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Questions: Can we define and compute the corresponding entropy 
production  and study its fluctuations ? What is the expression of the 2nd 
law of thermodynamics ?

mẍ + �ẋ + ax + bx(t� ⌧) = ⇠(t)
Consider the stochastic delay equation

where < ⇠(t)⇠(t0) >= 2�T �(t� t0)⇠(t) is a Gaussian white noise, with 

We regard this equation as describing the motion of a Brownian particle (or 
«system») in contact with a heat bath at temperature T, confined by a 
harmonic potential, and submitted to a feedback force Ffb(t) / x(t� ⌧)
Suppose that the system has reached a nonequilibrium steady state (NESS) 
where heat is permanently exchanged with the environment.
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Feedback control is ubiquitous in physics, biology, and engineering. 
Information obtained through the measurement modifies the 
expression of the second law of thermodynamics (Maxwell’s 
demon, Szilard engine, etc...)  

This question, at the crossroad of information theory and statistical 
physics, has been extensively studied in recent years, in the framework of 
the stochastic thermodynamics of small systems (for a review, see e.g. U. Seifert, 

Rep. Prog. Phys. 75, 126001 (2012)).  Experiments are now possible.

Can we quantify this modification ? 

DemonSystem

Information

Feedback

Figure 1: Maxwell’s demon as a feedback controller. The demon performs feedback
control based on the information obtained from measurement at the level of thermal
fluctuations.

In this chapter, we review a general theory of thermodynamics that involves mea-
surements and feedback control [7–44]. We generalize the second law of thermody-
namics by including information contents concerning the thermodynamics of feedback
control. We note that, by the “demon,” we mean a type of devices that perform feed-
back control at the level of thermal fluctuations.

This chapter is organized as follows. In Sec. 2, we discuss the Szilard engine which
is a prototypical model of Maxwell’s demon and examine the consistency between
the demon and the second law. In Sec. 3, we review information contents that are
used in the following sections. In Sec. 4, we discuss a generalized second law of
thermodynamics with feedback control, which is the main part of this chapter. In
Sec. 5, we generalize nonequilibrium equalities such as the fluctuation theorem and
the Jarzynski equality to the case with feedback control. In Sec. 6, we discuss the
energy cost (work) that is needed for measurement and information erasure. In Sec. 7,
we conclude this chapter.

2 Szilard Engine

In 1929, L. Szilard proposed a simple model of Maxwell’s demon that illustrates
the quantitative relationship between information and thermodynamics [45]. In this
section, we briefly review the model, which is called the Szilard engine, and discuss
its physical implications.

The Szilard engine consists of a single-particle gas that is in contact with a single
heat bath at temperature T . By a measurement, we obtain one bit of information
about the position of the particle and use that information to extract work from
the engine via feedback control. While the engine eventually returns to the initial
equilibrium, the total amount of the extracted work is positive. The details of the
control protocol are as follows (see Fig. 2).

Step 1: Initial state. We prepare a single-particle gas in a box of volume V0, which
is at thermal equilibrium with temperature T .
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Relevant application:  Active feedback cooling (or cold 
damping) technique

Example: cold damping of the cantilever of an AFM

Feedback Cooling of a Cantilever’s Fundamental Mode below 5 mK

M. Poggio,1,2 C. L. Degen,1 H. J. Mamin,1 and D. Rugar1
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We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of
2.2 K down to 2:9! 0:3 mK using active optomechanical feedback. The lowest observed mode
temperature is consistent with limits determined by the properties of the cantilever and by the
measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or ‘‘squash’’
the optical interferometer intensity noise below the shot noise level.

DOI: 10.1103/PhysRevLett.99.017201 PACS numbers: 85.85.+j, 42.50.Lc, 45.80.+r, 46.40."f

Feedback control of mechanical systems is a well-
established engineering discipline which finds applications
in diverse areas of physics, from the stabilization of large
cavity mirrors used in gravitational wave detectors [1] to
the control of tiny cantilevers in atomic force microscopy
[2–6]. Recently, the prospect of cooling a mechanical
resonator to its quantum ground state has spurred renewed
interest in the damping of oscillators through both active
feedback [7,8] and passive backaction effects [9–12].
Motivated by the ability to make ever smaller mechanical
devices and ever more sensitive detectors of motion, re-
searchers are pushing towards a regime in which collective
vibrational motion should be quantized [13]. In combina-
tion with conventional cryogenic techniques, the cooling of
a single mechanical mode using feedback may provide an
important step towards achieving the quantum limit in a
mechanical system. Here, we demonstrate the feedback
cooling of an ultrasoft silicon cantilever to below 5 mK
starting from a base temperature as high as 4.2 K. Starting
from this temperature, the vibrational mode of the oscil-
lator is cooled near the level of the measurement noise,
which sets a fundamental limit on the cooling capacity of
feedback damping [7,14]. In the future, minimizing such
noise may be key to achieving single-digit mode occupa-
tion numbers.

We study the fundamental mechanical mode of two
120# 3# 0:1-!m single-crystal Si cantilevers of the
type shown in Fig. 1(b). The ends of the levers are designed
with a 2# 15-!m mass which serves to suppress the
motion of flexural modes above the fundamental [15].
Cantilevers 1 and 2 have resonant frequencies of 3.9 and
2.6 kHz, respectively, due to the difference in mass of the
samples which have been glued to their ends. The sample
on cantilever 1 is a 0:1-!m3 particle of SmCo while the
sample on cantilever 2 is a 50-!m3 particle of CaF2
crystal. Both samples are not related to the work presented
here aside from the added mass which they contribute. The
oscillators’ spring constants are both determined to be k $
86 !N=m through measurements of their thermal noise
spectra at several different base temperatures. Each canti-
lever is mounted in a vacuum chamber (pressure <1#

10"6 torr) at the bottom of a dilution refrigerator which has
been isolated from environmental vibrations. The motion
of the lever is detected using laser light focused onto a
10-!m-wide paddle near the mass-loaded end and re-
flected back into an optical fiber interferometer [16]. One
hundred nW of light are incident on the lever from a
temperature-tuned 1550-nm distributed feedback laser di-
ode [17]. The interferometric cantilever position signal is
sent through a differentiator circuit and a variable elec-
tronic gain stage back to a piezoelectric element which is
mechanically coupled to the cantilever, as shown schemati-
cally in Fig. 1(a). The overall bandwidth of the feedback
was limited to 300 Hz–15 kHz by bandpass filters. For
negative gain, this feedback loop has the effect of produc-
ing a damping force on the cantilever proportional to the
velocity of its oscillatory motion.

For frequencies in the vicinity of the fundamental mode
resonance, the motion of a cantilever is well approximated
by

−
( )+Γ−
=

+

µ

FIG. 1. (a) Schematic diagram of the experimental setup
and (b) scanning electron micrograph of a representative Si
cantilever.

PRL 99, 017201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JULY 2007

0031-9007=07=99(1)=017201(4) 017201-1  2007 The American Physical Society

Objective: reduce the effective noise temperature of (nano-) 
mechanical oscillators well below their operating temperature

If the resonator frequency is high, the feedback circuit cannot follow 
instantaneously the system dynamics => The feedback becomes non-
Markovian, which degrades the cooling performance.
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Plan:

1) Stochastic thermodynamics (for systems described by a 
Markov dynamics) : a brief overview

2) Entropy production and fluctuation theorems in the 
presence of continuous non-Markovian feedback control

3) Application to linear stochastic delay equations
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1) Stochastic thermodynamics: a (very) brief reminder 

Purpose: extend the thermodynamic concepts of heat, work, entropy to the 
nano-world and systems that 
a) have only a few degrees of freedom so that fluctuations play a dominant 
role (and observables are described by probability distributions).
b) stay far from equilibrium because of mechanical of chemical «forces».
b) are in contact with heat bath at temperature T (or several baths)• Mechanically driven systems
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Fluctuating thermodynamic quantities are then described by probability 
distributions and the 2nd law can be violated along some stochastic 
trajectories.

