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Outline

Metastability for the dilute Ising model

Ising Model

Glauber dynamics and metastability

Random interactions and catalyst effect

Interface motion in random media

Zero temperature phase transition

Positive velocity & renormalization procedure
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Ising Model

Domain Λ ⊂ Zd

Configurations :
σΛ = {σi}i∈Λ ∈ {−1, 1}Λ

Nearest neighbor interactions

H(σΛ) = −
∑
i∼j
i,j∈Λ

σiσj

Λ

σi ∈ {−1, 1}

Gibbs measure µβ,Λ(σΛ) =
1

Zβ,Λ
exp (−βH(σΛ))

β = 1
T : inverse of temperature
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Large domains Λ µβ,Λ(σΛ) =
1

Zβ,Λ
exp

(
β
∑

i∼j σiσj

)

High temperature : β = 1
T � 1

Disordered phase

Low temperature : β = 1
T � 1

Ordered phases

Local interactions � Collective behavior
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Boundary conditions

H+(σΛ) = −
∑
i∼j
i,j∈Λ

σiσj −
∑
i∼j

i∈Λ,j �∈Λ

σi

Gibbs measure

µ+
β,Λ(σΛ) =

1

Z+
β,Λ

exp
(−βH+(σΛ)

)

Question.

Influence of the boundary conditions for large domains Λ ?
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Boundary conditions

H+(σΛ) = −
∑
i∼j
i,j∈Λ

σiσj −
∑
i∼j

i∈Λ,j �∈Λ

σi

Gibbs measure

µ+
β,Λ(σΛ) =

1

Z+
β,Λ

exp
(−βH+(σΛ)

)
N

Question.

Influence of the boundary conditions for large domains Λ ?

For ΛN = {−N,N}d define µ+
β,N = µ+

β,ΛN

Thermodynamic limit limN→∞ µ+
β,N = µ+

β
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Phase transition

Thermodynamic limit limN→∞ µ+
β,N = µ+

β

Magnetization mβ = Eµ+
β
(σ0)

β < βc

β
βc

mβ

β > βc

There is a critical value βc such that β > βc ⇔ mβ > 0

Influence of the boundary β < βc ⇒ µ+
β = µ−

β

β > βc ⇒ µ+
β �= µ−

β
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Magnetic Field h

Interaction and Magnetic Field :

Hh(σΛ) = −
∑
i∼j
i,j∈Λ

σiσj − h
∑
i∈Λ

σi

Gibbs measure µh
β,Λ(σΛ) =

1
Zh
β,Λ

exp
(− βHh(σΛ)

)
h �= 0

No influence of the boundary β > 0 ⇒ µh,+
β = µh,−

β

h �= 0 : unique measure µh
β on Zd

β

h



Ising Model Glauber dynamics Random interactions Interface motion

Magnetic Field h

β

h
mβ(h) = Eµh

β
(σ0)

mβ(h)

h
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Magnetic Field h

β

h
mβ(h) = Eµh

β
(σ0)

mβ(h)

h

Real experiments: Hysteresis

mβ(h)

h
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Magnetic Field h

β

h
mβ(h) = Eµh

β
(σ0)

mβ(h)

h

Real experiments: Hysteresis

mβ(h)

h

Analytic extension ? [Isakov, Friedli & Pfister]
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Glauber dynamics : Markov Chain

Glauber dynamics is reversible for the Gibbs measure µh
β,Λ

Λ

i
1 Choose randomly i in Λ

2 Flip σi → −σi depending on
� nearest neighbor spins
� the magnetic field

Rate = exp
(− βσi (

∑
j∼i σj + h)

)

h 	 0 and β � 1

The dynamics tends to align a
spin with its neighbors and the
magnetic field.
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Metastability

Fix β > βc and h > 0 then mβ(h) = Eµh
β
(σ0) > mβ > 0

µh
β is the unique invariant measure for the Glauber dynamics on Zd

Question

Relaxation time of the dynamics starting from 
 = {σi = −1}i∈Zd
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Metastability

Fix β > βc and h > 0 then mβ(h) = Eµh
β
(σ0) > mβ > 0

µh
β is the unique invariant measure for the Glauber dynamics on Zd

Question

Relaxation time of the dynamics starting from 
 = {σi = −1}i∈Zd

Theorem [Schonmann, Shlosman]

When d = 2, there exists λβ > 0 such that

t � exp(
λβ

h
), E�(σ0(t)) = −mβ + o(h)

t � exp(
λβ

h
), E�(σ0(t)) = mβ + o(h)
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Metastability

Choose β > βc and h ≈ 0

Universe life span

t

mβ

−mβ

E�(σ0(t))

exp(
λβ

h )

