HEIGHT REPRESENTATION OF XOR-ISING LOOPS VIA BIPARTITE DIMERS

Béatrice de Tilière Université Pierre et Marie Curie, Paris

joint work with Cédric Boutillier

Inhomogeneous Random Systems, IHP January 27, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The Ising model

- Let G = (V, E) be a finite graph embedded in the plane.
- A spin configuration σ assigns to every vertex x a spin $\sigma_x \in \{-1, 1\}$.

Set of spin configurations : $\{-1, 1\}^{V}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Ising model

- Edges of G are assigned positive coupling constants: $J = (J_e)_{e \in E}$.
- ► Ising Boltzmann measure:

$$\forall \sigma \in \{-1,1\}^{\vee}, \quad \mathbb{P}_{\text{Ising}}(\sigma) = \frac{\exp\left(\sum_{e=xy \in \mathsf{E}} J_{xy}\sigma_{x}\sigma_{y}\right)}{Z_{\text{Ising}}(\mathsf{G},J)},$$

where $Z_{\text{Ising}}(\mathsf{G},J) = \sum_{\sigma \in \{-1,1\}^{\vee}} \exp\left(\sum_{e=xy \in \mathsf{E}} J_{xy}\sigma_{x}\sigma_{y}\right)$ is the Ising partition function.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

THE XOR-ISING MODEL

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

THE XOR-ISING MODEL

Conjecture (Wilson (11), Ikhlef, Picco, Santachiara)

The scaling limit of polygon configurations separating ± 1 clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced $\sqrt{2}$ times as far apart as they are for [...] the double dimer model on the square lattice.

Result

THEOREM (BOUTILLIER, DT)

- Polygon configurations of the XOR-Ising model have the same law as a family of contours in a bipartite dimer model.
- This family of contours are the level lines of a restriction of the height function of this bipartite dimer model.

Remark

Proved when the graph G is embedded in a surface of genus $g, g \ge 0$, or when G is planar, infinite.

- ► When the XOR-Ising model is *critical*, so is the bipartite dimer model.
- ► Using results of [dT] on the convergence of the height function, this gives partial proof of Wilson's conjecture.

LOW TEMPERATURE EXPANSION [KRAMERS & WANNIER]

 Polygon configuration: subset of edges s.t. each vertex is incident to an even number of edges.

• Write,
$$e^{J_e \sigma_x \sigma_y} = e^{J_e} (\delta_{\{\sigma_x = \sigma_y\}} + e^{-2J_e} \delta_{\{\sigma_x \neq \sigma_y\}}).$$

The partition function is then equal to (LTE):

$$Z_{\text{Ising}}(\mathsf{G},J) = \sum_{\sigma \in \{-1,1\}^{\mathsf{V}}} \prod_{\mathsf{e} = \mathsf{x}\mathsf{y} \in \mathsf{E}} e^{J_{\mathsf{e}}\sigma_{\mathsf{x}}\sigma_{\mathsf{y}}} = \mathfrak{C} \sum_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)} \prod_{\mathsf{e}^* \in \mathsf{P}^*} e^{-2J_{\mathsf{e}}}$$

► Geometric interp: polygon config. separate clusters of ±1 spins.

HIGH TEMPERATURE EXPANSION [KRAMERS & WANNIER]

• Write,
$$e^{J_e \sigma_x \sigma_y} = \cosh(J_e)(1 + \sigma_x \sigma_y \tanh(J_e)).$$

The partition function is then equal to (HTE):

$$Z_{\text{Ising}}(\mathbf{G}, J) = \sum_{\sigma \in \{-1,1\}^{\mathsf{V}}} \prod_{\mathbf{e} = \mathsf{x} \mathsf{y} \in \mathsf{E}} e^{J_{\mathbf{e}} \sigma_{\mathsf{x}} \sigma_{\mathsf{y}}} = \mathcal{C}' \sum_{\mathsf{P} \in \mathcal{P}(\mathsf{G})} \prod_{\mathbf{e} \in \mathsf{P}} \tanh(J_{\mathbf{e}}).$$

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

▶ No geometric interpretation using spin configurations.