• Stochastic thermodynamics for small systems

λtλ0
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w0
nm
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A3
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n

m

w0
mn

– First law: how to define work, internal energy and exchanged heat?

– fluctuations imply distributions: p(W ;λ(τ)) ...

– entropy: distribution as well?

6

Stochastic thermodynamics B5.3

(a) (b)

Fig. 2: Typical experiment in stochastic thermodynamics: The two ends of an RNA molecule
are attached to two beads (yellow) which can be manipulated by micropipets. By pulling these
beads, the hairpin structure of the RNA can be unfolded leading to force extension curves. For
slow pulling (blue) these curves are almost reversible whereas for medium pulling speed (green)
and large pulling speed (red) the curves show pronounced hysteresis which is a signature of non-
equilibrium. In all cases, the overlay of several traces shows the role of fluctuation; adapted
from [3].

Fig. 3: Measured distributions for dissipative work Wdiss. The three panels correspond to
different extensions whereas the colours refer to different pulling speeds; adapted from [3].

A similar experiment on a nano-scale, the stretching of RNA, is shown in Fig. 2. Two conceptual
issues must be faced if one wants to use the same macroscopic notions to describe such an
experiment. First, how should work, exchanged heat and internal energy be defined on this
scale. Second, these quantities do not acquire sharp values but rather lead to distributions, as
shown in Fig. 3.
The occurrence of negative value of the dissipated work Wdiss is typical for such distributions.
The quest to quantify and understand these events which seem to be in conflict with too nar-
row an interpretation of the second law lies at the origin of stochastic thermodynamics which
got started by two originally independent discoveries. First, the (detailed) fluctuation theorem

(Liphardt et al. 2002)

• Dissipated work Wd ≡ W −∆G

– 〈exp[−Wd]〉 ≡
∫ +∞
−∞ dWd p(Wd) exp[−Wd] = 1

p(Wd)

Wd = W − ∆G

– red events “violate the second law” (??)

– Special case: Gaussian distribution

p(Wd) ∼ exp[−(Wd − 〈Wd〉)
2/2σ2] with 〈Wd〉 = σ2/2

∗ scenario 1: slow driving of any process

[T. Speck and U.S., Phys. Rev E 70, 066112, 2004]

20

Wdiss ⌘W ��F � 0 is only true on average !The second law 
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Fluctuation theorems

 (e.g. Jarzynski equality, Crooks relation, etc...) These are exact identities 
obeyed by the probability distribution of an observable (e.g. heat, work, 
entropy production) integrated over a trajectory during some time t .

How can one define the entropy production along a single stochastic 
trajectory ? 
For simplicity consider a process described by the overdamped Langevin 
equation 

ẋ(t) = F (xt, �t) + ⇠(t)
�(t)where the force F depends on some time-dependent protocol          that 

is repeated many times. For each realization of the noise, the system 
follows a different path x(s) 

• Path integral representation

– “Boltzmann factor for a whole trajectory”

p[ζ(τ)] ∼ exp [−
∫ t

0
dτ ζ2(τ)/4D]

p[x(τ)|x0] ∼ exp [−
∫ t

0
dτ (ẋ − µF)2/4D]

 0 0

λ(τ )

λ̃(τ )

x(τ )

x
x̃(τ )

λ

λt

tτ

x0

x̃0

x̃t

tτ
λ0

xt

– “time reversal” x̃(τ) ≡ x(t − τ) and λ̃(τ) ≡ λ(t − τ)

– Ratio of forward to reversed path

p[x(τ)|x0]

p̃[x̃(τ)|x̃0]
=

exp [−
∫ t
0 dτ (ẋ − µF)2/4D]

exp [−
∫ t
0 dτ ( ˙̃x − µF̃)2/4D]

= exp β
∫ t

0
dτ ẋF = exp βq[x(τ)] = exp∆sm

16

We shall focus here on the entropy production. 
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ssys(t) ⌘ � ln p(x(t), t)

One can then define a trajectory-dependent entropy production which is 
the sum of  two contributions:

�s

tot

[{x
s

}] = �s

m

[{x
s

}] + �s

sys

where  1°

�s

m

[{x
s

}] ⌘ q[{x
s

}]
T

=
1
T

Z
t

o

ds F (x
s

, �

s

) � ẋ

s

According to the first law at the level of an individual trajectory, the heat is 
the work done on the system minus the variation of the internal energy.

is the change in the medium entropy, i.e. the heat exchanged with the 
thermal bath divided by its temperature                . (kB = 1)

�sm[{xs}] ⌘
q[{xs}]

T

and 2° �ssys ⌘ � ln p(x(t)) + ln(p(x(0))
is the change in the stochastic (Shannon) entropy of the system (Seifert, 1995)  
defined by 

where p(x,t) is the solution of the Fokker-Planck equation evaluated along 
the trajectory x(t).   ONLY  VALID FOR A MARKOVIAN DYNAMICS
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P
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(+�s
tot

)
P
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(��s
tot

)
= e�s

tot

By Jensen’s inequality, the IFT implies the 2nd Law of thermodynamics: 

h�s

tot

[{x
s

}]i � 0

he��s

tot

[{x

s

}]i = 1

(but the IFT implies that the entropy production is negative along certain 
trajectories)

Then, one can prove that                   satisfies an integral fluctuation theorem �s

tot

[{x
s

}]

(IFT)

There are also stronger fluctuation relations (detailed fluctuation 
theorems), such as 

lundi 27 janvier 14



�s

m

[{x
s

}] ⌘ q[{x
s

}]
T

=
1
T

Z
t

o

ds F (x
s

, �

s

) � ẋ
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• Path integral representation

– “Boltzmann factor for a whole trajectory”

p[ζ(τ)] ∼ exp [−
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– “time reversal” x̃(τ) ≡ x(t − τ) and λ̃(τ) ≡ λ(t − τ)

– Ratio of forward to reversed path

p[x(τ)|x0]

p̃[x̃(τ)|x̃0]
=

exp [−
∫ t
0 dτ (ẋ − µF)2/4D]

exp [−
∫ t
0 dτ ( ˙̃x − µF̃)2/4D]

= exp β
∫ t

0
dτ ẋF = exp βq[x(τ)] = exp∆sm

16

Key point: dissipation is related to the time reversibility of the trajectories.  

Time reversal:

can also be written as the logratio of the probabilities of the trajectory and 
its time-reversal (for the time-reversed protocol) 

Probability of the
forward trajectory:

(Onsager-Machlup action functional)
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ln
PF [{xs}|xi]p(xi)
PB [{x†

s}|x†
i ]p(x†

i )
= �sm[{xs}] + ln

p(xi)
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Now multiply by the numerator and the denominator by the probabilities of 
the initial and final states 
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< e��S
tot

�I >= 1

< e��S
tot >6= 1

h�s

tot

[{x
s

}]i + hIi � 0

Generalization in the presence of a Markovian, discrete feedback control 
(Sagawa-Ueda 2010, Horowitz-Vaikuntanthan 2010)

where I is the mutual information between the state of the system and the 
measurement outcome (depends on the error in the measurement) 

The information obtained through the measurement of the state of the 
system modifies the IFT and the second law. One finds that 

Generalized second law

We want to extend this type of results for a non-Markovian and 
continuous feedback control. 

