Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas

Fluctuation lemm

and notion of convergence

equilibrium and model dependence.

The Glauber dynamics on lozenge tilings and other dimer models

Benoît Laslier

January 27, 2015

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas ar discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version Sketch of the macroscopic proof

3 Precise lemmas and discussion

Fluctuation lemma and notion of convergence Mixing close to equilibrium and model dependence.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas a discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

We look at the time evolution of an interface between thermodynamical phases in $\mathbb{R}^3,$ exactly when they are equally stable, for example :

The initial problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Ice and liquid water at 0°C.
- Solid salt in water saturated in salt.
- + and phases in low temperature Ising model.

We expect a slow evolution that minimize the size of the interface.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

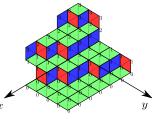
Precise Iemmas

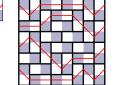
discussion

Fluctuation lemm and notion of convergence

Mixing close to equilibrium and model dependence

Tiling, surface and height function





We represent the interface by a tiling of some region in the plane It is parametrized by a height function written h.

By convention we use the z

coordinate as a function of the point in the picture.

We draw a line in each domino depending on its orientation.

We see the resulting paths as level lines.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

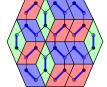
- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

Precise lemma

- discussion
- Fluctuation lemma and notion of convergence
- Mixing close to equilibrium and model dependence.

Link with dimer model

We can see a tiling as a perfect matching of some graph : each vertex is connected to one and only one neighbour.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Many results are true for general underlying bipartite lattice.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

- Fundamental lemmas, intuitiv version
- Sketch of the macroscopic proof

Precise lemmas

- discussion
- Fluctuation lemma and notion of convergence
- Mixing close to equilibrium and model dependence

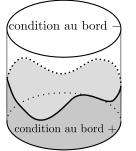
Dobrushin condition, boundary height

The boundary of the surface only depends on the domain and not on the actual tiling.

Lozenge tilings are equivalent to the Ising model at T = 0 on \mathbb{Z}^3 with the following boundary condition :

+ above some curve - below.

We have to think about the boundary in \mathbb{R}^3 and not only its projection.



Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

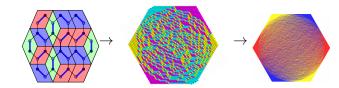
Precise lemmas a discussio

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Thermodynamic limit

We fix a curve in \mathbb{R}^3 and we use a grid of size $\frac{1}{I}$.



We write μ_{eq}^{L} for the uniform measure and h_{eq}^{L} for a sample height function.

 h^L has increments $\pm \frac{1}{L}$ and a definition domain independent of L.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface **Thermodynamic limit** The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proc

Precise lemmas ar discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence

Law of large numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

With this normalization, h_{eq}^{L} converges to a deterministic limit..

Theorem (Cohn, Kenyon, Propp 2001)

Almost surely and for the infinite norm:

 $h_{eq}^{L} \rightarrow h^{\infty},$

where $h^{\infty}: U_{\infty} \to \mathbb{R}$ is deterministic.

 h^{∞} is the only argmin of

$$E(h) = \int_{U_{\infty}} \sigma(\nabla h(x)) d^2 x$$

where σ is known explicitly.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface **Thermodynamic limit** The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

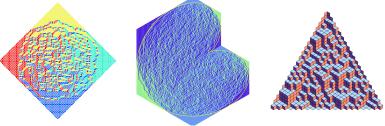
Precise lemmas a discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Frozen and liquid phases

In h_{eq}^L , some region can be almost deterministic, we say they are "frozen".



When the boundary curve is in a plane, then h^{∞} is linear. We call this the planar case.

イロト イボト イヨト イヨト 三日

Definition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

dimer models Benoît Laslier

The Glauber dynamics on

lozenge tilings

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

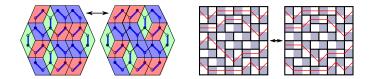
Precise lemmas

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence

Base move

Rotation of three lozenges / two dominoes.



