From Random to Quasiperiodic Tilings

Thomas Fernique Laboratoire d'Informatique de Paris Nord CNRS & Univ. Paris 13

Inhomogeneous Random Systems January 28, 2015

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	
Outline			

Quasicrystals	Modelization 000000	Dimers 000000	Beyond dimers
Outline			

2 Modelization

3 Dimers

Quasicrystals	Modelization	Dimers	Beyond dimers
00000			
Crystals (~ 19	900)		

Crystal = ordered material = lattice + atomic pattern.

Quasicrystals	Modelization	Dimers	Beyond dimers
••••••	000000	000000	
X-ray Diffraction	on (1912)		

4-Circle Gonoimeter (Eulerian or Kappa Geometry)

Crystal structure studied by X-ray diffraction.

Modelization

Dimers 000000 Beyond dimers

Troubled times (1982–1992)

"Forbidden" ten-fold symmetry discovered ~>> quasicrystals.

Modelization 000000 Dimers 000000 Beyond dimers

Transmission Electron Microscopy eventually showed the structure.

Modelization

Dimers 000000 Beyond dimers

Quenching

First quasicrystals: rapid cooling from the melt. Many defects.

Quasicrystals	Modelization	Dimers	Beyond dimers
○○○○○●	000000	000000	
Bridgman-Stoc	kbarger		

Today quasicrystals: slow cooling from the melt. Less defects.

Quasicrystals 000000	Modelization	Dimers 000000	Beyond dimers
Outline			

2 Modelization

4 Beyond dimers

Quasicrystals	Modelization	Dimers	Beyond
000000	●○○○○○	000000	00000
Tilings			

Covering of the space by interior-disjoint compacts called *tiles*.

Quasicrystals 000000	Modelization ○●○○○○	Dimers 000000	Beyond dimers
Local rules			

Inter-atomic energetic interaction \rightsquigarrow constraints on neighbor tiles.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	○○●○○○	000000	
Quasiperiodio	c tilings		

A pattern reoccurs at uniformly bounded distance from any point.

000000	000000	000000	000000
Aperiodic tili	ings (1964)		

Aperiodic tile set: finite tile set that forms only non-periodic tilings.

It can always form quasiperiodic tilings.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	○○○○●○	000000	
Random tilings			

At high T, entropy maximization supersedes energy minimization.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	○○○○○●	000000	
Cooling			

General principle (*cf* Bridgman-Stockbarger method):

- start from an entropy maximizing tiling;
- perform local moves with proba. min $(1, \exp(-\Delta E/T))$;
- progressively decrease T while still moving;
- hope to eventually minimize energy.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	○○○○○●	000000	
Cooling			

General principle (*cf* Bridgman-Stockbarger method):

- start from an entropy maximizing tiling;
- perform local moves with proba. min $(1, \exp(-\Delta E/T))$;
- progressively decrease T while still moving;
- hope to eventually minimize energy.

Directions:

- characterize entropy maximizing tilings;
- find suitable local moves;
- find a suitable cooling schedule;
- manage to prove something non-trivial...

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	
Outline			

2 Modelization

Quasicrystals 000000	Modelization 000000	Dimers ●○○○○○	Beyond dimers
Dimer tilings			

Perfect matchings of planar bipartite graphs.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	••••••	
Dimer tilings			

Perfect matchings of planar bipartite graphs.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	●○○○○○	
Dimer tilings			

Perfect matchings of planar bipartite graphs. With height function.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	●○○○○○	
Dimer tilings			

Perfect matchings of planar bipartite graphs. With height function.

Quasiperiodic t	ilings		
Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	

A tiling with lift in $P + [0, 1]^3$, P irrational plane, is quasiperiodic.

Quasicrystals 000000	Modelization 000000	Dimers ○○●○○○	Beyond dimers 000000
Aperiodic tilings			
	<u> </u>		\times

Tiles *must* be decorated (a thousand tiles seems not too much...)

Quasicrystals	

Modelization

Dimers ○○○●○○ Beyond dimers

Random tilings

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	
Flip & local rules			

Classic local move on dimer tilings: flip.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

But how potential decorations are affected by performing a flip?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

Is a flip a rotation?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

Is a flip a rotation? A reflexion?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

Is a flip a rotation? A reflexion? A tile exchange?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

Is a flip a rotation? A reflexion? A tile exchange? A mix of this?

Modelization

Dimers

Beyond dimers

Flip & local rules

Problem avoided if the local rules are forbidden patterns.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○●○	
Flip & local rules			

To perform a flip, consider the forbidden patterns it is involved in.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○○●	
Cooling			

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	00000●	
Cooling			

Mostly studied case: infinite temperature (no local rules).

- $\tau = O(n^{3.5})$ tower-flips (Luby-Randall-Sinclair, 1995)
- $\tau = cn^2 \log(n)$ tower-flips (Wilson, 2004)
- $\tau = O(n^4 \log(n))$ flips (Randall-Tetali, 1999)

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○○●	
Cooling			

Mostly studied case: infinite temperature (no local rules).

- $\tau = O(n^{3.5})$ tower-flips (Luby-Randall-Sinclair, 1995)
- $\tau = cn^2 \log(n)$ tower-flips (Wilson, 2004)
- $\tau = O(n^4 \log(n))$ flips (Randall-Tetali, 1999)

and if the boundary is planar:

- $\tau = O(n^2 \log^c(n))$ flips (Caputo-Martinelli-Toninelli, 2011)
- $cn^2 \le \tau \le n^{2+o(1)}$ flips (Laslier-Toninelli, 2013)

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○○●	
Cooling			

Mostly studied case: infinite temperature (no local rules).