Our study is restricted to the case of a deterministic feedback (no 
measurement errors). Therefore the mutual information does not 
come into play.  However we expect that 
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[�T � ⌧,�T ]

Ffb(t) / x(t� ⌧)

�sm[X,X�] ⌘ �

R T
�T dt [�ẋt � ⇠t]ẋt

= ��

R T
�T dt

h
mẍt � F (xt)� Ffb[X,X�]

i
ẋt

Entropy production and FT for Langevin processes with 
non-Markovian, deterministic feedback 

(We only focus on the behavior in a nonequilibrium steady state, NESS)

 to the time irreversibility of the trajectories, and thus to the probability of 
and its time reversal (here,         denotes the trajectory for t<-T,  e.g.,  in the 
time interval                         )

Entropy production and fluctuation theorems for Langevin processes under

continuous non-Markovian feedback control
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Continuous feedback control of Langevin processes may be non-Markovian due to a time lag
between the measurement and the control action. We show that this requires to modify the basic
relation between dissipation and time-reversal and to include a contribution arising from the non-
causal character of the reverse process. We then propose a new definition of the quantity measuring
the irreversibility of a path in a nonequilibrium stationary state, which can be also regarded as the
trajectory-dependent total entropy production. This leads to an extension of the second law which
takes a simple form in the long-time limit. As an illustration, we apply the general approach to
linear systems which are both analytically tractable and experimentally relevant.
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Introduction.– Entropy production (EP) in small ther-
modynamic systems can be reduced by the interven-
tion of an external agent that possesses some informa-
tion about the microstates, as famously illustrated by
Maxwell’s demon thought experiment[1]. Recent years
have seen a renewed interest for this idea due to the ad-
vances in the manipulation of mesoscopic objects and
to a better understanding of the intimate relationship
between EP and time asymmetry at the microscopic
level[2]. The ultimate goal is to develop a ‘thermodynam-
ics of feedback’, relating information and dissipation[3].

With this goal in mind, we focus in this Letter on
classical stochastic systems described by a Langevin dy-
namics and submitted to a continuous, non-Markovian
feedback control. The non-Markovian character results
from a time lag between the signal detection and the
control action, which is an ubiquitous feature in bio-
logical systems[4] and also plays an important role in
many experimental setups (e.g. laser networks[5]). Be-
cause of memory e↵ects, the conventional approach of
stochastic thermodynamics[6] is not applicable to such
systems, and even the basic identity (the so-called lo-
cal detailed balance condition) which is at the heart of
fluctuation relations[2] needs to be modified. Indeed, in
order to relate the heat dissipated along an individual
trajectory to the statistical weights of the trajectory and
its time-reversal, causality must be artificially broken in
the backward process, giving rise to a specific “Jacobian”
contribution. Such e↵ect went unnoticed in previous the-
oretical studies which mainly focused on discrete feed-
back protocols in which the controller acts at predeter-
mined times. In this case, the reverse process is physi-
cally realizable[7], which is not possible when the feed-
back is applied continuously. This prompts us to propose
a new definition of the fluctuating entropy production in
a nonequilibrium stationary state (NESS), which in turn
leads to an extension of the second law. We illustrate this

general approach by a detailed analytical and numerical
study of linear systems. Note that the present study
is restricted to the case of a deterministic (i.e. error-
free) feedback control. Noise and measurement errors
are known to reduce the achievable entropy reduction.

Dissipation and time-reversal.– Without loss of gener-
ality, we consider the one-dimensional motion of a Brow-
nian particle (or “system”) in contact with a heat bath
in equilibrium at inverse temperature � (Boltzmann con-
stant is set to 1 hereafter). The dynamics is described by
a second-order Langevin equation with additive noise

mẍ + �ẋ� F (x)� F

fb

(t) = ⇠(t) (1)

where m is a mass, � is a friction coe�cient, F (x) =
�dU(x)/dx is a conservative force, and ⇠(t) is a delta-
correlated white noise with variance 2�

�1
� (for simplic-

ity, a memory-less friction is assumed, but the formalism
can be generalized to a non-Markovian bath, as consid-
ered in previous studies[8–10]). F

fb

(t) is the feedback
control force determined by the measurement outcomes
and which generally depends on the microscopic trajec-
tory of the system in phase space up to time t. It may
be for instance proportional to the position x at time
t � ⌧ , where ⌧ is the delay (see Eq. (19) below), or to
the velocity ẋ, as illustrated by Eq. (21) where ⌧ is the
relaxation time of the feedback mechanism[11]. This lat-
ter case is a non-Markovian generalization of the model
studied in [12, 13] which describes feedback cooling (or
cold damping) experimental setups[14].

In the normal operating regime of a continuous feed-
back control, the system settles into a NESS in which
heat is permanently exchanged with the thermal environ-
ment (the stability of the NESS depends on the various
parameters that specify the dynamics, e.g. the delay ⌧).
Within the framework of stochastic energetics[15], the
heat dissipated along an individual path X ⌘ {x

t

, ẋ

t

}Consider a trajectory                           during the time interval [-T,T]. 
Like in Markov systems, we seek to relate the heat or, equivalently, the
 change in the medium entropy  

(T. Munakata and M.L. R., cond-mat:1401.0771)
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where X� denotes the path for t  �T (we now make
explicit the fact that F

fb

(t) depends on both X and X�).
As in the case of Markov processes, we seek to relate
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
for t 2 [�T, T ]. Eq. (3) can be made rigorous by dis-
cretizing the Langevin dynamics, as done for instance in
[10] (in particular, there is no need to specify the inter-
pretation of the stochastic calculus as long as m 6= 0).
Due to causality, the Jacobian matrix is lower triangu-
lar, so that J is a path-independent positive quantity
that can be included in the prefactor[19].

We now replace the whole trajectory, including X�, by
its time-reversed image {x†(t), ẋ†(t)} = {x(�t),�ẋ(�t)}
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is a well-defined mathematical object. On the other
hand, non-causality makes the Jacobian matrix no longer
lower triangular and J̃ [X] is in general a nontrivial (pos-
itive) functional of the path (see Eq. (15) below). Taking
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which generalizes the familiar identity relating dissipa-
tion to time reversal[2]. The two signatures of non-
Markovianity are (i) the functional dependence on the
past trajectory, and (ii) the presence of the ratio J /J̃ [X]
due to the non-causal character of the dynamics ⇠.

Entropy production (EP).– As in the Markovian
case, the left-hand side of Eq. (7) may be com-
bined with normalized distributions P
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[X,X�] ⌘ �q[X,X�] is the change in the en-
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t

�
p

2��

�1
⇠

t

] ẋ
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
for t 2 [�T, T ]. Eq. (3) can be made rigorous by dis-
cretizing the Langevin dynamics, as done for instance in
[10] (in particular, there is no need to specify the inter-
pretation of the stochastic calculus as long as m 6= 0).
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t

= �
Z

T

�T

dt

h

mẍ
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where X� denotes the path for t  �T (we now make
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
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is a well-defined mathematical object. On the other
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which generalizes the familiar identity relating dissipa-
tion to time reversal[2]. The two signatures of non-
Markovianity are (i) the functional dependence on the
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
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cretizing the Langevin dynamics, as done for instance in
[10] (in particular, there is no need to specify the inter-
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which generalizes the familiar identity relating dissipa-
tion to time reversal[2]. The two signatures of non-
Markovianity are (i) the functional dependence on the
past trajectory, and (ii) the presence of the ratio J /J̃ [X]
due to the non-causal character of the dynamics ⇠.
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
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[10] (in particular, there is no need to specify the inter-
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is a well-defined mathematical object. On the other
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which generalizes the familiar identity relating dissipa-
tion to time reversal[2]. The two signatures of non-
Markovianity are (i) the functional dependence on the
past trajectory, and (ii) the presence of the ratio J /J̃ [X]
due to the non-causal character of the dynamics ⇠.
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Asymptotic relations:  when 2T is much larger than the time constant 
characterizing the non-Markovian feedback (e.g.     ), one can neglect terms 
non extensive in time when computing expectation values
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is the relative entropy (or Kullback-Leibler divergence)
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) between the distributions P
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and P̃
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. This
quantity is always non-negative, which suggests that
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[X] properly describes the overall EP along the tra-
jectory X as a measure of the irreversibility of the non-
Markovian stationary process. In particular, R

cg

[X] does
not vanish when P
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[X] = P
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[X†], which occurs when all
forces are linear (see below).

