Height representation of XOR-Ising loops via BIPARTITE DIMERS

Béatrice de Tilière
Université Pierre et Marie Curie, Paris
joint work with Cédric Boutillier

Inhomogeneous Random Systems, IHP
January 27, 2015

The Ising model

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a finite graph embedded in the plane.
- A spin configuration σ assigns to every vertex x a spin $\sigma_{\mathrm{x}} \in\{-1,1\}$.

$+1 /-1$ are represented by green/blue dots.
Set of spin configurations : $\{-1,1\}^{\mathrm{V}}$.

The Ising model

- Edges of G are assigned positive coupling constants: $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$.
- Ising Boltzmann measure:

$$
\forall \sigma \in\{-1,1\}^{\vee}, \quad \mathbb{P}_{\text {Ising }}(\sigma)=\frac{\exp \left(\sum_{\mathrm{e}=\mathrm{xy} \in \mathrm{E}} J_{\mathrm{xy}} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}\right)}{Z_{\text {Ising }}(\mathrm{G}, J)},
$$

where $Z_{\text {Ising }}(\mathrm{G}, J)=\sum_{\sigma \in\{-1,1\}^{\mathrm{V}}} \exp \left(\sum_{\mathrm{e}=\mathrm{xy} \in \mathrm{E}} J_{\mathrm{xy}} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}\right)$ is the Ising
partition function.

The XOR-Ising model

Ising model on G, $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$
\Perp
Ising model on G, $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$

$$
\xi=\sigma \sigma^{\prime}
$$

$$
\begin{aligned}
& \bullet \bullet=\bullet \\
& \bullet \bullet=\bullet \\
& \bullet \times \bullet=\bullet \\
& \bullet \bullet=\bullet
\end{aligned}
$$

XOR-Ising model on G, $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$

The XOR-Ising model

\Perp
Ising model on G, $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$

XOR-Ising model on G, $J=\left(J_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$

Conjecture for the XOR-Ising model

Conjecture (Wilson (ii), Ikhlef, Picco, Santachiara)

The scaling limit of polygon configurations separating ± 1 clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced $\sqrt{2}$ times as far apart as they are for [...] the double dimer model on the square lattice.

Result

Theorem (Boutillier, dT)

- Polygon configurations of the XOR-Ising model have the same law as a family of contours in a bipartite dimer model.
- This family of contours are the level lines of a restriction of the height function of this bipartite dimer model.

Remark

Proved when the graph G is embedded in a surface of genus $g, g \geq 0$, or when G is planar, infinite.

- When the XOR-Ising model is critical, so is the bipartite dimer model.
- Using results of [dT] on the convergence of the height function, this gives partial proof of Wilson's conjecture.

Low temperature expansion [Kramers \& Wannier]

- Polygon configuration: subset of edges s.t. each vertex is incident to an even number of edges.
- Write, $\quad e^{J_{e} \sigma_{x} \sigma_{y}}=e^{J_{e}}\left(\delta_{\left\{\sigma_{x}=\sigma_{y}\right\}}+\mathrm{e}^{-2 J_{\mathrm{e}}} \delta_{\left\{\sigma_{x} \neq \sigma_{y}\right\}}\right)$.

The partition function is then equal to (LTE):

$$
Z_{\text {Ising }}(\mathrm{G}, J)=\sum_{\sigma \in\{-1,1\}^{\vee}} \prod_{\mathrm{e}=\mathrm{xy} \in \mathrm{E}} e^{J_{\mathrm{e}} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}=\mathcal{C} \sum_{\mathrm{P}^{*} \in \mathcal{P}\left(\mathrm{G}^{*}\right)} \prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}} e^{-2 J_{\mathrm{e}}}
$$

- Geometric interp: polygon config. separate clusters of ± 1 spins.

High temperature expansion [Kramers \& Wannier]

- Write, $\quad e^{J_{\mathrm{e}} \sigma_{x} \sigma_{\mathrm{y}}}=\cosh \left(J_{\mathrm{e}}\right)\left(1+\sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \tanh \left(J_{\mathrm{e}}\right)\right)$.

The partition function is then equal to (HTE):

$$
Z_{\text {Ising }}(\mathrm{G}, J)=\sum_{\sigma \in\{-1,1\}^{\mathrm{V}}} \prod_{\mathrm{e}=\mathrm{xy} \in \mathrm{E}} e^{J_{\mathrm{e}} \sigma_{x} \sigma_{\mathrm{y}}}=\mathcal{C}^{\prime} \sum_{\mathrm{P} \in \mathcal{P}(\mathrm{G})} \prod_{\mathrm{e} \in \mathrm{P}} \tanh \left(J_{\mathrm{e}}\right) .
$$

- No geometric interpretation using spin configurations.

