bilateral Laplace !!)
: 1 CH109 G(s
This can be also written as S7 = — ds In ~( )
271 C— 100 X(S)

where  X(s) = [G(s) ™! = Fly(s)] 7" = [ms? +ys — Fy(s)] ™
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mi + v + ax + bx(t — 7) = £(t)

Fp(t) = —bx(t — 7) the feedback force at time t depends on the position
at a previous time (no measurement errors)

Remark:at first order —bx(t — 7) ~ —bx(t) + (b1)d(t)

and one recovers a Markovian dynamics with a velocity-dependent force
(standard feedback cooling):

mi + (y + ) + (a +b)x = £(t) with v = —brT

As a general rule, stochastic time-delayed systems may be regarded as
systems with an infinite nhumber of degrees of freedom => infinite hierarchy
of Fokker-Planck equations.

1
Oup(w,v,1) == Du[op(a, v, )] + —0, |laz + yulp(a, v, 1)

+0o0
T
+ b/ de r-p(x,v,t;x,t —T) B &Up(aj,v,t)]

oo m
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However, for a linear system with Gaussian white noise, all stationary
probability distributions are Gaussian and can be determined exactly. In
particular,

1 (a—l—b)az2 . mu?
A ey eyl
pst(x7 U) X € eff eff

where Te(;’f} = (a+b) < 2* >4 and Té})} =m < v >y

are effective temperatures whose expressions are obtained by solving the
differential equations for the time-correlation functions in the interval 0 <¢ <7

$ The existence and stability of the stationary solution depends
on the delay and on the values of the other parameters. For simplicity,
we only consider the case where a NESS exists for all values of the delay:

LIS I T T

a’ > b*, vy > /2m(a — wp) B e o

where wg = \/ a? — b2 T / 1 |

14 / 4 |

Example: By o1 e SO
T=1m=1,v=09,a=0.2 I
b = 0.1(black line) and b = —0.1(red line) o .

T8 # T\ #T => NESS s e
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Path probability in the stationary state

The probability of a path is also Gaussian and can be calculated
in the

Pz}l exp{—%/o ds/o ds'xz(s)S (s — s)x(s)}

where Sz, (t) is the operator inverse of the time correlation function
Sy (t) =< x(0)x(t) >4 in the time interval [0,t], defined by

t
/ ds" Syu(s —s")S 1 (s" —§') =6(s — &)
0

with Sez(t) = Ae~woltl 1 Bewoltl  for [t < 7

This integral equation can be solved analytically (it is in fact easier to
consider the corresponding discretized matrix equation, generalizing a classical
result of Doob (1942) for the Ornstein-Uhlenbeck process). The result is
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1 wo [Ae™“0tzy — Bxy]?

t
Pz} o exp{ 4T/0 ds|is + wots]? T }

which is «almost» an Onsager-Machlup action functional, with an additional
dependence of the initial and final states that reflects the non-Markovian
character of the process.

The path probability can then be computed in the time interval 7 < ¢ < 2T
using

Pl{zs}z] = Pl{as}zH{as o] Pl{ws}i]

with P[{xs}tr‘{xs}g] X 6_% J7 ds [yistazstbzs—r]°

etc...
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Entropy production: In the stationary state, the probabilities of a trajectory
and its time-reversal are identical !

PX]
# In PIXT] = ()

This ratio cannot be a proper definition of the entropy production !

On the other hand F.q X|=1In—= < is non zero !

For instance, in the long-time limit, one finds

: 1 _ b2 —2aT —2aT 3
7}1_{11@@ 2T<RCQ[X]> = o-[1—e + 2ate™ "] 4+ O(b°)
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Calculation of the Jacobian for the conjugate, non-causal Langevin equation :

mi + v& + ax + bx(t + 7) = £(t)

Sj — — ds In ~(8)
211 C—100 X(S)
G(s) = (ms® +~s)~ ! Rem: There are 2 poles on the

l.h.s. of the complex s-plane and

X(s) = [m82 +vs 4+ a + beST]_l an infinity of poles on the rh.s. =
signature of non-causality

. 1 c+100 2 beST
* Sq = =— ds In —~ +72—|—a—|— c
27'('7/ Cc— 00 TS _I_ ’YS

T-expansion :

b by 2 b(v* — am — 4bm)
m 2m? 6m?

T2 -I-(9(7'4) .
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|) Check of the generalized second law Sim = S7

One has S = - [5113(}}} 1] where Te(}]} =m <v° >y

2) Check of the
asymptotic relation

0.05

st

%
n 3
é)-oos S = < <[] ]6 A tOt[X]>st ™~ O(l)
k= s
Q% 0.1 | *
ousk Sy Positive feedback (b<0) | S, = = lim 1 In (e Astot)

02 . | . |
0 5 10

The rates S,,, S7 and R= S, — Sz as a function of 7
form=1,v=1,a=0.5and b = —0.25. The open circles
are obtained from the equation S; ~ — = = In(e~Sstet)
using T = 10 and averaging over 10° independent sim-
ulations of the Langevin equation with Heun’s method
and a time step At = 1073.
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Conclusion

We have extended the framework of stochastic thermodynamics to
Langevin systems submitted a continuous non-Markovian (e.g. time-

delayed) feedback control.

By studying the nature of the time-reversal breaking in the action
functional of the path space measure, we have identified the unusual
mathematical mechanism that contributes to the positivity of the

entropy production.
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