Asymptotic relations.– R

cg

[X], however, is a compli-
cated functional of the path (see [17] for explicit calcula-
tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
feedback (we here assume that the correlation to the past
is finite or decreases rapidly with time, e.g. exponen-
tially). The dependence on the past trajectory can then
be neglected, as well as the “border” terms which are non
extensive in time. This leads to the asymptotic equality
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which may be regarded as the generalized second law for
the feedback controlled system. Eq. (13) is the second
main result of this Letter. In addition, we conjecture the
following asymptotic fluctuation relation
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which is strongly supported by analytical[17] and numer-
ical calculations (see Figs. 1 and 2). (Note that Eq. (14)
involves �s

tot

and not �s

m

. The latter displays strong
fluctuations which are stabilized by the border term.)

Expression of the Jacobian. The Jacobian J̃ [X] thus
plays a central role as the footprint of non-Markovianity
and we devote the rest of this Letter to its calculation.
The starting point is the operator representation of the
conjugate, non-causal Langevin equation. Generalizing
the analysis of [9, 10], one easily finds that J̃ [X] can be
formally expressed as
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G(t) is the Green function for the inertial and dissipa-
tive terms in the Langevin equation, and F̃
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Application to linear Langevin processes.– To be more
specific, let us now consider the case of a harmonic os-
cillator submitted to a linear feedback control, which is
relevant to many practical applications. Since we as-
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ṠJ = lim

T!1
1

2T

ln J̃ /J is obtained by Laplace trans-
forming Eq. (15),
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m
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ṠJ =
1

2⇡i

Z

c+i1

c�i1
ds ln

G(s)
�̃(s)

(18)

where �̃(s) = [G(s)�1 � F̃

0
tot

(s)]�1 = [ms

2 + �s �
F̃

0
tot

(s)]�1 is the Laplace transform of the response func-
tion �̃(t) associated with the conjugate Langevin equa-
tion. Note that we use here the bilateral Laplace trans-
form because �̃(t) is non-zero for t < 0. In general, the
integral in Eq. (18) must be computed numerically by
choosing a value of c for the contour integral that gives
a result consistent with the one obtained from the series
expansion (17) when the latter converges[17].

As a first application, we consider the stochastic delay
equation
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Application to linear Langevin processes.– To be more
specific, let us now consider the case of a harmonic os-
cillator submitted to a linear feedback control, which is
relevant to many practical applications. Since we as-
sume that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i
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which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R
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[X] introduced above.
The crucial simplification due to linearity is that the

functional derivative F̃
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(t, t0) and thus J̃ become path-
independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
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form because �̃(t) is non-zero for t < 0. In general, the
integral in Eq. (18) must be computed numerically by
choosing a value of c for the contour integral that gives
a result consistent with the one obtained from the series
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As a first application, we consider the stochastic delay
equation

mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

which arises in a variety of mechanical or biological
systems[24] and has been considered previously in the
overdamped limit m = 0[25, 26] (see the related discus-
sion in [17]). When m 6= 0, the system settles into a

Expression of the Jacobian                                             associated to the 
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(see e.g. C. Aron et al. , J. Stat. Mech. P11018, 2010)

G(t) is the Green function for the inertial and dissipative terms in the 
Langevin equation :

lundi 27 janvier 14



For linear systems, the Jacobian becomes path-independent !

ln J̃ /JThe operation    becomes a convolution and   
is proportional to 2T  

�

In the long-time limit, the asymptotic rate ṠJ = lim
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probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i

st

which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R

cg

[X] introduced above.
The crucial simplification due to linearity is that the

functional derivative F̃

0
fb

(t, t0) and thus J̃ become path-
independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
the duration of the trajectory, and the asymptotic rate
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mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

which arises in a variety of mechanical or biological
systems[24] and has been considered previously in the
overdamped limit m = 0[25, 26] (see the related discus-
sion in [17]). When m 6= 0, the system settles into a

3

is the relative entropy (or Kullback-Leibler divergence)
D(P

st

||P̃
st

) between the distributions P
st

and P̃
st

. This
quantity is always non-negative, which suggests that
R

cg

[X] properly describes the overall EP along the tra-
jectory X as a measure of the irreversibility of the non-
Markovian stationary process. In particular, R

cg

[X] does
not vanish when P

st

[X] = P
st

[X†], which occurs when all
forces are linear (see below).

Asymptotic relations.– R

cg

[X], however, is a compli-
cated functional of the path (see [17] for explicit calcula-
tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
feedback (we here assume that the correlation to the past
is finite or decreases rapidly with time, e.g. exponen-
tially). The dependence on the past trajectory can then
be neglected, as well as the “border” terms which are non
extensive in time. This leads to the asymptotic equality

hR
cg

[X]i
st

⇠ h�s

m

[X]i
st

� hln J̃ [X]
J i

st

, (12)

which can be rewritten as Ṙ = Ṡ
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Expression of the Jacobian. The Jacobian J̃ [X] thus
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processes[21–23]) is a misleading indicator, in contrast
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Ffb(t) = �bx(t� ⌧)

mẍ + (� + �

0)ẋ + (a + b)x = ⇠(t)

Remark: at first order 

and one recovers a Markovian dynamics with a velocity-dependent force 
(standard feedback cooling):

with

the feedback force at time t depends on the position 
at a previous time (no measurement errors) 

As a general rule, stochastic time-delayed systems may be regarded as 
systems with an infinite number of degrees of freedom => infinite hierarchy 
of Fokker-Planck equations.

mẍ + �ẋ + ax + bx(t� ⌧) = ⇠(t)

 Application to a linear stochastic delay equation 
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T (v)
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T = 1, m = 1, � = 0.9, a = 0.2
b = 0.1(black line) and b = �0.1(red line)
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However, for a linear system with Gaussian white noise, all stationary 
probability distributions are Gaussian and can be determined exactly. In 
particular,

where 
are effective temperatures whose expressions are obtained by solving the 
differential equations for the time-correlation functions in the interval 

and

0  t  ⌧

The existence and stability of the stationary solution depends 
on the delay and on the values of the other parameters. For simplicity, 
we only consider the case where a NESS exists for all values of the delay: 

Example:  

=> NESS

pst(x, v) / e
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Path probability in the stationary state

  The probability of a path is also Gaussian and can be calculated 
exactly in the overdamped limit m=0 

P[{x
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where           is the operator inverse of the time correlation function 
                                    in the time interval [0,t], defined by

S�1
xx

(t)
S

xx

(t) =< x(0)x(t) >
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This integral equation can be solved analytically (it is in fact easier to 
consider the corresponding discretized matrix equation, generalizing a classical 
result of Doob (1942) for the Ornstein-Uhlenbeck process).  The result is

Z
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ds00S
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which is «almost» an Onsager-Machlup action functional, with an additional 
dependence of the initial and final states that reflects the non-Markovian 
character of the process.