DOUBLE ISING MODEL

- Take 2 independent copies (red/blue) of an Ising model on G, with coupling constants J.
- Using the LTE, consider the probability measure $\mathbb{P}_{2\text{-Ising}}$:

$$\forall (\mathbf{P}^*, \mathbf{P}^*) \in \mathcal{P}(\mathbf{G}^*)^2, \quad \mathbb{P}_{2\text{-Ising}}(\mathbf{P}^*, \mathbf{P}^*) = \frac{\mathcal{C}^2(\prod_{\mathbf{e}^* \in \mathbf{P}^*} \mathbf{e}^{-2J_{\mathbf{e}}})(\prod_{\mathbf{e}^* \in \mathbf{P}^*} \mathbf{e}^{-2J_{\mathbf{e}}})}{Z_{2\text{-Ising}}(\mathbf{G}, J)},$$

where $Z_{2-\text{Ising}}(G, J) = Z_{\text{Ising}}(G, J)^2$.

DOUBLE ISING MODEL

- ▶ Let (**P**^{*}, **P**^{*}) be two polygon configurations.
- Consider the superimposition $P^* \cup P^*$.

Superimposition $\mathsf{P}^* \cup \mathsf{P}^*$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ●

- Define two new edge configurations:
 - ▶ Mono(P^{*}, P^{*}): monochromatic edges.
 - ▶ Bi(P^{*}, P^{*}): bichromatic edges.

Monochromatic edges

Monochromatic edge configuration of $P^* \cup P^*$.

Lemma

 $Mono(P^*, P^*)$ is the polygon configuration separating ±1 clusters of the corresponding XOR-Ising spin configuration.

GOAL: understand the law of monochromatic edge configurations.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

BICHROMATIC EDGE CONFIGURATIONS

- ▶ Let (**P**^{*}, **P**^{*}) be two polygon configurations.
- Mono($\mathsf{P}^*, \mathsf{P}^*$) separates the surface into connected comp. $(\Sigma_i)_i$.

Lemma

For every *i*, the restriction of $\text{Bi}(\mathsf{P}^*, \mathsf{P}^*)$ to Σ_i is the LTE of an Ising configuration on G_{Σ_i} , with coupling constants $(2J_{\mathsf{e}})$.

PROBABILITY OF MONOCHROMATIC CONFIGURATIONS

Lemma

Let P^* be a polygon configuration, separating the surface into n_P connected components. For every *i*, let P^*_i be a polygon configuration of $G^*_{\Sigma_i}$.

Then, there are $2^{n_{\mathsf{P}}}$ pairs of polygon configurations ($\mathsf{P}^*, \mathsf{P}^*$) having P^* as monochromatic edges, and $\mathsf{P}^*_1, \cdots, \mathsf{P}^*_{n_{\mathsf{P}}}$ as bichromatic edges.

Denote by $W(\mathsf{P}^*)$ the contribution to $Z_{2\text{-Ising}}(\mathsf{G}, J)$ of the pairs of polygon configurations $(\mathsf{P}^*, \mathsf{P}^*)$ such that $\operatorname{Mono}(\mathsf{P}^*, \mathsf{P}^*) = \mathsf{P}^*$.

COROLLARY

 $\blacktriangleright W(\mathsf{P}^*) = \mathcal{C}(\prod_{\mathsf{e}^* \in \mathsf{P}^*} e^{-2J_\mathsf{e}}) \prod_{i=1}^{n_\mathsf{P}} \left(2Z_{\mathrm{LT}}(\mathsf{G}^*_{\Sigma_i}, 2J) \right).$

• $Z_{2-\text{Ising}}(\mathsf{G},J) = \sum_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)} W(\mathsf{P}^*).$

$$\mathbb{P}_{2\text{-Ising}}(\text{Mono} = \mathsf{P}^*) = \frac{W(\mathsf{P}^*)}{Z_{2\text{-Ising}}(\mathsf{G}, J)}.$$

Mixed contour expansion

$$W(\mathsf{P}^*) = \mathcal{C}(\prod_{\mathsf{e}^* \in \mathsf{P}^*} e^{-2J_\mathsf{e}}) \prod_{i=1}^{n_\mathsf{P}} \left(2Z_{\mathrm{LT}}(\mathsf{G}^*_{\Sigma_i}, 2J) \right).$$