The minus phase
is metastable for
small h
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Nucleation

h ≈ 0

Forming a droplet of + of radius R

Surface cost ≈ τβR

Bulk gain ≈ hmβR
2

+

−

R
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Nucleation

h ≈ 0

Forming a droplet of + of radius R

Surface cost ≈ τβR

Bulk gain ≈ hmβR
2

+

−

R

Minimize the droplet energy

E(R) = τβR − hmβR
2

Energy barrier at Rc =
τβ
2mβ

1
h

Rc

R

E(R)
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Nucleation and Droplet growth

Nucleation time ≈ exp
(E(Rc)

)
= exp

( τ2β
4mβ

1
h

)

[Olivieri, Vares]
[Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein]
[Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola]

[Beltran, Landim] ....
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Nucleation and Droplet growth

Nucleation time ≈ exp
(E(Rc)

)
= exp

( τ2β
4mβ

1
h

)

[Olivieri, Vares]
[Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein]
[Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola]

[Beltran, Landim] ....

Nucleation anywhere in space and then
droplet growth

� Corrections on the relaxation time

Relaxation time 	 exp
(

1
d+1

τ2β
4mβ

1
h

)

[Dehghanpour, Schonmann]
[Schonmann, Shlosman]
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Random interactions – Modeling Alloys

Edges in Zd are removed independently with probability 1− p

i ∼ j , Q
(
J(i ,j) = 1

)
= 1−Q

(
J(i ,j) = 0

)
= p

Configurations:{σi}i∈Λ ∈ {−1, 1}Λ

Nearest neighbor interactions

HJ(σΛ) = −
∑
i∼j
i,j∈Λ

J(i ,j)σiσj

No interaction

Quenched Gibbs measure µJ
β,Λ(σΛ) =

1

Z J
β,Λ

exp
(
−βHJ (σΛ)

)
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Phase transition

Magnetization mβ = Q

(
E
µJ,+
β

(σ0)

)
limN µJ,+

β,N = µJ,+
β

Fix p > pc > 0

β < βc

β
βc

mβ

β > βc

There is a critical value βc = βc (p) such that β > βc ⇔ mβ > 0

Influence of the boundary β < βc ⇒ µJ,+
β = µJ,−

β , J a.s.

β > βc ⇒ µJ,+
β �= µJ,−

β , J a.s.
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Magnetic Field h

Hamiltonian: HJ ,h(σΛ) = −∑
i∼j
i,j∈Λ

J(i ,j)σiσj − h
∑

i∈Λ σi

Gibbs measure µJ,h
β,Λ(σΛ) =

1

ZJ,h
β,Λ

exp
(− βHJ,h(σΛ)

)

h �= 0 : unique measure µJ,h
β on Zd β

h

Question

Impact of the disorder on the dynamics ?

Relaxation time of the dynamics starting from 
 = {σi = −1}i∈Zd
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Previous results

[Guionnet, Zegarlinski], [Cesi, Maes, Martinelli]

Slowdown of the dynamics in the uniqueness regime

Q

(
E
µJ,+
β

(σ0)

)
= 0 (with h = 0)

No disorder : exponential relaxation to equilibrium

Disorder (edge dilution) then for some range of (β, p)

relaxation like exp(−(log t)
d

d−1 )

[Fontes, Mathieu, Picco], [Bianchi, Bovier, Ioffe]

Metastability for the Curie Weiss random field Ising model

[Wouts] : Spectral gap & relaxation in a pure phase
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Faster relaxation to equilibrium

µJ,h
β unique invariant measure for the Glauber dynamics on Zd

Theorem [B, Graham, Wouts]

Fix d ≥ 2 and β � βc(p). Then there exists λβ(p) > 0 such that

t � exp
(λβ(p)

hd−1

)
,

Q

(
EJ,�(σ0(t)) = E

µJ,h
β
(σ0) + o(h)

)
= 1− o(h)

Disorder facilitates the relaxation

∀p < 1, lim
β→∞

λβ(p)

λβ(no disorder)
= 0

Reminiscent of catalysts in chemical reactions.
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Catalyst effect

The disorder lowers the phase coexistence cost

+
+

+

+
+

++
−

−
−

−−
minus phase

plus phase

+
+

+

+
+

+
+

−−
−

−
−

minus phase

plus phase

Remark. In d = 2:

Interface with random interactions 	 Polymer in random environment

[Huse, Henley]
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Catalyst effect

The disorder lowers the phase coexistence cost

+
+

+

+
+

++
−

−
−

−−
minus phase

plus phase

+
+

+

+
+

+
+

−−
−

−
−

minus phase

plus phase

Atypical regions with
high dilution act as
catalysts and facilitate
the nucleation

exp(
λβ

h )
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Slowdown by the disorder

Slowdown of the droplet growth by rare traps with high disorder

Rc

R

E(R)

Energy landscape with disorder

Similar mechanism for a Random
Walk in Random Environnement
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Later stage of droplet growth

For very large droplets the analogy with Random Walk in Random
Environnement is no longer valid.