• $\tau = O(n^{3.5})$ tower-flips (Luby-Randall-Sinclair, 1995)

•
$$\tau = cn^2 \log(n)$$
 tower-flips (Wilson, 2004)

•
$$au = O(n^4 \log(n))$$
 flips (Randall-Tetali, 1999)

and if the boundary is planar:

•
$$\tau = O(n^2 \log^c(n))$$
 flips (Caputo-Martinelli-Toninelli, 2011)

• $cn^2 \le \tau \le n^{2+o(1)}$ flips (Laslier-Toninelli, 2013)

At the other extreme: zero temperature (non-increasing errors)

•
$$\tau = O(hn^2)$$
 flips, $\tau = cn^2$ conjectured (F.-Regnault, 2010)

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	○○○○○●	
Cooling			

Mostly studied case: infinite temperature (no local rules).

• $\tau = O(n^{3.5})$ tower-flips (Luby-Randall-Sinclair, 1995)

•
$$\tau = cn^2 \log(n)$$
 tower-flips (Wilson, 2004)

•
$$au = O(n^4 \log(n))$$
 flips (Randall-Tetali, 1999)

and if the boundary is planar:

•
$$\tau = O(n^2 \log^c(n))$$
 flips (Caputo-Martinelli-Toninelli, 2011)

• $cn^2 \le \tau \le n^{2+o(1)}$ flips (Laslier-Toninelli, 2013)

At the other extreme: zero temperature (non-increasing errors)

•
$$au = O(hn^2)$$
 flips, $au = cn^2$ conjectured (F.-Regnault, 2010)

Other temperatures? Cooling schedule?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	
Outline			

2 Modelization

3 Dimers

000000	●00000

n non-colinear unit vectors in $\mathbb{R}^2 \rightsquigarrow \binom{n}{2}$ rhombi \rightsquigarrow tiling of \mathbb{R}^2 .

Quasicrystals 000000	Modelization 000000	Dimers 000000	Beyond dimers ●○○○○○
Rhombus til	ings		

Vectors as projections of a basis of $\mathbb{R}^n \rightsquigarrow$ tiling lifted in \mathbb{R}^n .

Quasicrystals 000000	Modelization 000000	Dimers 000000	Beyond dimers ●○○○○○
Rhombus tilings			

A tiling with lift in $P + [0,1]^n$, P irrational plane, is quasiperiodic.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○●○○○○
Aperiodic tilings			

When decorated tiles are allowed:

• local rules *iff* the plane is computable (F.-Sablik, 2012)

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○●○○○○
Aperiodic tilings			

When decorated tiles are allowed:

• local rules *iff* the plane is computable (F.-Sablik, 2012)

When only forbidden patterns are allowed:

- no local rules for non-algebraic planes (Le, 1995)
- sufficient conditions (Levitov, Le, Socolar, Bédaride-F.)
- local rules *iff* the plane is characterized by its *subperiods*?

Quasicrystals 000000	Modelization 000000	Dimers	Beyond dimers
Example 1:	(generalized) Penro	ose tilings (1974)

Lift in $P + [0,1]^5$, $\vec{P} = \mathbb{R}\cos(2k\pi/5)_{0 \le k < 5} + \mathbb{R}\sin(2k\pi/5)_{0 \le k < 5}$.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○●○○○
Example 1:	(generalized) Penro	ose tilings (1974)

 $\langle \mathbf{O}$

 $\text{Lift in } P + [0,1]^5 \text{, } \vec{P} = \ (\varphi,1,-1,-\varphi,\varphi,1,-1,\varphi,1,\varphi).$

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○●○○○
Example 1:	(generalized) Penro	ose tilings (1974)

Characterized by an alternation condition (Socolar, 1990)

 \rightsquigarrow admits local rules defined by finitely many forbidden patterns.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○●○○
Example 2:	Ammann-Beenker	tilings (1970's-198	2)

5

Lift in $P + [0,1]^5$, $\vec{P} = (1,\sqrt{2},1,1,\sqrt{2},1)$. Alternation condition?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○●○○
Example 2:	Ammann-Beenker	tilings (1970's-198	32)

Enforces planarity, but allows any $ec{P}_t = (1,t,1,1,2/t,1)$, t>0.

Example 2.	Ammann-Reenker	tilings (1070's-1	082)
			000000
Quasicrystals	Modelization	Dimers	Beyond dimers

Enforces planarity, but allows any $ec{P}_t = (1,t,1,1,2/t,1)$, t>0.

Forbidden patterns enforce planarity; boundary enforces the slope.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○●○○
Example 2:	Ammann-Beenker	tilings (1970's-1982	2)

Forbidden patterns enforce planarity; boundary enforces the slope.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○○●○
Random tilings			

Do Penrose or Ammann-Beenker tilings maximize entropy?

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○○○●
Cooling			

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○○○●
Cooling			

Simulations suggest that τ is the same as for dimers:

• $\tau = O(n^2 \log(n))$ at $T = \infty$ for Beenker (Destainville, 2006)

• $\tau = O(n^2 \log(n))$ at T = 0 for Penrose & Beenker (F., 2009) But there is no rigorous result. Even ergodicity is open for T = 0.

Quasicrystals	Modelization	Dimers	Beyond dimers
000000	000000	000000	○○○○○●
Cooling			

Simulations suggest that au is the same as for dimers:

• $\tau = O(n^2 \log(n))$ at $T = \infty$ for Beenker (Destainville, 2006)

• $\tau = O(n^2 \log(n))$ at T = 0 for Penrose & Beenker (F., 2009) But there is no rigorous result. Even ergodicity is open for T = 0.

Other tempartures? Cooling schedule?

Aperiodicity if much more interesting beyond dimer tilings... ...but random tilings or cooling process seem much complicated!