⌧  t  2⌧The path probability can then be computed in the time interval        
using

with

etc...
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lim
T!1
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2a [1 � e�2a⌧ + 2a⌧e�2a⌧ ] +O(b3)

ln
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= 0

This ratio cannot be a proper definition of the entropy production !

Entropy production:  In the stationary state, the probabilities of a trajectory 
and its time-reversal are identical ! 

2
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where X� denotes the path for t  �T (we now make
explicit the fact that F

fb

(t) depends on both X and X�).
As in the case of Markov processes, we seek to relate

q[X,X�] to the time reversibility of the trajectories, so
we consider the probability of observing X for a given
initial state x
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) and a given past trajectory
X�[16, 17]. This probability is determined by the noise
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mẍ

t

+ �ẋ
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and J is the Jacobian of the transformation ⇠(t) ! x(t)
for t 2 [�T, T ]. Eq. (3) can be made rigorous by dis-
cretizing the Langevin dynamics, as done for instance in
[10] (in particular, there is no need to specify the inter-
pretation of the stochastic calculus as long as m 6= 0).
Due to causality, the Jacobian matrix is lower triangu-
lar, so that J is a path-independent positive quantity
that can be included in the prefactor[19].
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(21), one must also change �

0 into ��

0. More generally,
such changes define a “conjugate” dynamics, hereafter
denoted by the tilde symbol (⇠). This dynamics is non-
causal and does not correspond to any physical process,
but the conditional probability

P̃[X†|x†
i

,X

†
�] / �

�J̃ [X]
�

�

e

��

R
T

�T

dt S̃[X†
,X†
�] (5)

with

S̃[X†
,X

†
�] =

1
4�

h

mẍ

t

� �ẋ

t

� F (x
t

)� F̃

fb

[X†
,X

†
�]

t!�t

i2

(6)

is a well-defined mathematical object. On the other
hand, non-causality makes the Jacobian matrix no longer
lower triangular and J̃ [X] is in general a nontrivial (pos-
itive) functional of the path (see Eq. (15) below). Taking
the ratio of P[X|x

i

,X�] and P̃[X†|x†
i

,X

†
�] then leads to

our first main result
P[X|x

i

,X�]
P̃[X†|x†

i

,X

†
�]

=
J

J̃ [X]
exp

�

� q[X,X�]
 

, (7)

which generalizes the familiar identity relating dissipa-
tion to time reversal[2]. The two signatures of non-
Markovianity are (i) the functional dependence on the
past trajectory, and (ii) the presence of the ratio J /J̃ [X]
due to the non-causal character of the dynamics ⇠.

Entropy production (EP).– As in the Markovian
case, the left-hand side of Eq. (7) may be com-
bined with normalized distributions P

st

[x
i

,X�] and
P

st

[x†
i

,X

†
�] in order to define unconditional path

weights. We thus introduce the quantity R[X,X�] ⌘
�s

m

[X,X�] � ln J̃ [X]/J + lnP
st

[x
i

,X�]/P
st

[x†
i

,X

†
�],

where �s

m

[X,X�] ⌘ �q[X,X�] is the change in the en-
tropy of the medium. By construction, R[X,X�] satisfies
the integral fluctuation theorem (IFT)

he�R[X,X�]i
st

= 1 (8)

where h...i
st

denotes an average over all paths X and X�
weighted by the stationary probability P

st

[X,X�]. It is
worth noting that R[X,X�] can also be expressed as

R[X,X�] = �s

tot

[X,X�]� ln J̃ [X]/J
��I[X�,x

i

,x

†
i

] + lnP
st

[X�]/P
st

[X†
�] (9)

where �s

tot

[X,X�] = �s

m

[X,X�] + ln p

st

(x
i

)/p

st

(x†
i

)
is a “Markovian-like” contribution[6] and �I =
I[x†

i

: X

†
�] � I[x

i

: X�] = lnP
st

[x†
i

|X�
†]/p

st

(x†
i

) �
lnP

st

[x
i

|X�]/p

st

(x
i

) describes memory e↵ects not con-
tained in �s

tot

[X,X�] (here, I is a fluctuating mu-
tual information). A drawback, however, is that
�I[X�,x

i

,x

†
i

] and thus R[X,X�] do not vanish when
the feedback control is switched o↵ and the system goes
back to equilibrium (whereas �s

tot

= 0). This prob-
lem is cured by considering the coarse-grained functional
R

cg

[X] = � ln
R DX�P[X�|X] e

�R[X,X�] which, from
the definition of R[X,X�], simply reads

R

cg

[X] ⌘ ln
P

st

[X]
P̃

st

[X†]
, (10)

where P̃
st

[X†] ⌘ R DX�P̃[X†|x†
i

,X

†
�]P

st

[x†
i

,X

†
�][20].

By construction R

cg

[X] obeys the IFT, and its average

hR
cg

[X]i
st

=
Z

DX P
st

[X] ln
P

st

[X]
P̃

st

[X†]
(11)

is non zero !On the other hand

For instance, in the long-time limit, one finds 
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mẍ + �ẋ + ax + bx(t + ⌧) = ⇠(t)

ṠJ =
1

2⇡i

Z c+i1

c�i1
ds ln

ms2 + �s + a + bes⌧

ms2 + �s

�̃(s) = [ms2 + �s + a + bes⌧ ]�1

Calculation of the Jacobian for the conjugate, non-causal Langevin equation :

3

is the relative entropy (or Kullback-Leibler divergence)
D(P

st

||P̃
st

) between the distributions P
st

and P̃
st

. This
quantity is always non-negative, which suggests that
R

cg

[X] properly describes the overall EP along the tra-
jectory X as a measure of the irreversibility of the non-
Markovian stationary process. In particular, R

cg

[X] does
not vanish when P

st

[X] = P
st

[X†], which occurs when all
forces are linear (see below).

Asymptotic relations.– R

cg

[X], however, is a compli-
cated functional of the path (see [17] for explicit calcula-
tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
feedback (we here assume that the correlation to the past
is finite or decreases rapidly with time, e.g. exponen-
tially). The dependence on the past trajectory can then
be neglected, as well as the “border” terms which are non
extensive in time. This leads to the asymptotic equality

hR
cg

[X]i
st

⇠ h�s

m

[X]i
st

� hln J̃ [X]
J i

st

, (12)

which can be rewritten as Ṙ = Ṡ

m

� ṠJ by
defining the rates Ṙ = lim

T!1
1

2T

hR
cg

[X]i
st

,
Ṡ

m

= lim
T!1

1
2T

hs
m

[X]i
st

and ṠJ =
lim

T!1
1

2T

hln J̃ [X]/J i
st

. Since hR
cg

[X]i
st

is non-
negative, Eq. (12) implies that

Ṡ

m

� ṠJ , (13)

which may be regarded as the generalized second law for
the feedback controlled system. Eq. (13) is the second
main result of this Letter. In addition, we conjecture the
following asymptotic fluctuation relation

lim
T!1

1
2T

lnhe�(�s

tot

[X,X�]�ln J̃ [X]
J )i

st

= 0 (14)

which is strongly supported by analytical[17] and numer-
ical calculations (see Figs. 1 and 2). (Note that Eq. (14)
involves �s

tot

and not �s

m

. The latter displays strong
fluctuations which are stabilized by the border term.)