IDEA [NIENHUIS]: use Kramers and Wannier high temperature expansion in each connected component Σ_i .

$$Z_{\mathrm{LT}}(\mathsf{G}^*_{\Sigma_i}, 2J) = \mathcal{C}(\Sigma_i) Z_{\mathrm{HT}}(\mathsf{G}_{\Sigma_i}, 2J).$$

Low temp. expansion on $G^*_{\Sigma_i}$

High temp. expansion on G_{Σ_i} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Mixed contour expansion

Combining the terms:

Proposition

For every polygon configuration P^* ,

$$W(\mathsf{P}^*) = \mathcal{C}\prod_{\mathsf{e}^* \in \mathsf{P}^*} \left(\frac{2e^{-2J_\mathsf{e}}}{1 + e^{-4J_\mathsf{e}}} \right) \sum_{\{\mathsf{P} \in \mathcal{P}(\mathsf{G}): \, \mathsf{P}^* \cap \mathsf{P} = \emptyset\}} \prod_{\mathsf{e} \in \mathsf{P}} \left(\frac{1 - e^{-4J_\mathsf{e}}}{1 + e^{-4J_\mathsf{e}}} \right)$$

$$\mathbb{P}_{2\text{-Ising}}(Mono = \mathsf{P}^*) = \frac{\prod\limits_{e^* \in \mathsf{P}^*} \left(\frac{2e^{-2J_{\mathsf{e}}}}{1+e^{-4J_{\mathsf{e}}}}\right) \sum\limits_{\{\mathsf{P} \in \mathcal{P}(\mathsf{G}): \ \mathsf{P}^* \cap \mathsf{P} = \emptyset\}} \prod\limits_{e \in \mathsf{P}} \left(\frac{1-e^{-4J_{\mathsf{e}}}}{1+e^{-4J_{\mathsf{e}}}}\right)}{\sum\limits_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)}}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

If the graph is embedded in a surface Σ of genus $g \ge 0$.

- Consider $H_1(\Sigma, \mathbb{Z}/2\mathbb{Z}) \simeq \{0, 1\}^{2g}$.
- ▶ Family of Ising models, indexed by $\varepsilon \in \{0, 1\}^{2g}$.
- The double Ising model partition function is defined as:

$$Z_{2-\text{Ising}}(\mathsf{G},J) = \sum_{\varepsilon \in \{0,1\}^{2g}} Z_{\text{Ising}}^{\varepsilon}(\mathsf{G},J)^2.$$

From pairs of non-intersecting primal/dual polygon config. to the dimer model on the bipartite graph G^Q

► The bipartite graph G^Q:

The dimer model on G^Q

► A dimer configuration of G^Q is a subset of edges M such that each vertex is incident to exactly on edge of M.

- Positive weight function v on the edges.
- ► Dimer Boltzmann measure: $\forall M \in \mathcal{M}(\mathbf{G}^Q)$, $\mathbb{P}_{\text{dimer}}(\mathbf{M}) = \frac{\prod_{e \in \mathbf{Q}} v_e}{Z_{\text{dimer}}(\mathbf{G}^Q, v)}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The dimer model on G^Q

► A dimer configuration of G^Q is a subset of edges M such that each vertex is incident to exactly on edge of M.

- Positive weight function v on the edges.
- ► Dimer Boltzmann measure: $\forall M \in \mathcal{M}(G^Q)$, $\mathbb{P}_{dimer}(M) = \frac{\prod_{e \in Q} v_e}{Z_{dimer}(G^Q, v)}$.

FIRST STEP OF THE MAPPING

 From pairs of polygon configurations to the 6-vertex model on the medial graph [Nienhuis]

• Weights: $\omega_{12} = \frac{2e^{-2I_{e}}}{1+e^{-4I_{e}}}, \ \omega_{34} = \frac{1-e^{-4I_{e}}}{1+e^{-4I_{e}}}, \ \omega_{56} = 1.$

FIRST STEP OF THE MAPPING

 From pairs of polygon configurations to the 6-vertex model on the medial graph [Nienhuis]

• Weights: $\omega_{12} = \frac{2e^{-2I_{e}}}{1+e^{-4I_{e}}}, \ \omega_{34} = \frac{1-e^{-4I_{e}}}{1+e^{-4I_{e}}}, \ \omega_{56} = 1.$

Second step of the mapping

▶ From the 6-vertex model to the dimer model [Wu-Lin, Dubédat]

・ロト・西ト・ヨト・ヨー もんぐ

Conclusion

• To every dimer configuration M of G^Q , assign

 $Poly(M) = (Poly_1(M), Poly_2(M)),$

the pair of polygon configurations given by the mappings.

