INHOMOGENEOUS RANDOM SYSTEMS Institut Henri Poincaré, Paris 29 January 2014

Time delays in stochastic systems

Jacek Miękisz Institute of Applied Mathematics University of Warsaw

Why time delays may cause oscillations?

Example

$$x(t) \in \{-m, -m+1, ..., 0, ...m-1, m\}$$
 t=0,1,...

let us introduce a time delay 0 < au < m

$$x(t+1) = \begin{cases} x(t)+1 & if \ x(t-\tau) < 0, \\ x(t)-1 & if \ x(t-\tau) > 0, \\ x(t) & if \ x(t-\tau) = 0. \end{cases} \text{ initial conditions}$$

there appears an asymptotically stable cycle of amplitude $~~\tau$ and period $~~4\tau\,{+}\,2$

Let us introduce stochastic perturbations

$$x(t+1) = \begin{cases} x(t) + 1 & if \ x(t-\tau) < 0, \\ x(t) - 1 & if \ x(t-\tau) > 0, \\ x(t) & if \ x(t-\tau) = 0. \end{cases} \text{ with probability 1 - } \epsilon$$

$$x(t+1) = x(t)$$
 with probability ε

we obtained a simple stochastic model with a time delay

m = 20 T = 9

 $\epsilon = 0.1$

The state of our system is now the history of states

we get an ergodic Markov Chain

with the stationary state $~~\mu_{\epsilon}~$ and the space state $~\Omega$

Definition

 $x \in \Omega$ is stochastically stable if $\lim_{\epsilon \to 0} \mu_{\epsilon} (x) > 0$ (=1)

Theorem (JM and Sergiusz Wesołowski, Dyn Games and Appl, 2011)

 $\lim_{\epsilon \to 0} \mu_{\epsilon}$ (cycle) = 1

Random walk on Z with time delays

(Ohira, Milton, Yamane, Phys. Rev. 1995, 2000)

 $X(t) \in \mathbb{Z}$ P(t) – probability of the walker to go to the right

$$P(t) = \begin{cases} p & if \ X(t-\tau) > 0, \\ 0.5 & if \ X(t-\tau) = 0, \\ 1-p & if \ X(t-\tau) < 0. \end{cases} \qquad \mathsf{p} < 0.5$$

$$\sigma(\tau) \sim (0.59 - 1.18p)\tau + \frac{1}{\sqrt{2}(1 - 2p)}$$

Probability of moves towards the origin depend on the position of the walker

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\beta x(t-\tau) + \xi_t \qquad \text{Langevin equation}$$

 $dx = -\beta x(t - \tau)dt + dW$ Ito equation

$$Var(x) = \frac{1 + \sin\beta\tau}{2\beta\cos\beta\tau}$$
 (Kuchler, Mensch, Stoch. Rep, 1992)

for small time delays

$$Var(x) = \frac{1}{2\beta}(1+\beta\tau)$$

Non-markovian systems

Master, Fokker-Planck, Langevin/Ito equations with time delays

see for example Guillouzic, L'Heurex, Longtin, Phys. Rev. E, 1999

How to model time delays

Example: Population dynamics of evolutionary games

A and B are two possible behaviors, fenotypes or strategies of each individual

Deterministic replicator dynamics

 $p_A(t)$ – number of individuals playing A at a time t $p_B(t)$ – number of individuals playing B at a time t

$$\begin{aligned} x(t) &= \frac{p_A(t)}{p_A(t) + p_B(t)} \\ U_A &= ax + b(1-x) \\ U_B &= cx + d(1-x) \\ U_{av} &= xU_A + (1-x)U_B \end{aligned}$$
 Now we propose
$$p_A(t+\epsilon) = (1-\epsilon)p_A(t) + \epsilon p_A(t)U_A(t)$$

$$p_{A}(t+\epsilon) = (1-\epsilon)p_{A}(t) + \epsilon p_{A}(t)U_{A}(t)$$
$$p_{B}(t+\epsilon) = (1-\epsilon)p_{B}(t) + \epsilon p_{B}(t)U_{B}(t)$$

 $p(t+\varepsilon) = (1-\varepsilon)p(t) + \varepsilon p(t)U_{av}(t)$

$$x(t+\epsilon) - x(t) = \epsilon \frac{x(t)[U_A(t) - U_{av}(t)]}{1 - \epsilon + \epsilon U_{av}(t)}$$

$$\frac{dx}{dt} = x(U_A - U_{av}) = x(1 - x)(U_A - U_B)$$

$$dx/dt = x(1-x)(U_A - U_B)$$

Hawk-Dove

mixed Nash equilibrium is asymptotically stable

Time delay $\rightarrow \rightarrow \rightarrow \rightarrow x^* \leftarrow \leftarrow \leftarrow \leftarrow$

social-type delay

We assume that individuals at time t replicate due to average payoffs obtain by their strategies at time t-T for some delay T>0.