Expression of the Jacobian. The Jacobian J̃ [X] thus
plays a central role as the footprint of non-Markovianity
and we devote the rest of this Letter to its calculation.
The starting point is the operator representation of the
conjugate, non-causal Langevin equation. Generalizing
the analysis of [9, 10], one easily finds that J̃ [X] can be
formally expressed as

J̃ [X] = J expTr ln[�
t�t

0 � M̃

tt

0 ]

= J exp�
1
X

n=1

1
n

Z

T

�T

dt

n

M̃ � M̃ � ...M̃

| {z }

n times

o

tt

(15)

where the operator M̃(t, t0) is defined by

M̃(t, t0) = {G � F̃

0
tot

}
tt

0 ⌘
Z

T

�T

dt

00
G(t� t

00)F̃ 0
tot

(t00, t0) .

(16)

G(t) is the Green function for the inertial and dissipa-
tive terms in the Langevin equation, and and and and
F̃

0

tot

(t, t0) ⌘ �

⇥

F (x(t))+F̃

fb

[X,X�]
⇤

/�x(t0). In the white
noise limit, one simply has G(t) = �

�1[1 � e

��t/m]⇥(t),
where ⇥(t) is the Heaviside step function[10].

Application to linear Langevin processes.– To be more
specific, let us now consider the case of a harmonic os-
cillator submitted to a linear feedback control, which is
relevant to many practical applications. Since we as-
sume that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i

st

which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R

cg

[X] introduced above.
The crucial simplification due to linearity is that the

functional derivative F̃

0
fb

(t, t0) and thus J̃ become path-
independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
the duration of the trajectory, and the asymptotic rate
ṠJ = lim

T!1
1

2T

ln J̃ /J is obtained by Laplace trans-
forming Eq. (15),

ṠJ =
1

2⇡i

Z

c+i1

c�i1
ds ln[1� M̃(s)]

= � 1
2⇡i

1
X

n=1

1
n

Z

c+i1

c�i1
ds [M̃(s)]n (17)

where s = c+i!, M̃(s) ⌘ R1
�1 dtM̃(t)e�st = G(s)F̃ 0

tot

(s),
and G(s) = (ms

2 + �s)�1. This can be also expressed as

ṠJ =
1

2⇡i

Z

c+i1

c�i1
ds ln

G(s)
�̃(s)

(18)

where �̃(s) = [G(s)�1 � F̃

0
tot

(s)]�1 = [ms

2 + �s �
F̃

0
tot

(s)]�1 is the Laplace transform of the response func-
tion �̃(t) associated with the conjugate Langevin equa-
tion. Note that we use here the bilateral Laplace trans-
form because �̃(t) is non-zero for t < 0. In general, the
integral in Eq. (18) must be computed numerically by
choosing a value of c for the contour integral that gives
a result consistent with the one obtained from the series
expansion (17) when the latter converges[17].

As a first application, we consider the stochastic delay
equation

mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

which arises in a variety of mechanical or biological
systems[24] and has been considered previously in the
overdamped limit m = 0[25, 26] (see the related discus-
sion in [17]). When m 6= 0, the system settles into a
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[X] properly describes the overall EP along the tra-
jectory X as a measure of the irreversibility of the non-
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[X] does
not vanish when P
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[X†], which occurs when all
forces are linear (see below).
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[X], however, is a compli-
cated functional of the path (see [17] for explicit calcula-
tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
feedback (we here assume that the correlation to the past
is finite or decreases rapidly with time, e.g. exponen-
tially). The dependence on the past trajectory can then
be neglected, as well as the “border” terms which are non
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negative, Eq. (12) implies that
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which may be regarded as the generalized second law for
the feedback controlled system. Eq. (13) is the second
main result of this Letter. In addition, we conjecture the
following asymptotic fluctuation relation
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which is strongly supported by analytical[17] and numer-
ical calculations (see Figs. 1 and 2). (Note that Eq. (14)
involves �s

tot

and not �s
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. The latter displays strong
fluctuations which are stabilized by the border term.)

Expression of the Jacobian. The Jacobian J̃ [X] thus
plays a central role as the footprint of non-Markovianity
and we devote the rest of this Letter to its calculation.
The starting point is the operator representation of the
conjugate, non-causal Langevin equation. Generalizing
the analysis of [9, 10], one easily finds that J̃ [X] can be
formally expressed as
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G(t) is the Green function for the inertial and dissipa-
tive terms in the Langevin equation, and and and and
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/�x(t0). In the white
noise limit, one simply has G(t) = �

�1[1 � e

��t/m]⇥(t),
where ⇥(t) is the Heaviside step function[10].

Application to linear Langevin processes.– To be more
specific, let us now consider the case of a harmonic os-
cillator submitted to a linear feedback control, which is
relevant to many practical applications. Since we as-
sume that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i
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which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R
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[X] introduced above.
The crucial simplification due to linearity is that the

functional derivative F̃
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(t, t0) and thus J̃ become path-
independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
the duration of the trajectory, and the asymptotic rate
ṠJ = lim

T!1
1
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ln J̃ /J is obtained by Laplace trans-
forming Eq. (15),

ṠJ =
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(s)]�1 is the Laplace transform of the response func-
tion �̃(t) associated with the conjugate Langevin equa-
tion. Note that we use here the bilateral Laplace trans-
form because �̃(t) is non-zero for t < 0. In general, the
integral in Eq. (18) must be computed numerically by
choosing a value of c for the contour integral that gives
a result consistent with the one obtained from the series
expansion (17) when the latter converges[17].

As a first application, we consider the stochastic delay
equation

mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

which arises in a variety of mechanical or biological
systems[24] and has been considered previously in the
overdamped limit m = 0[25, 26] (see the related discus-
sion in [17]). When m 6= 0, the system settles into a
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FIG. 1: (Color on line) The rates Ṡm, ṠJ and Ṙ = Ṡm � ṠJ
as a function of ⌧ for the delay Langevin Eq. (19) with m =
1, � = 1, a = 0.5 and b = �0.25. The open circles are obtained
from the equation ṠJ ⇡ � 1

2T lnhe��s
totist using T = 10 and

averaging over 106 independent simulations of Eq. (19) with
Heun’s method and a time step �t = 10�3.

NESS which is stable in a certain region of the param-
eter space and is characterized by an e↵ective kinetic
temperature T

k

⌘ mhẋ2i
st

[17]. Then Ṡ

m

= �

m

(�T

k

� 1),
which may become negative when the feedback is pos-
itive (b < 0) and cools the system. This indicates that
another entropic contribution must be taken into account
in order to be consistent with the second law.

Focusing on the long-time limit, we first compute ṠJ
from expansion (17). Since the conjugate dynamics is de-
fined by the change ⌧ ! �⌧ , one has F̃

0
tot

(t) = �a�(t)�
b�(t + ⌧) and thus M̃(s) = �[a + be

s⌧ ][ms(s + �/m)]�1.
The terms in the series are then simply computed by
adding the residues at s = 0 and s = ��/m. After
reordering[17], this yields a series expansion in ⌧ ,

ṠJ =
b

m

⌧ � b�

2m

2
⌧

2 +
b(�2 � am� 4bm)

6m

3
⌧

3 +O(⌧4) .