Theorem

For every polygon configuration P^* of G^* ,

$$\mathbb{P}_{2\text{-Ising}}(Mono = \mathsf{P}^*) = \mathbb{P}_{dimer}(Poly_1 = \mathsf{P}^*)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● 今へで

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Pictorial proof of "Polygon configurations of the graph G^* are level lines of the restriction of the height function."

► A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1, and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ●

► A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1, and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

► A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1, and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► A graph G is isoradial if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1, and that the circumcenters are in the interior of the faces (Duffin-Mercat-Kenyon).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

► Take the circumcenters.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

► Join the circumcenters to the vertices of the graph G. ⇒ Associated rhombus graph G^{\diamond} .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

► Join the circumcenters to the vertices of the graph G. ⇒ Associated rhombus graph G^{\diamond} .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

• To every edge *e* is assigned the half-angle θ_e of the corresponding rhombus.

CRITICAL 2-DIMENSIONAL ISING MODEL ON ISORADIAL GRAPHS

► The Ising model defined on an isoradial graph G is critical if the coupling constants are given by, for every edge e:

$$J_{\mathsf{e}} = \frac{1}{2} \log \left(\frac{1 + \sin \theta_{\mathsf{e}}}{\cos \theta_{\mathsf{e}}} \right)$$

(Z-invariance + duality [Baxter], proof in period. case [Li-Dum.& Cim.])

Example:
$$G = \mathbb{Z}^2$$
: \forall edge $e, \theta_e = \frac{\pi}{4}, J_e = \frac{1}{2}\log(1 + \sqrt{2}).$

 \Rightarrow critical temperature computed by Kramers & Wannier.

The corresponding bipartite graph G^Q is also isoradial, and the weights are the critical dimer weights:

BACK TO WILSON'S CONJECTURE

Conjecture (Wilson)

The scaling limit of polygon configurations separating ± 1 clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced $\sqrt{2}$ times as far apart as they are for [...] the double dimer model on the square lattice.

THEOREM (BOUTILLIER, DT)

XOR-polygon configurations of the double Ising model on G have the same law as level lines of a restriction of the height function of the bipartite dimer model on G^Q , with an explicit coupling.

Theorem (dT)

The height function (as a random distribution) of the critical dimer model defined on a bipartite graph converges weakly in law to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field of the plane.

BACK TO WILSON'S CONJECTURE

Suppose we had strong form of convergence, allowing for convergence of level lines. Then:

level lines of h^{ε}	\rightarrow	level lines of GFF	
$(k,k\in\mathbb{Z})$		$(\sqrt{\pi}k, k \in \mathbb{Z})$	
$(k+rac{1}{2},k\in\mathbb{Z})$		$(\frac{\sqrt{\pi}}{2}(2k+1), k \in \mathbb{Z})$	XOR loops

For the critical double dimer model. The height function is $h_1^{\varepsilon} - h_2^{\varepsilon}$, where h_1 and h_2 are independent, and each converges weakly in distribution to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field. Thus, $h_1 - h_2$ converges weakly in distribution to $\frac{\sqrt{2}}{\sqrt{\pi}}$ a Gaussian free field.

level lines of $h_1^{\varepsilon} - h_2^{\varepsilon}$	\rightarrow	level lines of GFF	
$(k,k\in\mathbb{Z})$		$(rac{\sqrt{\pi}}{\sqrt{2}}k,k\in\mathbb{Z})$	
$(k+rac{1}{2},k\in\mathbb{Z})$		$(\frac{\sqrt{\pi}}{2\sqrt{2}}(2k+1), k \in \mathbb{Z})$	d-dimer loops