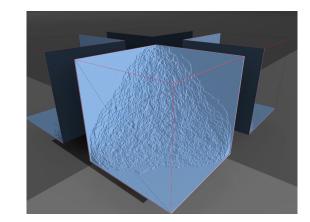
"Glauber" dynamics

At each position, do a rotation at rate one if possible, independently of everything else.

The uniform measure μ_{eq}^{L} is reversible.

Example

★ロト★御と★注と★注と、注



The Glauber dynamics on lozenge tilings and other dimer models

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit

The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas ar discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Mixing time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Benoît Laslier

The Glauber dynamics on

lozenge tilings and other dimer models

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

Precise lemmas

discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

- It is too difficult to study the large scale motion.
- We focus on the speed of convergence.
- We use the "mixing time" written T_{mix} . $\left(T_{\text{mix}} = \inf\{t \text{ such that } \|\mu_t - \mu_{\text{eq}}\|_{TV} \leq \frac{1}{2}\}\right).$
- Estimating the mixing time is also useful to generate large random tilings.

Historic

The Glauber dynamics on lozenge tilings and other dimer models

Benoît Laslier

Introduction

- Physical motivations Tiling and Interface Thermodynamic limit The dynamics
- Results

Outline of the proof.

- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

Precise

lemmas and discussion

- Fluctuation lemma and notion of convergence
- Mixing close to equilibrium and model dependence.

- Luby, Randall, Sinclair 2001 : $T_{mix} = O(L^6)$ for a well chosen non local dynamics.
- Randall, Tetali 2000 : $T_{mix} = O(L^{10})$ for the Glauber dynamics by comparisons.
- Wilson 2004 : $T_{mix} = cL^2 \log(L)$ for lozenges and non local. $\Rightarrow T_{mix} = O(L^6 \log L)$ for Glauber.
- Caputo, Martinelli, Toninelli 2011 (and with Simenhaus 2010) : T_{mix} = O(L² log^C L) for Glauber, lozenges and planar boundary.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas a discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Dominoes theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let \mathcal{C} be a closed curve in \mathbb{R}^3 and let h^∞ be the associated limit shape.

Theorem (Laslier, Toninelli, PTRF, 2012)

For the Glauber dynamics on lozenge tilings or domino tilings and some other dimer models, if h^{∞} is linear (i.e. if C is in a plane) then

$$cL^2 \leq T_{mix} \leq L^{2+o(1)}$$

- The lower bound is better that $\frac{L^2}{\log L}$ in CMT.
- The unit square has a planar boundary.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence

Non planar theorem

Theorem (Laslier, Toninelli, 2013)

For the Glauber dynamics on lozenge tilings, if h^{∞} has no frozen phase then for all ϵ and n, there exists $T = L^{2+o(1)}$ such that

except with proba $\leq L^{-n}$, $\|h_T^L - h^{\infty}\|_{\infty} \leq \epsilon$

- The convergence is weaker than T_{mix} because we have no information on the microscopic structure.
- The examples above have frozen regions be we can apply the result to sub-domains.
- We have no simpler way to characterize the lack of frozen region.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas au discussion

Fluctuation lemma and notion of convergence

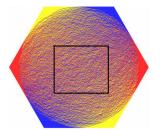
Mixing close to equilibrium and model dependence.

Hexagonal theorem

Theorem (Laslier, Toninelli, 2013)

For the Glauber dynamics on lozenge tilings, if h^{∞} is a subset of the liquid par in the limit shape for an hexagon, then

$$T_{mix} = L^{2+o(1)}$$



(日) (四) (日) (日) (日)

• The theorem mainly shows that the method can give a mixing time in a non planar case.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics

Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas ar discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

1 Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version Sketch of the macroscopic proof

3 Precise lemmas and discussion

Fluctuation lemma and notion of convergence Mixing close to equilibrium and model dependence.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas a discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence

Hydrodynamic limit conjecture

In the limit, we expect a "law large numbers" for the dynamics, which is often called *hydrodynamics limit* : When time is normalized by L^2 , in a macroscopic scale we see a deterministic mouvement.