One can derive a (crude) lower bound on the growth velocity

Open question

Understanding interface velocity ⇔ Impact of disorder at all scales
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Cone catalysts

Rc

Rc

R

Eθ(R)

Energy landscape in a cone of angle θ
Energy barrier is of order θd

Two step growth

Nucleation in a cone catalyst with angle θ (atypical event)

Invasion by large droplets (super-critical percolation).
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Mathematical tools

Key issue: Phase coexistence with disorder & Renormalization

[Schonmann, Shlosman] used a two-dimensional approach devised
by [Dobrushin, Kotecky, Shlosman, Pfister, Ioffe, Velenik]

We rely on the L1-approach introduced by [Presutti, Cassandro,
Alberti, Belletini, Cerf, Pisztora, B., Ioffe, Velenik]

The L1-approach was extended to disordered systems by [Wouts].
This method allows us to control deviations of the surface tension.

Byproduct

Generalization in d ≥ 3 of the upper bound on the relaxation time
derived in [Schonmann, Shlosman]
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Later stage of droplet growth

Question

Understanding interface velocity ⇔ Impact of disorder at all scales
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Effective interface model

Interface heights :
x ∈ Z, t ∈ Z+, S(x , t) ∈ Z+

Disorder :
x ∈ Z, y ∈ Z+, η(x , y) ∈ R

i.i.d variables and E(η) = f ≥ 0

S(x, t)

x

Random force with positive mean

” ∂tS(x , t) = ∆S(x , t) + η
(
x ,S(x , t)

)
”
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Effective interface model

Interface heights :
x ∈ Z, t ∈ Z+, S(x , t) ∈ Z+

Disorder :
x ∈ Z, y ∈ Z+, η(x , y) ∈ R

i.i.d variables and E(η) = f ≥ 0

S(x, t)

x

Zero temperature dynamics

• Initial data : S(x , 0) = 0

• S(x , t + 1) = S(x , t) + 1 if

S(x + 1, t) + S(x − 1, t)− 2S(x , t) + η
(
x ,S(x , t)

)
> 0
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Zero temperature : phase transition

f
fc

velocity

f < fc : the interface is blocked

f > fc : positive velocity

Physics :

[Koplik, Levine], [Narayan, Fisher], [Leschhorn], [Vannimenus,
Derrida], [Schütze, Nattermann], [Le Doussal, Wiese, Chauve]
[Giamarchi, Kolton, Krauth, Rosso]

Open question

Critical exponents
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Zero temperature : phase transition

f
fc

velocity

f < fc : the interface is blocked

f > fc : positive velocity

Mathematics :

f 	 0 :
[Dirr, Dondl, Grimmett, Holroyd, Scheutzow], [Dirr, Dondl,
Scheutzow]

f � 1 :
[Coville, Dirr, Luckhaus], [Dondl, Scheutzow]

Open question

Could the interface move with zero velocity ?
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Criterion for positive velocity

Let h > 1. Define the set of blocked interfaces

Ah,L =
{
η; hL

3hL

L

}
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Criterion for positive velocity

Let h > 1. Define the set of blocked interfaces

Ah,L =
{
η; hL

3hL

L

}

Criterion

Suppose there is h > 1, ρ > 0 such for L large enough

P
(Ah,L

) ≤ 1

Lρ



Ising Model Glauber dynamics Random interactions Interface motion

Criterion for positive velocity

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

lim inf
t→∞

1

t
S(0, t) ≥ c

Perturbative Regime :

Suppose that {η(x , y)} are i.i.d Gaussian variables with
• Mean : E(η) = f
• Variance : E(η2)− E(η)2 = σ

If f is large enough then the criterion holds.

[Coville, Dirr, Luckhaus], [Dondl, Scheutzow]
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Criterion for positive velocity

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

lim inf
t→∞

1

t
S(0, t) ≥ c

For a discrete model (with Lipschitz interface), the criterion is
sharp up to the transition fc .

Analogy with percolation :

p < pc : Exponential decay of P(O ↔ x) when x → ∞
[Aizenman, Barsky], [Menshikov]

p > pc : Slab percolation

[Aizenman, Chayes, Chayes, Russo], [Grimmett, Marstrand]
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Renormalization Procedure

Multiscale : Lk −→ Lk+1 = L
3/2
k

At scale k, define box labels

Blocked box : cannot be crossed

Slow box : long time to be crossed

Good box

At scale k+ 1, the Slow boxes are :

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

or
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Renormalization Procedure

At scale k, define

vk = P
(
Blocked box

) ≤ 1
Lρk

[if the criterion holds].

dk = P
(
Slow box

)

At scale k+ 1, we get

dk+1 ≤ h2 L2k d2
k + h Lk vk

If the criterion holds then limk→∞ dk = 0

This implies that the interface moves.
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Conclusion

Glauber dynamics and metastability

Random interactions and catalyst effect

Phase transition for interfaces in random media

Criterion for positive speed

Open problems

Metastability : Lower bound on the relaxation time

For general dynamics : validity of the criterion up to fc ?