(20)

Interestingly, if one replaces b⌧ by ��

0, the first-order
term identifies with the so-called “entropy pumping” rate
Ṡ

pu

= ��

0
/m characteristic of a velocity-dependent feed-

back control [12, 13]. One indeed recovers a force pro-
portional to the velocity by expanding x(t � ⌧) at first
order in ⌧ . In this sense, ṠJ may be viewed as a gen-
eralization of Ṡ

pu

. To go beyond the small-⌧ expan-
sion, Eq. (18) must be integrated numerically, using
�̃(s) = [ms

2 + �s + a + be

s⌧ ]�1. A careful analysis[17]
shows that �̃(s) has two poles on the l.h.s. of the complex
s-plane and an infinity of poles on the r.h.s., which is the
signature of non causality. It is found that the correct
choice for the integration contour is 0 < c < c

+
1 , where

c

+
1 denotes the pole closest to the imaginary axis.
As an illustration, we plot in Fig. 1 the rates Ṡ

m

, ṠJ ,
and Ṙ = Ṡ

m

� ṠJ as a function of ⌧ in the case of a

positive feedback. One can see that Ṙ is always posi-
tive, in agreement with the generalized second law, Eq.
(13). The non-monotonous behavior of Ṡ

m

is directly
dictated by the behavior of T

k

, which is not the case for
ṠJ . Note also that Ṡ

m

goes to a finite value for ⌧ !1
whereas ṠJ ! 0. We also indicate in the figure some
values of ṠJ obtained by simulating the Langevin equa-
tion (19) and using Eq. (14) which takes the simple form
lim

T!1
1

2T

lnhe��s

tot

[X,X�]i
st

= �ṠJ for a linear sys-
tem. As can be seen, the agreement with the theoretical
value is already very good with T = 10.

As second application, we consider the equation

mẍ + �ẋ + ax +
�

0

⌧

Z

t

�1
dt

0
e

� t�t

0
⌧

ẋ(t0) = ⇠(t) (21)

which may describe a feedback-cooled electromechanical
oscillator[14, 27]. The molecular refrigerator model of
[12, 13] is recovered in the Markovian limit ⌧ ! 0. Since
the system is linear, this also amounts to studying the
coupled Markovian equations[11]

mẍ + �ẋ + ax + �

0
y = ⇠(t)

ẏ +
1
⌧

(y � ẋ) = ⌘(t) (22)

in the limit where the noise ⌘ becomes negligible. More
generally, such coupled equations are useful to investigate
the role of coarse-graining and hidden degrees of freedom
on fluctuation theorems[28–30].
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FIG. 2: (Color on line) Same as Fig. 1 for the velocity-
dependent feedback described by Eq. (21). The model pa-
rameters are m = 1, a = 1, � = 0.2, �

0 = 0.4. Note that

ṠJ ! � �0

m for ⌧ ! 0.

For �

0
> 0, heat permanently flows from the bath

to the system in the steady state, with a rate given
by Eq. (77) in [11] with T

0 = 0. This yields Ṡ

m

=
�(��

0)/(m�

eff

) where �

eff

= (� + �

0)(1 + �⌧/m) +
a�⌧

2
/m. The conjugate dynamics is now defined by the

changes ⌧ ! �⌧ and �

0 ! ��

0 so that F̃

0
tot

(t) = �(a +
�

0

⌧

)�(t) + �

0

⌧

2 e

t/⌧⇥(�t) by partial integration of F̃

fb

(t).

-expansion :⌧

Rem: There are 2 poles on the 
l.h.s. of the complex s-plane and 
an infinity of poles on the r.h.s. = 
signature of non-causality
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FIG. 1: (Color on line) The rates Ṡm, ṠJ and Ṙ = Ṡm � ṠJ
as a function of ⌧ for the delay Langevin Eq. (19) with m =
1, � = 1, a = 0.5 and b = �0.25. The open circles are obtained
from the equation ṠJ ⇡ � 1

2T lnhe��s
totist using T = 10 and

averaging over 106 independent simulations of Eq. (19) with
Heun’s method and a time step �t = 10�3.
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which may become negative when the feedback is pos-
itive (b < 0) and cools the system. This indicates that
another entropic contribution must be taken into account
in order to be consistent with the second law.

Focusing on the long-time limit, we first compute ṠJ
from expansion (17). Since the conjugate dynamics is de-
fined by the change ⌧ ! �⌧ , one has F̃

0
tot

(t) = �a�(t)�
b�(t + ⌧) and thus M̃(s) = �[a + be

s⌧ ][ms(s + �/m)]�1.
The terms in the series are then simply computed by
adding the residues at s = 0 and s = ��/m. After
reordering[17], this yields a series expansion in ⌧ ,

ṠJ =
b

m

⌧ � b�

2m

2
⌧

2 +
b(�2 � am� 4bm)

6m

3
⌧

3 +O(⌧4) .

(20)

Interestingly, if one replaces b⌧ by ��

0, the first-order
term identifies with the so-called “entropy pumping” rate
Ṡ

pu

= ��

0
/m characteristic of a velocity-dependent feed-

back control [12, 13]. One indeed recovers a force pro-
portional to the velocity by expanding x(t � ⌧) at first
order in ⌧ . In this sense, ṠJ may be viewed as a gen-
eralization of Ṡ

pu

. To go beyond the small-⌧ expan-
sion, Eq. (18) must be integrated numerically, using
�̃(s) = [ms

2 + �s + a + be

s⌧ ]�1. A careful analysis[17]
shows that �̃(s) has two poles on the l.h.s. of the complex
s-plane and an infinity of poles on the r.h.s., which is the
signature of non causality. It is found that the correct
choice for the integration contour is 0 < c < c

+
1 , where

c

+
1 denotes the pole closest to the imaginary axis.
As an illustration, we plot in Fig. 1 the rates Ṡ

m

, ṠJ ,
and Ṙ = Ṡ

m

� ṠJ as a function of ⌧ in the case of a

positive feedback. One can see that Ṙ is always posi-
tive, in agreement with the generalized second law, Eq.
(13). The non-monotonous behavior of Ṡ

m

is directly
dictated by the behavior of T

k

, which is not the case for
ṠJ . Note also that Ṡ

m

goes to a finite value for ⌧ !1
whereas ṠJ ! 0. We also indicate in the figure some
values of ṠJ obtained by simulating the Langevin equa-
tion (19) and using Eq. (14) which takes the simple form
lim

T!1
1

2T

lnhe��s

tot

[X,X�]i
st

= �ṠJ for a linear sys-
tem. As can be seen, the agreement with the theoretical
value is already very good with T = 10.

As second application, we consider the equation

mẍ + �ẋ + ax +
�

0

⌧

Z

t

�1
dt

0
e

� t�t

0
⌧

ẋ(t0) = ⇠(t) (21)

which may describe a feedback-cooled electromechanical
oscillator[14, 27]. The molecular refrigerator model of
[12, 13] is recovered in the Markovian limit ⌧ ! 0. Since
the system is linear, this also amounts to studying the
coupled Markovian equations[11]

mẍ + �ẋ + ax + �

0
y = ⇠(t)

ẏ +
1
⌧

(y � ẋ) = ⌘(t) (22)

in the limit where the noise ⌘ becomes negligible. More
generally, such coupled equations are useful to investigate
the role of coarse-graining and hidden degrees of freedom
on fluctuation theorems[28–30].
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FIG. 2: (Color on line) Same as Fig. 1 for the velocity-
dependent feedback described by Eq. (21). The model pa-
rameters are m = 1, a = 1, � = 0.2, �

0 = 0.4. Note that

ṠJ ! � �0

m for ⌧ ! 0.

For �

0
> 0, heat permanently flows from the bath

to the system in the steady state, with a rate given
by Eq. (77) in [11] with T

0 = 0. This yields Ṡ

m

=
�(��

0)/(m�

eff

) where �

eff

= (� + �

0)(1 + �⌧/m) +
a�⌧

2
/m. The conjugate dynamics is now defined by the

changes ⌧ ! �⌧ and �

0 ! ��

0 so that F̃

0
tot

(t) = �(a +
�

0

⌧

)�(t) + �

0

⌧

2 e

t/⌧⇥(�t) by partial integration of F̃
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(t).