We propose

$$\begin{split} p_i(t+\epsilon) &= (1-\epsilon)p_i(t) + \epsilon p_i(t)U_i(t-\tau); \ i = A, B \\ p(t+\epsilon) &= (1-\epsilon)p(t) + \epsilon p(t)U'_{av}(t-\tau) \\ U'_{av}(t-\tau) &= x(t)U_A(t-\tau) + (1-x(t))U_B(t-\tau) \\ x(t+\epsilon) - x(t) &= \epsilon \frac{x(t)[U_A(t-\tau) - U'_{av}(t-\tau)]}{1-\epsilon + \epsilon U'_{av}(t-\tau)} \\ x(t+\epsilon) - x(t) &= -\epsilon x(t)(1-x(t))[x(t-\tau) - x^*] \frac{\delta}{1-\epsilon + \epsilon U'_{av}(t-\tau)} \\ \delta &= c-a+b-d \end{split}$$

The corresponding replicator dynamics in the continuous time reads

$$\frac{dx(t)}{dt} = x(t)[U_A(t-\tau) - U'_{av}(t-\tau)]$$

and can be also written as

$$\frac{dx(t)}{dt} = x(t)(1-x(t))[U_A(t-\tau) - U_B(t-\tau)] = -\delta x(t)(1-x(t))(x(t-\tau) - x^*)$$

Theorem (Jan Alboszta and JM, J. Theor. Biol. 231: 175-179, 2004)

 x^* is asymptotically stable if τ is sufficiently small x^* is unstable for large τ

biological-type time delay

We assume that individuals are born τ units of time after their parents played and received payoffs.

We propose

$$p_{i}(t+\epsilon) = (1-\epsilon)p_{i}(t) + \epsilon p_{i}(t-\tau)U_{i}(t-\tau); \quad i = A, B$$

$$p(t+\epsilon) = (1-\epsilon)p(t) + \epsilon p(t)\left[\frac{x(t)p_{A}(t-\tau)}{x(t-\tau)}U_{A}(t-\tau) + \frac{(1-x(t))p_{B}(t-\tau)}{p_{B}(t)}U_{B}(t-\tau)\right]$$

$$x(t+\epsilon) - x(t) = \epsilon \frac{x(t-\tau)U_{A}(t-\tau) - x(t)U_{av}(t-\tau)}{(1-\epsilon)\frac{p(t)}{p(t-\tau)} + \epsilon U_{av}(t-\tau)}$$

Theorem (JA and JM, JTB 2004)

 x^* is asymptotically stable for any time delay τ

Macroscopic level, deterministic approach

$$\rho_r - density of mRNA$$

$$\rho_p - density of protein$$

$$\frac{d\rho_r}{dt} = k_r - \gamma_r \rho_r$$
 in the stationary state we have
$$\frac{d\rho_p}{dt} = k_p \rho_r - \gamma_p \rho_p$$

$$\rho_r = \frac{k_r}{\gamma_r} \quad \rho_p = \frac{k_r k_p}{\gamma_r \gamma_p}$$

What is responsible for oscillations in biological systems ??

Time delays

Biochemical reactions take certain time to finish after initiation

- Examples: average transcription speed 20 nucleotides/s
 - average translation speed 2 codons/s

the average length of human gene - 55 000 nucleotides, 2750 seconds to transcribe

the average length of the coding region - 2700 nucleotides, 450 seconds to translate

Delay-induced stochastic oscillations in gene regulation

Bratsun et al. in PNAS 102: 14593 (2005)

 $\begin{array}{ccc} \text{delayed degradation} \\ \text{DNA} & \longrightarrow & \text{protein} & \longrightarrow & \emptyset \\ \\ \frac{d\rho_r}{dt} = k_r - \gamma \rho_r (t - \tau) \end{array}$

Let us note that if $\tau > \frac{\pi}{2\gamma_r}$, then oscillations occur – Hopf bifurcation

It is assumed implicitly that a molecule which is on a path of a delayed degradation can take part in another delayed degradation.