Double Ising model

- Take 2 independent copies (red/blue) of an Ising model on G, with coupling constants J.
- Using the LTE, consider the probability measure $\mathbb{P}_{2 \text {-Ising }}$:

$$
\forall\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right) \in \mathcal{P}\left(\mathrm{G}^{*}\right)^{2}, \quad \mathbb{P}_{2-\operatorname{Ising}}\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)=\frac{\mathcal{C}^{2}\left(\prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}} \mathrm{e}^{-2 J_{e}}\right)\left(\prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}} \mathrm{e}^{-2 J_{\mathrm{e}}}\right)}{Z_{2 \text {-Ising }}(\mathrm{G}, J)},
$$

where $Z_{2 \text {-Ising }}(\mathrm{G}, J)=Z_{\text {Ising }}(\mathrm{G}, J)^{2}$.

Double Ising model

- Let $\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ be two polygon configurations.
- Consider the superimposition $\mathrm{P}^{*} \cup \mathrm{P}^{*}$.

Superimposition P* $\cup P^{*}$

- Define two new edge configurations:
- Mono($\left.\mathrm{P}^{*}, \mathrm{P}^{*}\right):$ monochromatic edges.
- $\operatorname{Bi}\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$: bichromatic edges.

Monochromatic edges

Monochromatic edge configuration of $\mathrm{P}^{*} \cup \mathrm{P}^{*}$.

Lemma

Mono($\left.\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ is the polygon configuration separating ± 1 clusters of the corresponding XOR-Ising spin configuration.

Goal: understand the law of monochromatic edge configurations.

Bichromatic edge configurations

- Let $\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ be two polygon configurations.
- $\operatorname{Mono}\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ separates the surface into connected comp. $\left(\Sigma_{i}\right)_{i}$.

Lemma

For every i, the restriction of $\operatorname{Bi}\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ to Σ_{i} is the LTE of an Ising configuration on $\mathrm{G}_{\Sigma_{i}}$, with coupling constants $\left(2 J_{\mathrm{e}}\right)$.

Probability of monochromatic configurations

Lemma

Let P^{*} be a polygon configuration, separating the surface into n_{P} connected components. For every i, let P_{i}^{*} be a polygon configuration of $\mathrm{G}_{\Sigma_{i}}^{*}$.
Then, there are $2^{n_{\mathrm{P}}}$ pairs of polygon configurations ($\mathrm{P}^{*}, \mathrm{P}^{*}$) having P^{*} as monochromatic edges, and $\mathrm{P}_{1}^{*}, \cdots, \mathrm{P}_{n_{\mathrm{P}}}^{*}$ as bichromatic edges.

Denote by $W\left(\mathrm{P}^{*}\right)$ the contribution to $Z_{2 \text {-Ising }}(\mathrm{G}, J)$ of the pairs of polygon configurations $\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)$ such that $\operatorname{Mono}\left(\mathrm{P}^{*}, \mathrm{P}^{*}\right)=\mathrm{P}^{*}$.

Corollary

- $W\left(\mathrm{P}^{*}\right)=\mathcal{C}\left(\prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}} \mathrm{e}^{-2 \mathrm{~J}_{\mathrm{e}}}\right) \prod_{i=1}^{n \mathrm{P}}\left(2 Z_{\mathrm{LT}}\left(\mathrm{G}_{\Sigma_{i}}^{*}, 2 J\right)\right)$.
- $Z_{2-\mathrm{Ising}}(\mathrm{G}, J)=\sum_{\mathrm{P}^{*} \in \mathcal{P}\left(\mathrm{G}^{*}\right)} W\left(\mathrm{P}^{*}\right)$.

$$
\mathbb{P}_{2 \text {-Ising }}\left(\text { Mono }=\mathrm{P}^{*}\right)=\frac{W\left(\mathrm{P}^{*}\right)}{Z_{2 \text {-Ising }}(\mathrm{G}, J)} .
$$

Mixed contour expansion

$$
W\left(\mathrm{P}^{*}\right)=\mathcal{C}\left(\prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}} \mathrm{e}^{-2 J_{\mathrm{e}}}\right) \prod_{i=1}^{n_{\mathrm{P}}}\left(2 Z_{\mathrm{LT}}\left(\mathrm{G}_{\Sigma_{i}}^{*}, 2 J\right)\right)
$$