$$h_{L^2t}^L \to h_t$$

where h_t is the solution of a PDE

$$\partial_t h = \mu(\nabla h) \sum_{ij} (\partial_{ij}^2 \sigma) \circ (\nabla h) . \partial_{ij}^2 h.$$

イロト 不得 トイヨト イヨト ニヨー

The limit shape h^{∞} is characterized by $\partial_t h^{\infty} = 0$.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence

Monotonicity

イロト 不得 トイヨト イヨト ニヨー

We define a partial order by :

$$h \leq h' \Leftrightarrow \forall x, \ h(x) \leq h'(x)$$

Proposition

For any pair of configurations $h_0 \le h'_0$, there exists a coupling of the dynamics such that :

 $\forall t, h_t \leq h'_t$

Remark :

We are allowed to compare configurations with different boundary !

Fluctuations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Benoît Laslier

The Glauber dynamics on

lozenge tilings and other dimer models

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proo

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Let *D* be a domain with either
$$\begin{cases} a \text{ planar boundary} \\ or \\ a \text{ diameter } \frac{L^{\epsilon}}{\sqrt{L}} \end{cases}$$

Lemma

Height fluctuations at equilibrium in D are logarithmic in L

$$\forall \epsilon, \forall n, \mathbb{P}\left(|h_{eq}^{L}(x) - h^{\infty}(x)| \geq \frac{L^{\epsilon}}{L} \right) = O(L^{-n})$$

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas an discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Mixing time close to equilibrium

Let *D* be a domain of size *L* and let h_0 be a configuration in *D* macroscopically close to equilibrium

$$\|h_0-h^\infty\|_\infty\leq \frac{L^\epsilon}{L}.$$

Lemma

The mixing time for the dynamics started in h_0 (and with an additional constraint) is of order $L^{2+o(1)}$.

When we start very close to equilibrium (but still outside of the range of fluctuations), we know precisely the mixing time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Starting point

Benoît Laslier

The Glauber dynamics on

lozenge tilings and other dimer models

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

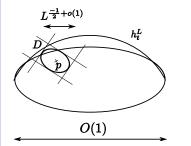
Sketch of the macroscopic proof

Precise lemmas a discussior

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

We do as if we wanted to show the hydrodynamic limit.



- We assume that at time *t* the interface is almost equal to some smooth deterministic surface.
- We look at what happens in a small domain of radius L^{-1/2+ε} around some fixed point.

イロト 不得 トイヨト イヨト ニヨー

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

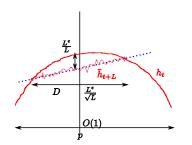
Sketch of the macroscopic proof

Precise lemmas an discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Dynamics in a small domain



- We are in the domain of the lemmas
- Using lemma 2, after a time L^{1+e} the small domain is at equilibrium.
- Using lemma 1, the point p has really moved down by $\frac{L^{\epsilon}}{L}$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Conclusion

イロト 不得 トイヨト イヨト ニヨー

dimer models Benoît Laslier

The Glauber dynamics on

lozenge tilings

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

- We apply the estimate simultaneously around all points.
- After a time $L^{1+\epsilon}$, the surface has moved down by $\frac{L^{\epsilon}}{L}$.
- Therefore, after L steps, which take a total time L^{2+ε}, we arrive close to h[∞].

Rigorous version

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Benoît Laslier

The Glauber dynamics on

lozenge tilings and other dimer models

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

Precise lemmas ar discussion

- Fluctuation lemma and notion of convergence
- Mixing close to equilibrium and model dependence.

- We are not precise enough to follow the "true" hydrodynamic limit.
- However we can let an upper bound evolve according to this scheme.
- Such a bound is enough for the mixing time.
- We have some freedom in the choice of the deterministic evolution.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version Sketch of the macroscopic proof

3 Precise lemmas and discussion

Fluctuation lemma and notion of convergence Mixing close to equilibrium and model dependence.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proo

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Fluctuations

Lemma (Laslier, Toninelli, 2012)

For any dimer model on a bipartite periodic lattice, let D be a domain with planar boundary conditions. For any ϵ and n,

$$\mathbb{P}\left(\exists x: |h(x) - h^{\infty}(x)| \geq \frac{L^{\epsilon}}{L}\right) = O(L^{-n}).$$

