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T I 
! Let G = (V,E) be a finite graph embedded in the plane.
! A spin configuration σ assigns to every vertex x a spin
σx ∈ {−1, 1}.

+1/-1 are represented by green/blue dots.

Set of spin configurations : {−1, 1}V.
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! Edges of G are assigned positive coupling constants: J = (Je)e∈E.
! Ising Boltzmann measure:

∀σ ∈ {−1, 1}V, PIsing(σ) =

exp
(
∑

e=xy∈E
Jxyσxσy

)

ZIsing(G, J)
,

where ZIsing(G, J) =
∑

σ∈{−1,1}V
exp



∑

e=xy∈E
Jxyσxσy


 is the Ising

partition function.
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C (W (), I, P, S)
The scaling limit of polygon configurations separating ±1 clusters of the
critical XOR-Ising model are contour lines of the Gaussian free field,
with the heights of the contours spaced

√
2 times as far apart as they

are for [...] the double dimer model on the square lattice.



R

T (B, T)
! Polygon configurations of the XOR-Ising model have the same law

as a family of contours in a bipartite dimer model.
! This family of contours are the level lines of a restriction of the

height function of this bipartite dimer model.

R
Proved when the graph G is embedded in a surface of genus g, g ≥ 0, or
when G is planar, infinite.

! When the XOR-Ising model is critical, so is the bipartite dimer
model.

! Using results of [dT] on the convergence of the height function,
this gives partial proof of Wilson’s conjecture.



L   [K  W]
! Polygon configuration: subset of edges s.t. each vertex is incident

to an even number of edges.

! Write, eJeσxσy = eJe(δ{σx=σy} + e−2Jeδ{σx!σy}).

The partition function is then equal to (LTE):

ZIsing(G, J) =
∑

σ∈{−1,1}V

∏

e=xy∈E
eJeσxσy = C

∑

P∗∈P(G∗)

∏

e∗∈P∗
e−2Je .

! Geometric interp: polygon config. separate clusters of ±1 spins.
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! Write, eJeσxσy = cosh(Je)(1 + σxσy tanh(Je)).

The partition function is then equal to (HTE):

ZIsing(G, J) =
∑

σ∈{−1,1}V

∏

e=xy∈E
eJeσxσy = C′

∑

P∈P(G)

∏

e∈P
tanh(Je).

! No geometric interpretation using spin configurations.
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! Take 2 independent copies (red/blue) of an Ising model on G,
with coupling constants J.

! Using the LTE, consider the probability measure P2-Ising:

∀ (P∗,P∗) ∈ P(G∗)2, P2-Ising(P∗,P∗) =
C2( ∏

e∗∈P∗
e−2Je

)( ∏
e∗∈P∗

e−2Je
)

Z2-Ising(G, J)
,

where Z2-Ising(G, J) = ZIsing(G, J)2.
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! Let (P∗,P∗) be two polygon configurations.
! Consider the superimposition P∗ ∪ P∗.

Superimposition P∗ ∪ P∗

! Define two new edge configurations:
! Mono(P∗,P∗): monochromatic edges.
! Bi(P∗,P∗): bichromatic edges.



M 

Monochromatic edge configuration of P∗ ∪ P∗.

L
Mono(P∗,P∗) is the polygon configuration separating ±1 clusters of the
corresponding XOR-Ising spin configuration.

G: understand the law of monochromatic edge configurations.
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! Let (P∗,P∗) be two polygon configurations.
! Mono(P∗,P∗) separates the surface into connected comp. (Σi)i.

Σ6

Σ7

Σ2

Σ5

Σ9 Σ8

Σ4

Σ1

Σ3

L
For every i, the restriction of Bi(P∗,P∗) to Σi is the LTE of an Ising
configuration on GΣi , with coupling constants (2Je).
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L
Let P∗ be a polygon configuration, separating the surface into nP

connected components. For every i, let P∗i be a polygon configuration
of G∗

Σi
.

Then, there are 2nP pairs of polygon configurations (P∗,P∗) having P∗

as monochromatic edges, and P∗1 , · · · ,P∗nP
as bichromatic edges.

Denote by W(P∗) the contribution to Z2-Ising(G, J) of the pairs of
polygon configurations (P∗,P∗) such that Mono(P∗,P∗) = P∗.

C
! W(P∗) = C

(∏
e∗∈P∗ e−2Je

)∏nP
i=1

(
2ZLT(G∗

Σi
, 2J)
)
.

! Z2-Ising(G, J) =
∑

P∗∈P(G∗) W(P∗).

P2-Ising(Mono = P∗) = W(P∗)
Z2-Ising(G,J) .



M  

W(P∗) = C
(∏

e∗∈P∗ e−2Je
)∏nP

i=1

(
2ZLT(G∗

Σi
, 2J)
)
.

I [N]: use Kramers and Wannier high temperature
expansion in each connected component Σi.