Idea [Nienhuis]: use Kramers and Wannier high temperature expansion in each connected component Σ_{i}.

$$
Z_{\mathrm{LT}}\left(\mathrm{G}_{\Sigma_{i}}^{*}, 2 J\right)=\mathcal{C}\left(\Sigma_{i}\right) Z_{\mathrm{HT}}\left(\mathrm{G}_{\Sigma_{i}}, 2 J\right)
$$

Low temp. expansion on $\mathrm{G}_{\Sigma_{i}}^{*}$

High temp. expansion on $\mathrm{G}_{\Sigma_{i}}$.

Mixed contour expansion

Combining the terms:
Proposition
For every polygon configuration P^{*},

$$
W\left(\mathrm{P}^{*}\right)=\mathcal{C} \prod_{\mathrm{e}^{*} \in \mathrm{P}^{*}}\left(\frac{2 \mathrm{e}^{-2 J_{\mathrm{e}}}}{1+\mathrm{e}^{-4 J_{\mathrm{e}}}}\right) \sum_{\left\{\mathrm{P} \in \mathcal{P}(\mathrm{G}): \mathrm{P}^{*} \cap \mathrm{P}=0\right\}} \prod_{\mathrm{e} \in \mathrm{P}}\left(\frac{1-e^{-4 J_{\mathrm{e}}}}{1+\mathrm{e}^{-4 J_{\mathrm{e}}}}\right)
$$

Higher genus

If the graph is embedded in a surface Σ of genus $g \geq 0$.

- Consider $H_{1}(\Sigma, \mathbb{Z} / 2 \mathbb{Z}) \simeq\{0,1\}^{2 g}$.
- Family of Ising models, indexed by $\varepsilon \in\{0,1\}^{2 g}$.
- The double Ising model partition function is defined as:

$$
Z_{2 \text {-Ising }}(\mathrm{G}, J)=\sum_{\varepsilon \in\{0,1\}^{2 g}} Z_{\text {Ising }}^{\varepsilon}(\mathrm{G}, J)^{2}
$$

From pairs of non-intersecting primal/dual polygon CONFIG. To THE DIMER MODEL ON THE BIPARTITE GRAPH G^{Q}

- The bipartite graph G^{Q}

The dimer model on G^{Q}

- A dimer configuration of G^{Q} is a subset of edges M such that each vertex is incident to exactly on edge of M .

- Positive weight function v on the edges.
- Dimer Boltzmann measure: $\forall \mathrm{M} \in \mathcal{M}\left(\mathrm{G}^{\mathrm{Q}}\right), \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{E}} \mathrm{Q}_{\mathrm{e}}}{Z_{\text {dimer }}\left(\mathrm{G}^{\mathrm{Q}}, v\right)}$.

The dimer model on G^{Q}

- A dimer configuration of G^{Q} is a subset of edges M such that each vertex is incident to exactly on edge of M .

- Positive weight function v on the edges.
- Dimer Boltzmann measure: $\forall \mathrm{M} \in \mathcal{M}\left(\mathrm{G}^{\mathrm{Q}}\right), \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{E}} \mathrm{V}_{\mathrm{e}}}{Z_{\text {dimer }}\left(\mathrm{G}^{\mathrm{Q}}, v\right)}$.

First step of the mapping

- From pairs of polygon configurations to the 6 -vertex model on the medial graph [Nienhuis]

- Weights: $\omega_{12}=\frac{2 e^{-2 J e}}{1+e^{-4 / \mathrm{e}}}, \omega_{34}=\frac{1-\mathrm{e}^{-4 J \mathrm{e}}}{1+\mathrm{e}^{-4 / \mathrm{e}}}, \omega_{56}=1$.

First step of the mapping

- From pairs of polygon configurations to the 6 -vertex model on the medial graph [Nienhuis]

- Weights: $\omega_{12}=\frac{2 e^{-2 J e}}{1+e^{-4 / \mathrm{e}}}, \omega_{34}=\frac{1-\mathrm{e}^{-4 / \mathrm{e}}}{1+\mathrm{e}^{-4 / \mathrm{e}}}, \omega_{56}=1$.