1) Check of the generalized second law 
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is the relative entropy (or Kullback-Leibler divergence)
D(P

st

||P̃
st

) between the distributions P
st

and P̃
st

. This
quantity is always non-negative, which suggests that
R

cg

[X] properly describes the overall EP along the tra-
jectory X as a measure of the irreversibility of the non-
Markovian stationary process. In particular, R

cg

[X] does
not vanish when P

st

[X] = P
st

[X†], which occurs when all
forces are linear (see below).

Asymptotic relations.– R

cg

[X], however, is a compli-
cated functional of the path (see [17] for explicit calcula-
tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
feedback (we here assume that the correlation to the past
is finite or decreases rapidly with time, e.g. exponen-
tially). The dependence on the past trajectory can then
be neglected, as well as the “border” terms which are non
extensive in time. This leads to the asymptotic equality

hR
cg

[X]i
st

⇠ h�s

m

[X]i
st

� hln J̃ [X]
J i

st

, (12)

which can be rewritten as Ṙ = Ṡ

m

� ṠJ by
defining the rates Ṙ = lim

T!1
1

2T

hR
cg

[X]i
st

,
Ṡ

m

= lim
T!1

1
2T

hs
m

[X]i
st

and ṠJ =
lim

T!1
1

2T

hln J̃ [X]/J i
st

. Since hR
cg

[X]i
st

is non-
negative, Eq. (12) implies that

Ṡ

m

� ṠJ , (13)

which may be regarded as the generalized second law for
the feedback controlled system. Eq. (13) is the second
main result of this Letter. In addition, we conjecture the
following asymptotic fluctuation relation

lim
T!1

1
2T

lnhe�(�s

tot

[X,X�]�ln J̃ [X]
J )i

st

= 0 (14)

which is strongly supported by analytical[17] and numer-
ical calculations (see Figs. 1 and 2). (Note that Eq. (14)
involves �s

tot

and not �s

m

. The latter displays strong
fluctuations which are stabilized by the border term.)

Expression of the Jacobian. The Jacobian J̃ [X] thus
plays a central role as the footprint of non-Markovianity
and we devote the rest of this Letter to its calculation.
The starting point is the operator representation of the
conjugate, non-causal Langevin equation. Generalizing
the analysis of [9, 10], one easily finds that J̃ [X] can be
formally expressed as

J̃ [X] = J expTr ln[�
t�t

0 � M̃

tt

0 ]

= J exp�
1
X

n=1

1
n

Z

T

�T

dt

n

M̃ � M̃ � ...M̃

| {z }

n times

o

tt

(15)

where the operator M̃(t, t0) is defined by

M̃(t, t0) = {G � F̃

0
tot

}
tt

0 ⌘
Z

T

�T

dt

00
G(t� t

00)F̃ 0
tot

(t00, t0) .

(16)

G(t) is the Green function for the inertial and dissipa-
tive terms in the Langevin equation, and F̃

0

tot

(t, t0) ⌘
�

⇥

F (x(t))+ F̃

fb

[X,X�]
⇤

/�x(t0). In the white noise limit,
one simply has G(t) = �

�1[1 � e

��t/m]⇥(t), where ⇥(t)
is the Heaviside step function[10].

Application to linear Langevin processes.– To be more
specific, let us now consider the case of a harmonic os-
cillator submitted to a linear feedback control, which is
relevant to many practical applications. Since we as-
sume that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i

st

which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R

cg

[X] introduced above.
The crucial simplification due to linearity is that the

functional derivative F̃

0
fb

(t, t0) and thus J̃ become path-
independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
the duration of the trajectory, and the asymptotic rate
ṠJ = lim

T!1
1

2T

ln J̃ /J is obtained by Laplace trans-
forming Eq. (15),

ṠJ =
1

2⇡i
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c+i1

c�i1
ds ln[1� M̃(s)]

= � 1
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1
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ds [M̃(s)]n (17)

where s = c+i!, M̃(s) ⌘ R1
�1 dtM̃(t)e�st = G(s)F̃ 0
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(s),
and G(s) = (ms

2 + �s)�1. This can be also expressed as
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where �̃(s) = [G(s)�1 � F̃

0
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(s)]�1 = [ms

2 + �s �
F̃

0
tot

(s)]�1 is the Laplace transform of the response func-
tion �̃(t) associated with the conjugate Langevin equa-
tion. Note that we use here the bilateral Laplace trans-
form because �̃(t) is non-zero for t < 0. In general, the
integral in Eq. (18) must be computed numerically by
choosing a value of c for the contour integral that gives
a result consistent with the one obtained from the series
expansion (17) when the latter converges[17].

As a first application, we consider the stochastic delay
equation

mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

which arises in a variety of mechanical or biological
systems[24] and has been considered previously in the
overdamped limit m = 0[25, 26] (see the related discus-
sion in [17]). When m 6= 0, the system settles into a

One has T (v)
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jectory X as a measure of the irreversibility of the non-
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[X] does
not vanish when P
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[X†], which occurs when all
forces are linear (see below).
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[X], however, is a compli-
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tions). On the other hand, its average has a simple ex-
pression when the observation time becomes much larger
than the time constant characterizing the non-Markovian
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tially). The dependence on the past trajectory can then
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ical calculations (see Figs. 1 and 2). (Note that Eq. (14)
involves �s
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and not �s
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. The latter displays strong
fluctuations which are stabilized by the border term.)

Expression of the Jacobian. The Jacobian J̃ [X] thus
plays a central role as the footprint of non-Markovianity
and we devote the rest of this Letter to its calculation.
The starting point is the operator representation of the
conjugate, non-causal Langevin equation. Generalizing
the analysis of [9, 10], one easily finds that J̃ [X] can be
formally expressed as
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Application to linear Langevin processes.– To be more
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relevant to many practical applications. Since we as-
sume that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and thus
P[X†] = P[X]. As already stressed, this implies that the
quantity hlnP[X]/P[X†]i
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which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes[21–23]) is a misleading indicator, in contrast
with the quantity R
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[X] introduced above.
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independent. In what follows, we only consider the be-
havior for T ! 1 and defer a more extensive anal-
ysis to [17]. The operation � in Eqs. (15)-(16) is
then a convolution and M̃(t, t0) becomes a function of
t � t

0. This implies that ln J̃ /J is proportional to 2T ,
the duration of the trajectory, and the asymptotic rate
ṠJ = lim
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forming Eq. (15),
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The rates Ṡ

m

, ṠJ and Ṙ = Ṡ

m

� ṠJ as a function of ⌧

for m = 1, � = 1, a = 0.5 and b = �0.25. The open circles
are obtained from the equation ṠJ ⇡ � 1

2T

lnhe��s

toti
st

using T = 10 and averaging over 106 independent sim-
ulations of the Langevin equation with Heun’s method
and a time step �t = 10�3.

As a first application, we consider the stochastic delay
equation

mẍ(t) + �ẋ(t) + ax(t) + bx(t� ⌧) = ⇠(t) (19)

Positive feedback (b<0)

2) Check of the 
asymptotic relation
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Conclusion 

We have extended the framework of stochastic thermodynamics to 
Langevin systems submitted a continuous non-Markovian (e.g. time-
delayed) feedback control.

By studying the nature of the time-reversal breaking in the action 
functional of the path space measure, we have identified the unusual 
mathematical mechanism that contributes to the positivity of the 
entropy production.
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