ZLT(G∗Σi , 2J) = C(Σi)ZHT(GΣi , 2J).

Low temp. expansion on G∗
Σi

High temp. expansion on GΣi .



M  
Combining the terms:
P
For every polygon configuration P∗,

W(P∗) = C
∏

e∗∈P∗

(
2e−2Je

1 + e−4Je

) ∑

{P∈P(G): P∗∩P=∅}

∏

e∈P

(
1 − e−4Je

1 + e−4Je

)

P2-Ising(Mono = P∗) =

∏
e∗∈P∗

(
2e−2Je
1+e−4Je

) ∑
{P∈P(G): P∗∩P=∅}

∏
e∈P

(
1−e−4Je
1+e−4Je

)

∑

P∗∈P(G∗)
···
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If the graph is embedded in a surface Σ of genus g ≥ 0.
! Consider H1(Σ,Z/2Z) , {0, 1}2g .
! Family of Ising models, indexed by ε ∈ {0, 1}2g .
! The double Ising model partition function is defined as:

Z2-Ising(G, J) =
∑

ε∈{0,1}2g
ZεIsing(G, J)2.



F   - / 
.         GQ

! The bipartite graph GQ:



T    GQ

! A dimer configuration of GQ is a subset of edges M such that
each vertex is incident to exactly on edge of M.

! Positive weight function ν on the edges.
! Dimer Boltzmann measure: ∀M ∈M(GQ), Pdimer(M) =

∏
e∈EQ νe

Zdimer(GQ ,ν) .
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F    
! From pairs of polygon configurations to the 6-vertex model on

the medial graph [Nienhuis]

1 2 3 4 5 6

1 2 3 4 5 6Local mapping

! Weights: ω12 =
2e−2Je
1+e−4Je , ω34 =

1−e−4Je
1+e−4Je , ω56 = 1.
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! From the 6-vertex model to the dimer model [Wu-Lin, Dubédat]

1 2 3 4 5 6

= 1+
2 2

1

1

1 1

1

ω

ω

ω
12

34

12

ω
34

ω ω ω ω 1 1
12 12 34 34

ω
12

ω
12

ω
34

ω
34

34
ω

12
ω

Local mapping
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! To every dimer configuration M of GQ, assign

Poly(M) = (Poly1(M),Poly2(M)),

the pair of polygon configurations given by the mappings.

T
For every polygon configuration P∗ of G∗,

P2-Ising(Mono = P∗) = Pdimer(Poly1 = P∗)
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Pictorial proof of “Polygon configurations of the graph G∗ are level
lines of the restriction of the height function.”
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! A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

! A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

! A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

! A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).
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! Take the circumcenters.
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! Join the circumcenters to the vertices of the graph G.
⇒ Associated rhombus graph G..
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! Join the circumcenters to the vertices of the graph G.
⇒ Associated rhombus graph G..
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! To every edge e is assigned the half-angle θe of the corresponding
rhombus.

e

θe



C - I    

! The Ising model defined on an isoradial graph G is critical if the
coupling constants are given by, for every edge e:

Je =
1
2
log
(
1 + sin θe
cos θe

)
.

(Z-invariance + duality [Baxter], proof in period. case [Li-Dum.& Cim.])

Example: G = Z2: ∀ edge e, θe = π4 , Je =
1
2 log(1 +

√
2).

⇒ critical temperature computed by Kramers & Wannier.
! The corresponding bipartite graph GQ is also isoradial, and the

weights are the critical dimer weights:
sin

sin

θ

cosθ

θ

cos θ
θ

1

1 1

1
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C (W)
The scaling limit of polygon configurations separating ±1 clusters of the
critical XOR-Ising model are contour lines of the Gaussian free field,
with the heights of the contours spaced

√
2 times as far apart as they

are for [...] the double dimer model on the square lattice.

T (B, T)
XOR-polygon configurations of the double Ising model on G have the
same law as level lines of a restriction of the height function of the
bipartite dimer model on GQ, with an explicit coupling.

T (T)
The height function (as a random distribution) of the critical dimer
model defined on a bipartite graph converges weakly in law to 1√

π
a

Gaussian free field of the plane.
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Suppose we had strong form of convergence, allowing for convergence
of level lines. Then:

level lines of hε → level lines of GFF
(k, k ∈ Z) (

√
πk, k ∈ Z)

(k + 1
2 , k ∈ Z) (

√
π
2 (2k + 1), k ∈ Z) XOR loops

For the critical double dimer model. The height function is hε1 − hε2,
where h1 and h2 are independent, and each converges weakly in
distribution to 1√

π
a Gaussian free field. Thus, h1 − h2 converges

weakly in distribution to
√
2√
π
a Gaussian free field.

level lines of hε1 − hε2 → level lines of GFF
(k, k ∈ Z) (

√
π√
2
k, k ∈ Z)

(k + 1
2 , k ∈ Z) (

√
π

2
√
2
(2k + 1), k ∈ Z) d-dimer loops