Second step of the mapping

- From the 6 -vertex model to the dimer model [Wu-Lin, Dubédat]

Conclusion

- To every dimer configuration M of G^{Q}, assign

$$
\operatorname{Poly}(\mathrm{M})=\left(\operatorname{Poly}_{1}(\mathrm{M}), \operatorname{Poly}_{2}(\mathrm{M})\right)
$$

the pair of polygon configurations given by the mappings.
Theorem
For every polygon configuration P^{*} of G^{*},

$$
\mathbb{P}_{2 \text {-Ising }}\left(\text { Mono }=\mathrm{P}^{*}\right)=\mathbb{P}_{\text {dimer }}\left(\text { Poly }_{1}=\mathrm{P}^{*}\right)
$$

Height function for bipartite dimers (Thurston)

$$
\begin{aligned}
& \text { 品 }
\end{aligned}
$$

Height function for bipartite dimers (Thurston)

$$
\begin{aligned}
& \text { CO }
\end{aligned}
$$

Height function for bipartite dimers (Thurston)

Height function for bipartite dimers (Thurston)

Pictorial proof of "Polygon configurations of the graph G^{*} are level lines of the restriction of the height function."

Isoradial graphs

- A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1 , and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1 , and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1 , and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1 , and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

Associated rhombus graph, angles

- Take the circumcenters.

Associated rhombus graph, angles

- Join the circumcenters to the vertices of the graph G.
\Rightarrow Associated rhombus graph G°.

Associated rhombus graph, angles

- Join the circumcenters to the vertices of the graph G.
\Rightarrow Associated rhombus graph G°.

Associated rhombus graph, angles

- To every edge e is assigned the half-angle θ_{e} of the corresponding rhombus.

Critical 2-dimensional Ising model on isoradial graphs

- The Ising model defined on an isoradial graph G is critical if the coupling constants are given by, for every edge e:

$$
J_{\mathrm{e}}=\frac{1}{2} \log \left(\frac{1+\sin \theta_{\mathrm{e}}}{\cos \theta_{\mathrm{e}}}\right) .
$$

(Z-invariance + duality [Baxter], proof in period. case [Li-Dum.\& Cim.])
Example: $\mathrm{G}=\mathbb{Z}^{2}: \forall$ edge $\mathrm{e}, \theta_{\mathrm{e}}=\frac{\pi}{4}, J_{\mathrm{e}}=\frac{1}{2} \log (1+\sqrt{2})$.
\Rightarrow critical temperature computed by Kramers \& Wannier.

- The corresponding bipartite graph G^{Q} is also isoradial, and the weights are the critical dimer weights:

Back to Wilson’s conjecture

Conjecture (Wilson)

The scaling limit of polygon configurations separating ± 1 clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced $\sqrt{2}$ times as far apart as they are for [...] the double dimer model on the square lattice.

Theorem (Boutillier, dT)
XOR-polygon configurations of the double Ising model on G have the same law as level lines of a restriction of the height function of the bipartite dimer model on G^{Q}, with an explicit coupling.

Theorem (dT)

The height function (as a random distribution) of the critical dimer model defined on a bipartite graph converges weakly in law to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field of the plane.

Back to Wilson’s conjecture

Suppose we had strong form of convergence, allowing for convergence of level lines. Then:

level lines of h^{ε}	\rightarrow	level lines of GFF	
$(k, k \in \mathbb{Z})$		$(\sqrt{\pi} k, k \in \mathbb{Z})$	
$\left(k+\frac{1}{2}, k \in \mathbb{Z}\right)$		$\left(\frac{\sqrt{\pi}}{2}(2 k+1), k \in \mathbb{Z}\right)$	XOR loops

For the critical double dimer model. The height function is $h_{1}^{\varepsilon}-h_{2}^{\varepsilon}$, where h_{1} and h_{2} are independent, and each converges weakly in distribution to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field. Thus, $h_{1}-h_{2}$ converges weakly in distribution to $\frac{\sqrt{2}}{\sqrt{\pi}}$ a Gaussian free field.

level lines of $h_{1}^{\varepsilon}-h_{2}^{\varepsilon}$	\rightarrow	level lines of GFF	
$(k, k \in \mathbb{Z})$		$\left(\frac{\sqrt{\pi}}{\sqrt{2}} k, k \in \mathbb{Z}\right)$	
$\left(k+\frac{1}{2}, k \in \mathbb{Z}\right)$		$\left(\frac{\sqrt{\pi}}{2 \sqrt{2}}(2 k+1), k \in \mathbb{Z}\right)$	d-dimer loops

