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Introduction

Consider tilings of a fixed finite region made of dominos (2× 1 rectangles)
or lozenges (60◦ unit rhombi). How many such tilings exist?
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MacMahon formula (1915)

c=3
b=2

a=3

a

c b

The number of lozenge tilings of a a× b × c semiregular hexagon is

M(a, b, c) =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
.
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Fisher-Kasteleyn-Temperley formula (1961)

n=6

m=5

The number of domino tilings of a m× n rectangle (with a corner removed
if mn odd) is

D(m, n) = 4bm/2cbn/2c
bm/2c∏
k=1

bn/2c∏
`=1

(
cos2 kπ

m + 1
+ cos2 `π

n + 1

)
.

Jérémie Bouttier (IPhT/DMA) Random tilings and surfaces 28 January 2015 4 / 22



Dimer model

By duality, domino tilings correspond to dimer configurations (perfect
matchings) of a portion of the square lattice.

Jérémie Bouttier (IPhT/DMA) Random tilings and surfaces 28 January 2015 5 / 22



Dimer model

By duality, lozenge tilings correspond to dimer configurations of a portion
of the honeycomb lattice.
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Dimer model

Let G = (V ,E ) be a finite graph. A dimer configuration (or perfect
matching, 1-factor) is a subset E ′ of the set E of edges such that every
vertex is incident to exactly one edge in E ′.

Given ν : E → R+ (activities per edge) we define the partition function

Z =
∑

E ′ dimer configuration

(∏
e∈E ′

ν(E )

)

and the corresponding Boltzmann measure over dimer configurations.
Kasteleyn gave a general method to compute Z for planar graphs:

Z =

{
|Pf K | (general case)

| detK | (bipartite case)

for a suitable “Kasteleyn” matrix K (which is a variant of the adjacency
matrix of G ). Entries of K−1 yield local dimer statistics.
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Sketch of the proof of the FKT formula

Label the vertices of the rectangular grid by their complex coordinates:

V = {0, . . . ,m − 1}+ i{0, . . . , n − 1} = B ∪W

where B and W are respectively the even and odd subgrids.

Let K be the
matrix with rows indexed by B and columns indexed W given by

K (b,w) =

{
w − b if |w − b| = 1,

0 otherwise.

Then K is a Kasteleyn matrix: Z = | detK |. Indeed, expanding the
determinant as a sum over permutations (bijections B →W ), each
nonzero term may be identified with a dimer configuration. And all these
terms turn out to be equal!
Finally detK may be evaluated in the case of the rectangular grid by an
explicit diagonalization of K (via Fourier transform).
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Sketch of the proof of the FKT formula

The superposition of two dimer configurations consists of doubly covered
edges (OK) and cycles of even length 2k, each of which yields:

a factor (−1)k−1 to the relative sign of the two permutations,

a factor (−1)k−1 to the ratio of edge factors.
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Limits of Kasteleyn’s method and related techniques

Still works for graphs embedded in surfaces of higher genus, up to
some adaptation (4g Pfaffians/determinants for genus g).

Essentially useless for higher-dimensional lattices.

Does not work anymore when we add interactions between dimers (as
in the talks of A. Giuliani and F. Colomo).

Even for simple planar graphs, detK (for the partition function) or
K−1 (for the dimer statistics) may not be easy to evaluate (but this
might done using extra algebraic data in some cases, see the talks of
S. Corteel and P. Ferrari).
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Tilings and surfaces
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A lozenge tiling may be viewed as a “pile of cubes” or an interface in 3D.
It is encoded by a height function.
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Tilings and surfaces
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A similar construction exists for domino tilings (Levitov, Thurston).
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Local moves

There are natural local moves (“flips”) on lozenge/domino tilings. Such
moves modify the height function by a unit.

This allows to show that two
tilings of a simply connected finite region are always related by a finite
sequence of local moves, whose minimal length is equal to the volume
between the two interfaces. See also the talk by T. Fernique.
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Limit shapes (images by J. Propp et al.)

(Uniform) domino tilings of a rectangle have a “flat” limit shape (due to
boundary conditions) while lozenge tilings of an hexagon display the
famous “arctic circle” phenomenon (Cohn, Larsen, Propp).
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Aztec diamond (image by J. Propp et al.)

The arctic circle phenomenon also appears in domino tilings of the Aztec
diamond (Jockusch, Propp, Shor).
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Aztec diamond and ASMs

Domino tilings of the Aztec diamond were originally studied in connection
with Alternating Sign Matrices or equivalently the six vertex model with
domain wall boundary conditions (Elkies, Kuperberg, Larsen, Propp).
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Aztec diamond and ASMs

8 domino tilings of the AD of size 2

= 7 ASMs of size 3 !
In this correspondence, −1’s in ASMs must be counted with weight 2.
This maps to an instance of the six vertex model on the free fermion line.
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Aztec diamond and ASMs
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Tilings and particles

Lozenge tilings may be mapped, via configurations of particles, to the five
vertex model (another free fermion point).
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Tilings and particles

Lozenge tilings may be mapped, via configurations of particles, to the five
vertex model (another free fermion point).
We may define further discrete or continous Markov dynamics over such
configurations of particles, which enjoy “integrability” properties: see the
talks of P. Ferrari and L. Petrov.
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Thanks for your attention and
have a nice day!
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