
From Random to Quasiperiodic Tilings

Thomas Fernique
Laboratoire d’Informatique de Paris Nord

CNRS & Univ. Paris 13

Inhomogeneous Random Systems
January 28, 2015



Quasicrystals Modelization Dimers Beyond dimers

Outline

1 Quasicrystals

2 Modelization

3 Dimers

4 Beyond dimers



Quasicrystals Modelization Dimers Beyond dimers

Outline

1 Quasicrystals

2 Modelization

3 Dimers

4 Beyond dimers



Quasicrystals Modelization Dimers Beyond dimers

Crystals (∼ 1900)

Crystal = ordered material = lattice + atomic pattern.
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X-ray Diffraction (1912)

Crystal structure studied by X-ray diffraction.
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Troubled times (1982–1992)

“Forbidden” ten-fold symmetry discovered  quasicrystals.
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HRTEM

Transmission Electron Microscopy eventually showed the structure.
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Quenching

First quasicrystals: rapid cooling from the melt. Many defects.
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Bridgman-Stockbarger

Today quasicrystals: slow cooling from the melt. Less defects.
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Tilings

Covering of the space by interior-disjoint compacts called tiles.
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Local rules

Inter-atomic energetic interaction  constraints on neighbor tiles.
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Quasiperiodic tilings

A pattern reoccurs at uniformly bounded distance from any point.
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Aperiodic tilings (1964)

Aperiodic tile set: finite tile set that forms only non-periodic tilings.

It can always form quasiperiodic tilings.
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Random tilings

At high T , entropy maximization supersedes energy minimization.
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Cooling

General principle (cf Bridgman-Stockbarger method):

start from an entropy maximizing tiling;

perform local moves with proba. min(1, exp(−∆E/T ));

progressively decrease T while still moving;

hope to eventually minimize energy.

Directions:

characterize entropy maximizing tilings;

find suitable local moves;

find a suitable cooling schedule;

manage to prove something non-trivial. . .
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Dimer tilings

Perfect matchings of planar bipartite graphs.

With height function.
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Quasiperiodic tilings

A tiling with lift in P + [0, 1]3, P irrational plane, is quasiperiodic.
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Aperiodic tilings

Tiles must be decorated (a thousand tiles seems not too much. . . )
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Random tilings

Entropy:
log(#tilings)

#tiles
. Maximum: Cohn-Kenyon-Propp, 2001.
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Flip & local rules

Classic local move on dimer tilings: flip.



Quasicrystals Modelization Dimers Beyond dimers

Flip & local rules

?

But how potential decorations are affected by performing a flip?
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Flip & local rules

Is a flip a rotation?

A reflexion? A tile exchange? A mix of this?
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Flip & local rules

Is a flip a rotation? A reflexion? A tile exchange? A mix of this?
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Flip & local rules

Forbidden

Problem avoided if the local rules are forbidden patterns.
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Flip & local rules

To perform a flip, consider the forbidden patterns it is involved in.
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Cooling

Perform flips which proba. min(1, exp(−∆E/T )). Mixing time τ?

Mostly studied case: infinite temperature (no local rules).

τ = O(n3.5) tower-flips (Luby-Randall-Sinclair, 1995)

τ = cn2 log(n) tower-flips (Wilson, 2004)

τ = O(n4 log(n)) flips (Randall-Tetali, 1999)

and if the boundary is planar:

τ = O(n2 logc(n)) flips (Caputo-Martinelli-Toninelli, 2011)

cn2 ≤ τ ≤ n2+o(1) flips (Laslier-Toninelli, 2013)

At the other extreme: zero temperature (non-increasing errors)

τ = O(hn2) flips, τ = cn2 conjectured (F.-Regnault, 2010)

Other temperatures? Cooling schedule?
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Rhombus tilings

n non-colinear unit vectors in R2  
(n
2

)
rhombi  tiling of R2.
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Rhombus tilings

Vectors as projections of a basis of Rn  tiling lifted in Rn.
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Rhombus tilings

A tiling with lift in P + [0, 1]n, P irrational plane, is quasiperiodic.
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Aperiodic tilings

When decorated tiles are allowed:

local rules iff the plane is computable (F.-Sablik, 2012)

When only forbidden patterns are allowed:

no local rules for non-algebraic planes (Le, 1995)

sufficient conditions (Levitov, Le, Socolar, Bédaride-F.)

local rules iff the plane is characterized by its subperiods?
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Example 1: (generalized) Penrose tilings (1974)

Lift in P + [0, 1]5, ~P = R cos(2kπ/5)0≤k<5 + R sin(2kπ/5)0≤k<5.
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Example 1: (generalized) Penrose tilings (1974)

Lift in P + [0, 1]5, ~P = (ϕ, 1,−1,−ϕ,ϕ, 1,−1, ϕ, 1, ϕ).
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Example 1: (generalized) Penrose tilings (1974)

Characterized by an alternation condition (Socolar, 1990)
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Example 1: (generalized) Penrose tilings (1974)

 admits local rules defined by finitely many forbidden patterns.
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Example 2: Ammann-Beenker tilings (1970’s-1982)

Lift in P + [0, 1]5, ~P = (1,
√

2, 1, 1,
√

2, 1). Alternation condition?
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Example 2: Ammann-Beenker tilings (1970’s-1982)

Enforces planarity, but allows any ~Pt = (1, t, 1, 1, 2/t, 1), t > 0.



Quasicrystals Modelization Dimers Beyond dimers

Example 2: Ammann-Beenker tilings (1970’s-1982)

Enforces planarity, but allows any ~Pt = (1, t, 1, 1, 2/t, 1), t > 0.



Quasicrystals Modelization Dimers Beyond dimers

Example 2: Ammann-Beenker tilings (1970’s-1982)

Forbidden patterns enforce planarity; boundary enforces the slope.
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Example 2: Ammann-Beenker tilings (1970’s-1982)

Forbidden patterns enforce planarity; boundary enforces the slope.
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Random tilings

Do Penrose or Ammann-Beenker tilings maximize entropy?
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Cooling

Perform flips with proba. min(1, exp(−∆E/T )). Mixing time τ?

Simulations suggest that τ is the same as for dimers:

τ = O(n2 log(n)) at T =∞ for Beenker (Destainville, 2006)

τ = O(n2 log(n)) at T = 0 for Penrose & Beenker (F., 2009)

But there is no rigorous result. Even ergodicity is open for T = 0.

Other tempartures? Cooling schedule?
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Conclusion

Aperiodicity if much more interesting beyond dimer tilings. . .
. . . but random tilings or cooling process seem much complicated!


	expose
	conclusion