Lemma (Laslier, Toninelli, 2013)

For lozenge tiling. Let x be a point in the interior of the liquid domain of some limit shape h^{∞} . Let D be a domain, centred in x and of radius $L^{-1/2+\delta}$. We fix the boundary height to be $h^{\infty}|_{\partial D}$. For any ϵ and n,

$$\mathbb{P}\left(\exists x: |h(x) - h^{\infty}(x)| \geq \frac{L^{\epsilon}}{L}\right) = O(L^{-n}).$$

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

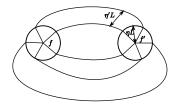
Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Proof for planar fluctuations



- We know (Kenyon, Okounkov, Sheffield) the long range correlations for infinite planar measures.
- We compute the *k*th moment as sums along *k* paths macroscopically far away.
- We compare finite and infinite domain by monotonicity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

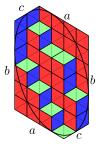
Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Proof for non planar fluctuations

- We know (Petrov 2012) the limit shape and the fluctuations in irregular hexagonal domains
- For a small domain, it is enough to know the Taylor development up to order 2.
- Any order 2 Taylor development can be found somewhere in an hexagon.
- We conclude by monotonicity.



(日) (四) (日) (日) (日)

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Convergence notion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- To prove a mixing time, we have to let the upper bound move until it is at distance L^{o(1)}/L of the equilibrium.
- In the last steps, we need to look at bigger domains to see the vanishing curvature.
- For general non planar boundary, we cannot increase the size much because we only have second order Taylor development.
- For planar or hexagonal domains, we do not have such limitation.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Mixing with floor/ceiling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma (Laslier, Toninelli, 2012)

For the dynamics in a domain at scale L, constrained to stay within a floor and a ceiling at distance H/L of h^{∞} ,

$$T_{mix} \leq CL^2 H^9 \log^4(L)$$

The floor and ceiling constraint is not very strict as long as H is bigger than equilibrium fluctuations.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas a

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Sketch of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- By monotonicity, it is enough to look at the volume between the dynamics started from the maximal and minimal configurations.
- We define and auxiliary dynamics for which the volume between configurations is a super-martingale.
 Very model dependent !
- We lower bound the variance of the volume.
 ⇒ mixing time for the auxiliary dynamics.
- Comparison between the original and auxiliary dynamics via Peres-Winkler censoring.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

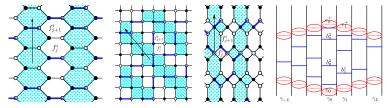
Sketch of the macroscopic proof

Precise lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

We can forget about some of the dimers.



Auxiliary dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The interaction is that they have to stay in staggered row.

Dynamics : At rate one, re-sample half the columns uniformly conditioned on the others.

Trick : It is enough to compute the drift between configurations that differ by a single move.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas au discussion

Fluctuation lemma and notion of convergence

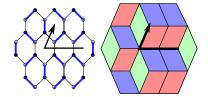
Mixing close to equilibrium and model dependence.

Question

Find places where the interfaces are different and one of them can move.

Variance of the volume

- We do a gradient descent.
- Such a path has length O(H).
- We find O(V/H³) points where a move is possible, and each one contributes O(1) to the variance.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gradient descent

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

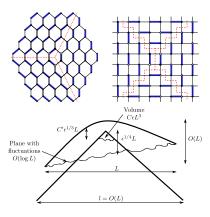
- Fundamental lemmas, intuitive version
- Sketch of the macroscopic proof

Precise

lemmas and discussion

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.



Lower bound

- For some domains, the volume drift is $\geq -\frac{1}{I^2}$
- After a time cL², these domains have barely evolved.
- By monotonicity, we get the general case.

Benoît Laslier

Introduction

Physical motivations Tiling and Interface Thermodynamic limit The dynamics Results

Outline of the proof.

Fundamental lemmas, intuitive version

Sketch of the macroscopic proof

Precise lemmas a

Fluctuation lemma and notion of convergence

Mixing close to equilibrium and model dependence.

Thank you for your attention.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで