Interface motion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interface motion in disordered media

Thierry Bodineau

Joint works with

B. Graham, A. Teixeira, M. Wouts

Inhomogeneous Random Systems – IHP

January 26, 2015

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Outline

Metastability for the dilute Ising model

- Ising Model
- Glauber dynamics and metastability
- Random interactions and catalyst effect

Interface motion in random media

- Zero temperature phase transition
- Positive velocity & renormalization procedure

Ising Model

 $\begin{array}{ll} \mathsf{Domain} & \Lambda \subset \mathbb{Z}^d\\ \mathsf{Configurations}:\\ & \sigma_\Lambda = \{\sigma_i\}_{i \in \Lambda} \in \{-1,1\}^\Lambda \end{array}$

Nearest neighbor interactions

$$H(\sigma_{\Lambda}) = -\sum_{i \sim j \atop i, j \in \Lambda} \sigma_i \sigma_j$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◆○◆

Gibbs measure
$$\mu_{\beta,\Lambda}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(-\beta H(\sigma_{\Lambda})\right)$$

 $\beta = \frac{1}{T}$: inverse of temperature

Large domains
$$\Lambda$$
 $\mu_{\beta,\Lambda}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(\beta \sum_{i \sim j} \sigma_i \sigma_j\right)$

High temperature :
$$\beta = \frac{1}{T} \ll 1$$

Disordered phase

Low temperature :
$$\beta = \frac{1}{T} \gg 1$$

Ordered phases

・ロト ・四ト ・ヨト ・ヨト

臣

Local interactions rightarrow Collective behavior

Boundary conditions

$$H^{+}(\sigma_{\Lambda}) = -\sum_{i \sim j \atop i, j \in \Lambda} \sigma_{i}\sigma_{j} - \sum_{i \sim j \atop i \in \Lambda, j \notin \Lambda} \sigma_{i}$$

Gibbs measure

$$\mu_{\beta,\Lambda}^+(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^+} \exp\left(-\beta H^+(\sigma_{\Lambda})\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question.

Influence of the boundary conditions for large domains Λ ?

Boundary conditions

$$H^{+}(\sigma_{\Lambda}) = -\sum_{i \sim j \atop i, j \in \Lambda} \sigma_{i}\sigma_{j} - \sum_{i \sim j \atop i \in \Lambda, j \notin \Lambda} \sigma_{i}$$

Gibbs measure

$$\mu^+_{\beta,\Lambda}(\sigma_{\Lambda}) = \frac{1}{Z^+_{\beta,\Lambda}} \exp\left(-\beta H^+(\sigma_{\Lambda})\right)$$

Question.

Influence of the boundary conditions for large domains Λ ?

For $\Lambda_N = \{-N, N\}^d$ define

$$\mu_{\beta,N}^+ = \mu_{\beta,\Lambda_N}^+$$

Thermodynamic limit

$$\lim_{N \to \infty} \mu_{\beta,N}^+ = \mu_{\beta}^+$$

Phase transition

Influence of the boundary

$$\begin{array}{l} \beta < \pmb{\beta_c} \Rightarrow \mu_{\beta}^+ = \mu_{\beta}^- \\ \beta > \pmb{\beta_c} \Rightarrow \mu_{\beta}^+ \neq \mu_{\beta}^- \end{array}$$

Magnetic Field h

Interaction and Magnetic Field :

$$H^{h}(\sigma_{\Lambda}) = -\sum_{i \sim j \atop i, j \in \Lambda} \sigma_{i}\sigma_{j} - h \sum_{i \in \Lambda} \sigma_{i}$$

Gibbs measure

$$\mu_{\beta,\Lambda}^{h}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^{h}} \exp\left(-\frac{\beta H^{h}(\sigma_{\Lambda})\right)$$

 $h \neq 0$

No influence of the boundary

$$\beta > 0 \Rightarrow \mu_{\beta}^{h,+} = \mu_{\beta}^{h,-}$$

 $\pmb{h} \neq \pmb{0}$: unique measure $\mu^{\pmb{h}}_{\scriptscriptstyle{eta}}$ on $\mathbb{Z}^{\pmb{d}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Magnetic Field h

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Magnetic Field h

Magnetic Field h

Analytic extension ?

[Isakov, Friedli & Pfister]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Glauber dynamics : Markov Chain

Glauber dynamics is reversible for the Gibbs measure $\mu^h_{\beta,\Lambda}$

- **1** Choose randomly i in Λ
- Plip σ_i → −σ_i depending on
 ⇒ nearest neighbor spins
 ⇒ the magnetic field

Rate = exp $\left(-\beta \sigma_i (\sum_{j\sim i} \sigma_j + h) \right)$

 $h\simeq 0$ and $\beta\gg 1$

The dynamics tends to align a spin with its neighbors and the magnetic field.

・ロト・西ト・ヨー・ うへの

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Metastability

 $\mathsf{Fix}\ \beta > \beta_c \ \mathsf{and}\ h > 0 \ \mathsf{then} \qquad \qquad m_\beta(h) = \mathbb{E}_{\mu_\beta^h}(\sigma_0) > m_\beta > 0$

 μ^h_{eta} is the unique invariant measure for the Glauber dynamics on \mathbb{Z}^d

Question

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

Metastability

Fix $\beta > \beta_c$ and h > 0 then $m_\beta(h) = \mathbb{E}_{\mu_\beta^h}(\sigma_0) > m_\beta > 0$

 μ^h_{eta} is the unique invariant measure for the Glauber dynamics on \mathbb{Z}^d

Question

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

Theorem [Schonmann, Shlosman]

When d = 2, there exists $\lambda_{\beta} > 0$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Metastability

Choose $\beta > \beta_c$ and $h \approx 0$

Nucleation

 $h \approx 0$

Forming a droplet of + of radius R

- Surface cost $\approx \tau_{\beta} R$
- Bulk gain $\approx h m_{\beta} R^2$

<ロト <回ト < 三ト < 三ト = 三

Nucleation

 $h \approx 0$

Forming a droplet of + of radius R

- Surface cost $\approx \tau_{\beta} R$
- Bulk gain $\approx hm_{eta}R^2$

Minimize the droplet energy

$$\mathcal{E}(R) = \tau_{\beta}R - hm_{\beta}R^2$$

Energy barrier at
$$R_c = rac{ au_eta}{2m_eta} rac{1}{h}$$

Nucleation and Droplet growth

Nucleation time
$$\approx \exp\left(\mathcal{E}(R_c)\right) = \exp\left(\frac{\tau_{\beta}^2}{4m_{\beta}}\frac{1}{h}\right)$$

[Olivieri, Vares] [Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein] [Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola] [Beltran, Landim]

Nucleation and Droplet growth

Nucleation time
$$\approx \exp \left(\mathcal{E}(R_c) \right) = \exp \left(\frac{\tau_{\beta}^2}{4m_{\beta}} \frac{1}{h} \right)$$

```
[Olivieri, Vares]
[Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein]
[Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola]
[Beltran, Landim] ....
```

Nucleation anywhere in space and then droplet growth

 \triangleleft Corrections on the relaxation time

Relaxation time
$$\simeq \exp\left(\frac{1}{d+1} \frac{\tau_{\beta}^2}{4m_{\beta} \frac{1}{h}}\right)$$

[Dehghanpour, Schonmann] [Schonmann, Shlosman]

Random interactions – Modeling Alloys

Edges in \mathbb{Z}^d are removed independently with probability 1-p

$$i \sim j, \qquad \mathbb{Q}(\underline{J_{(i,j)}} = 1) = 1 - \mathbb{Q}(\underline{J_{(i,j)}} = 0) = p$$

Configurations:
$$\{\sigma_i\}_{i \in \Lambda} \in \{-1, 1\}^{\Lambda}$$

Nearest neighbor interactions

$$H^{J}(\sigma_{\Lambda}) = -\sum_{i \sim j \atop i, j \in \Lambda} J_{(i,j)} \sigma_{i} \sigma_{j}$$

Quenched Gibbs measure

$$\mu_{\beta,\Lambda}^{J}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^{J}} \exp\left(-\beta H^{J}(\sigma_{\Lambda})\right)$$

・ロト・西ト・山田・山田・山下・

Phase transition

There is a critical value $\beta_c = \beta_c(p)$ such that $\beta > \beta_c \Leftrightarrow m_\beta > 0$

Influence of the boundary

$$\begin{array}{ll} \beta < \beta_{\mathbf{c}} \Rightarrow \mu_{\beta}^{\mathbf{J},+} = \mu_{\beta}^{\mathbf{J},-}, & \mathbf{J} \text{ a.s.} \\ \beta > \beta_{\mathbf{c}} \Rightarrow \mu_{\beta}^{\mathbf{J},+} \neq \mu_{\beta}^{\mathbf{J},-}, & \mathbf{J} \text{ a.s.} \end{array}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 のへで

Magnetic Field h

Hamiltonian:
H^{J,h}(
$$\sigma_{\Lambda}$$
) = $-\sum_{\substack{i>j \\ i,j\in\Lambda}} J_{(i,j)}\sigma_i\sigma_j - h \sum_{i\in\Lambda} \sigma_i$
Gibbs measure
 $\mu_{\beta,\Lambda}^{J,h}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^{J,h}} \exp\left(-\beta H^{J,h}(\sigma_{\Lambda})\right)$
 $h \neq 0$: unique measure $\mu_{\beta}^{J,h}$ on \mathbb{Z}^d

Question

Impact of the disorder on the dynamics ?

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

Previous results

[Guionnet, Zegarlinski], [Cesi, Maes, Martinelli]

Slowdown of the dynamics in the uniqueness regime $\mathbb{Q}\left(\mathbb{E}_{\mu_{\beta}^{J,+}}(\sigma_{0})\right) = 0$ (with h = 0)

- No disorder : exponential relaxation to equilibrium
- Disorder (edge dilution) then for some range of (β, p) relaxation like $\exp(-(\log t)^{\frac{d}{d-1}})$
- [Fontes, Mathieu, Picco], [Bianchi, Bovier, Ioffe] Metastability for the Curie Weiss random field Ising model

[Wouts] : Spectral gap & relaxation in a pure phase

Faster relaxation to equilibrium

 $\mu^{J,h}_{\beta}$ unique invariant measure for the Glauber dynamics on \mathbb{Z}^d

Theorem [B, Graham, Wouts]

Fix $d \ge 2$ and $\beta \succ \beta_c(p)$. Then there exists $\lambda_{\beta}(p) > 0$ such that

$$egin{aligned} t \gg \expig(rac{\lambda_eta(p)}{h^{d-1}}ig), \ & \mathbb{Q}\left(\mathbb{E}^{J,\ominus}(\sigma_0(t)) = \mathbb{E}_{\mu^{J,h}_eta}(\sigma_0) + o(h)
ight) = 1 - o(h) \end{aligned}$$

Disorder facilitates the relaxation

$$orall p < 1, \qquad \lim_{eta o \infty} rac{\lambda_eta(p)}{\lambda_eta(ext{no disorder})} = 0$$

Reminiscent of catalysts in chemical reactions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Catalyst effect

The disorder lowers the phase coexistence cost

Remark. In d = 2:

Interface with random interactions \simeq Polymer in random environment [Huse, Henley]

Catalyst effect

The disorder lowers the phase coexistence cost

Atypical regions with high dilution act as catalysts and facilitate the nucleation

Slowdown by the disorder

Slowdown of the droplet growth by rare traps with high disorder

Energy landscape with disorder

Similar mechanism for a Random Walk in Random Environnement

(日)

Sac

Later stage of droplet growth

For very large droplets the analogy with Random Walk in Random Environnement is no longer valid.

One can derive a (crude) lower bound on the growth velocity

Open question

Understanding interface velocity \Leftrightarrow Impact of disorder at all scales

Cone catalysts

Energy landscape in a cone of angle θ Energy barrier is of order θ^d

Two step growth

- Nucleation in a cone catalyst with angle θ (atypical event)
- Invasion by large droplets (super-critical percolation).

Mathematical tools

Key issue: Phase coexistence with disorder & Renormalization

[Schonmann, Shlosman] used a two-dimensional approach devised by [Dobrushin, Kotecky, Shlosman, Pfister, loffe, Velenik]

We rely on the \mathbb{L}^1 -approach introduced by [Presutti, Cassandro, Alberti, Belletini, Cerf, Pisztora, B., Ioffe, Velenik]

The \mathbb{L}^1 -approach was extended to disordered systems by [Wouts]. This method allows us to control deviations of the surface tension.

Byproduct

Generalization in $d \ge 3$ of the upper bound on the relaxation time derived in [Schonmann, Shlosman]

Interface motion

▲ロト ▲御 ト ▲ ヨト ▲ ヨト 二 ヨ

Later stage of droplet growth

Question

Understanding interface velocity \Leftrightarrow Impact of disorder at all scales

Interface motion

Effective interface model

Interface heights : $x \in \mathbb{Z}, t \in \mathbb{Z}^+, \quad S(x, t) \in \mathbb{Z}^+$ Disorder : $x \in \mathbb{Z}, y \in \mathbb{Z}^+, \quad \eta(x, y) \in \mathbb{R}$ i.i.d variables and $\mathbb{E}(\eta) = f \ge 0$ S(x, t)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Random force with positive mean

"
$$\partial_t S(x,t) = \Delta S(x,t) + \eta(x,S(x,t))$$
'

Effective interface model

Interface heights : $x \in \mathbb{Z}, t \in \mathbb{Z}^+, \quad S(x, t) \in \mathbb{Z}^+$ Disorder :

 $x \in \mathbb{Z}, y \in \mathbb{Z}^+, \quad \eta(x, y) \in \mathbb{R}$

i.i.d variables and $\mathbb{E}(\eta) = f \ge 0$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 のへで

Zero temperature dynamics

• Initial data : S(x, 0) = 0

•
$$S(x, t+1) = S(x, t) + 1$$
 if

$$S(x+1,t)+S(x-1,t)-2S(x,t)+\etaig(x,S(x,t)ig)>0$$

Zero temperature : phase transition

 $f < f_c$: the interface is blocked

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Physics :

[Koplik, Levine], [Narayan, Fisher], [Leschhorn], [Vannimenus, Derrida], [Schütze, Nattermann], [Le Doussal, Wiese, Chauve] [Giamarchi, Kolton, Krauth, Rosso]

Open question

Critical exponents

Zero temperature : phase transition

 $f < f_c$: the interface is blocked

 $f > f_c$: positive velocity

Mathematics :

 $f\simeq 0$:

[Dirr, Dondl, Grimmett, Holroyd, Scheutzow], [Dirr, Dondl, Scheutzow]

```
f \gg 1 :
[Coville, Dirr, Luckhaus], [Dondl, Scheutzow]
```

Open question

Could the interface move with zero velocity ?

Interface motion

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 のへで

Criterion for positive velocity

Let h > 1. Define the set of blocked interfaces

Interface motion

Criterion for positive velocity

Let h > 1. Define the set of blocked interfaces

Criterion

Suppose there is h > 1, $\rho > 0$ such for L large enough

$$\mathbb{P}(\mathcal{A}^{h,L}) \leq \frac{1}{L^{
ho}}$$

< ロ > < 同 > < 回 > < 回 >

ロト・4回ト・4回ト・目・9000

Criterion for positive velocity

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

$$\liminf_{t\to\infty}\frac{1}{t}S(0,t)\geq c$$

Perturbative Regime :

Suppose that $\{\eta(x, y)\}$ are i.i.d Gaussian variables with

- Mean : $\mathbb{E}(\eta) = f$
- Variance : $\mathbb{E}(\eta^2) \mathbb{E}(\eta)^2 = \sigma$

If f is large enough then the criterion holds.

[Coville, Dirr, Luckhaus], [Dondl, Scheutzow]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Criterion for positive velocity

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

$$\liminf_{t\to\infty}\frac{1}{t}S(0,t)\geq c$$

For a discrete model (with Lipschitz interface), the criterion is sharp up to the transition f_c .

Analogy with percolation :

- $\rho < \rho_c$: Exponential decay of $\mathbb{P}(O \leftrightarrow x)$ when $x \to \infty$ [Aizenman, Barsky], [Menshikov]
- *p* > *p_c* : Slab percolation
 [Aizenman, Chayes, Chayes, Russo], [Grimmett, Marstrand]

or

Renormalization Procedure

$$\mathsf{Multiscale}:\ L_k \longrightarrow L_{k+1} = L_k^{3/2}$$

At scale \mathbf{k} , define box labels

- Blocked box : cannot be crossed
- Slow box : long time to be crossed
- Good box

At scale $\mathbf{k} + \mathbf{1}$, the Slow boxes are :

・ロト・西ト・山田・山田・山下・

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Renormalization Procedure

At scale \mathbf{k} , define

v_k = ℙ(Blocked box) ≤ ¹/_{L^p_k} [if the criterion holds]. *d_k* = ℙ(Slow box)

At scale $\mathbf{k} + \mathbf{1}$, we get

$$\boldsymbol{d}_{k+1} \leq h^2 \ \boldsymbol{L}_k^2 \ \boldsymbol{d}_k^2 + h \ \boldsymbol{L}_k \ \boldsymbol{v}_k$$

If the criterion holds then $\lim_{k\to\infty} d_k = 0$ This implies that the interface moves.

Conclusion

- Glauber dynamics and metastability
- Random interactions and catalyst effect
- Phase transition for interfaces in random media
- Criterion for positive speed

Open problems

- Metastability : Lower bound on the relaxation time
- For general dynamics : validity of the criterion up to f_c ?