A molecule can die many times

Problem: negative solutions

Delayed degradation does not cause osccilations JM, J. Poleszczuk, M.Bodnar, U.Foryś, BMB 2011

consuming reactions

nonconsuming reactions

Let us assume that degradation is a consuming reaction

 $\frac{dx}{dt} = k - \gamma x(t) \qquad \qquad x - \text{ active molecules}$ $\frac{dy}{dt} = k - \gamma x(t - \tau) \qquad \qquad y - \text{ observed molecules}$

We can easily solve this system of differential equations and obtain

$$\lim_{t \to \infty} y(t) = \frac{k}{\gamma} (1 + \tau \gamma) = \langle x \rangle (1 + \tau \gamma)$$

Stochastic model (x and y denote now number of molecules): $< y > = < x > (1 + \gamma \tau)$ var (y) = <y>

Combined effects of time delays and stochasticity

Example: Three-player evolutionary games, (JM, Michał Matuszak, 2014)

$$\begin{array}{cccccccc} A & B & & A & B \\ A & a & 0 & & 0 & 0 \\ U = & & & & \\ B & 0 & b & & b & c \end{array}$$

 $p_A(t)$ – number of individuals playing A at a time t $p_B(t)$ – number of individuals playing B at a time t

$$\begin{aligned} x(t) &= \frac{p_A(t)}{p_A(t) + p_B(t)} \\ f_A &= ax^2, \ f_B &= 2bx(1-x) + c(1-x)^2, \\ \frac{dx}{dt} &= x(1-x)(f_A - f_B). \end{aligned}$$

1

 X_3

Stochastic dynamics of finite unstructured populations

30

 Z_3

- n # of individuals
- z_t # of individuals playing A at time t
- $\Omega = \{0, \dots, n\}$ state space

selection

$$z_{t+1} = \begin{cases} z_t + 1 & if \ f_A(z_t) > f_B(z_t), \\ z_t - 1 & if \ f_A(z_t) < f_B(z_t), \\ z_t & if \ f_A(z_t) = f_B(z_t), \end{cases} \xrightarrow{0} \xrightarrow{10} \xrightarrow{22} z_1 \xrightarrow{2} z_2$$

mutation

each individual may mutate and switch to the other strategy with a probability $\boldsymbol{\epsilon}$

$$\lim_{\epsilon \to 0} \mu_{\epsilon} (z_1) = 1$$

1. Deterministic model without time delays

Bassins of attraction

2. Deterministic model with time delays Cycles $z_{t+1} = \begin{cases} z_t + 1 & \text{if } f_A(z_{t-\tau}) > f_B(z_{t-\tau}), \\ z_t - 1 & \text{if } f_A(z_{t-\tau}) < f_B(z_{t-\tau}), \\ z_t & \text{if } f_A(z_{t-\tau}) = f_B(z_{t-\tau}), \end{cases}$

3. Stochastic model without time delays

Stochasic stability of the interior equilibrium z₁

4. Stochastic model with a time delay

Stochasic stability of the boundary equilibrium z₃

Bibliography

Random walks, Ito, Fokker Planck, with time delays

U. Küchler, B. Mensch, Langevin stochastic differential equation extended by a time-delayed term, Stoch Stoch Rep 40: 23–42 (1992).

T. Ohira, J. G. Milton, Delayed random walks, Phys. Rev. E 52: 3277–80 (1995).

S. Guillouzic, I. L'Heureux, A. Longtin, Small delay approximation of stochastic delay differential equations. Phys. Rev. E 59: 3970–82 (1999).

Evolutionary game theory with time delays

Y. Tao, Z. Wang, Effect of time delay and evolutionarily stable strategy, J. Theor. Biol.187:111–6 (1997).

J. Alboszta, J. Miękisz, Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay, J. Theor. Biol. 231: 175-179 (2004).

J. Miękisz, S. Wesołowski, Stochasticity and time delays in evolutionary games, Dynamic Games and Applications 1: 440-448 (2011).

Gene expression with time delay

D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, Delay-induced stochastic oscillations in gene regulation. Proc Natl Acad Sci USA 102:14593–8 (2005).

J. Miękisz, J. Poleszczuk, M. Bodnar, U. Foryś, Stochastic model of gene expression with delayed degradation, Bull. Math. Biol. 73: 2231-2247 (2011).

J. Miękisz, Stochasticity and time delays in gene expression and evolutionary game theory, Probabilistic Engineering Mechanics 26: 33–38 (2011).