Percolation on isoradial graphs

Ioan Manolescu

University of Fribourg

26th January 2016

Question: is there an infinite connected component?

Question: is there an infinite connected component?

2 / 29

Question: is there an infinite connected component?

Question: is there an infinite connected component?

Homogeneous bond percolation on \mathbb{Z}^2

Theorem (Kesten 80)

 $p \leq \frac{1}{2}$, a.s. no infinite cluster;

 $p > \frac{1}{2}$, a.s. existence of infinite cluster.

Homogeneous bond percolation on \mathbb{Z}^2

Theorem (Kesten 80)

 $p \leq \frac{1}{2}$, a.s. no infinite cluster;

 $p > \frac{1}{2}$, a.s. existence of infinite cluster.

Method:

 $\mathsf{self}\text{-}\mathsf{duality} \ + \ \mathsf{RSW} \ + \ \mathsf{sharp}\text{-}\mathsf{threshold}$

$$\mathbb{P}_{\frac{1}{2}}\left(\boxed{}\right) = \frac{1}{2} \Rightarrow \mathbb{P}_{\frac{1}{2}}\left(\boxed{}\right) \geq c \Rightarrow \mathbb{P}_{\frac{1}{2}+\epsilon} \left(0 \leftrightarrow \infty\right) > 0$$

Also implies:

 $p < 1/2 \Rightarrow$ exponential decay.

 $p > 1/2 \Rightarrow$ exponential decay of holes in infinite cluster.

 $p = 1/2 \Rightarrow$ power-law bounds.

Isoradial percolation

Each face of G is inscribed in a circle of radius 1.

 \mathbb{P}_G percolation with p_e :

$$\frac{p_e}{1-p_e} = \frac{\sin(\frac{\pi-\theta(e)}{3})}{\sin(\frac{\theta(e)}{3})}.$$

Inhomogeneous models on lattices

$$p=\frac{1}{2},$$

$$p = 2 \sin \frac{\pi}{18}$$

Inhomogeneous models on lattices

$$p_1 + p_2 = 1$$
,

$$\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1$$

Inhomogeneous models on lattices

$$p_i + q_i = 1$$
,

$$\kappa_{\triangle}(p,q_i,q_i')=p+q_i+q_i'-pq_iq_i'=1$$

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles *ABCD* there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all *N* large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_{p} satisfies the box-crossing property, then it is critical.

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles ABCD there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all N large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_{p} satisfies the box-crossing property, then it is critical.

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles *ABCD* there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all *N* large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_p satisfies the box-crossing property, then it is critical.

Results I: the box-crossing property

For a periodic isoradial graph G with the percolation measure \mathbb{P}_G

Theorem (G.Grimmet, I.M.)

 \mathbb{P}_{G} satisfies the box-crossing property.

Corollary

 \mathbb{P}_G is critical.

- $\mathbb{P}_{\mathbf{p}}(infinite\ cluster) = 0$,
- $\mathbb{P}_{\mathbf{p}+\epsilon}(infinite\ cluster)=1.$

Results I: the box-crossing property

For a periodic isoradial graph G with the percolation measure \mathbb{P}_G

Theorem (G.Grimmet, I.M.)

 \mathbb{P}_G satisfies the box-crossing property.

Corollary

 \mathbb{P}_G is critical.

- $\mathbb{P}_{\mathbf{p}}(infinite\ cluster) = 0$,
- $\mathbb{P}_{\mathbf{p}+\epsilon}(infinite\ cluster)=1.$

Arm exponents

For a critical percolation measure \mathbb{P} , as $n \to \infty$, we expect:

• one-arm exponent $\frac{5}{48}$:

$$\mathbb{P}(\mathrm{rad}(\mathit{C}_0) \geq \mathit{n}) = \mathbb{P}(\mathit{A}_1(\mathit{n})) \approx \mathit{n}^{-\mathit{\rho}_1},$$

• 2j-alternating-arms exponents $\frac{4j^2-1}{12}$:

$$\mathbb{P}[A_{2j}(n)] \approx n^{-\rho_{2j}}.$$

Moreover ρ_i does not depend on the underlying model.

Power-law bounds are given by the box-crossing property.

8 / 29

Arm exponents

For a critical percolation measure \mathbb{P} , as $n \to \infty$, we expect:

• one-arm exponent $\frac{5}{48}$:

$$\mathbb{P}(\mathrm{rad}(C_0) \geq n) = \mathbb{P}(A_1(n)) \approx n^{-\rho_1},$$

• 2j-alternating-arms exponents $\frac{4j^2-1}{12}$:

$$\mathbb{P}[A_{2j}(n)] \approx n^{-\rho_{2j}}.$$

Moreover ρ_i does not depend on the underlying model.

Power-law bounds are given by the box-crossing property.

For $\mathbb{P}_{\mathbf{p}}$ critical we expect:

Exponents at criticality.

Exponents near criticality.

Volume exponent
$$\delta = \frac{91}{5}$$
:

$$\mathbb{P}_{\mathbf{p}}(|C_0|=n)\approx n^{-1-1/\delta}.$$

Connectivity exponent
$$\eta = \frac{5}{24}$$
: $\mathbb{P}_{\mathbf{n}}(0 \leftrightarrow x) \approx |x|^{-\eta}$.

Radius exponent
$$\rho = \frac{48}{5}$$
:

$$\mathbb{P}_{\mathbf{p}}(\mathrm{rad}(C_0)=n)\approx n^{-1-1/\rho}.$$

$$(\rho = \frac{1}{\rho_1})$$

Percolation probability $\beta = \frac{5}{36}$:

$$\mathbb{P}_{\mathbf{p}+\epsilon}(|\mathit{C}_0|=\infty)pprox \epsilon^{eta}$$
 as $\epsilon\downarrow 0$.

Correlation length $\nu = \frac{4}{3}$:

$$\xi(\mathbf{p} - \epsilon) \approx \epsilon^{-\nu} \text{ as } \epsilon \downarrow 0, \text{ were } \\ -\frac{1}{n} \log \mathbb{P}_{\mathbf{p} - \epsilon}(\operatorname{rad}(C_0) \ge n) \to_{n \to \infty} \frac{1}{\xi(\mathbf{p} - \epsilon)}.$$

Mean cluster-size $\gamma = \frac{43}{18}$:

$$\mathbb{P}_{\mathbf{p}+\epsilon}(|C_0|;|C_0|<\infty) pprox |\epsilon|^{-\gamma} \text{ as } \epsilon o 0.$$

Gap exponent $\Delta = \frac{91}{36}$:

$$\frac{\mathbb{P}_{p+\epsilon}(|\mathcal{C}_0|^{k+1};|\mathcal{C}_0|<\infty)}{\mathbb{P}_{p+\epsilon}(|\mathcal{C}_0|^k;|\mathcal{C}_0|<\infty)}\approx |\epsilon|^{-\Delta}. \text{ for } k\geq 1, \text{ as } \epsilon\to 0.$$

Kesten scaling relations: these exponents are functions of 1 and 4 arm exponents. (some symmetry conditions are necessary)

Results II: arm exponents

For a periodic isoradial graph ${\it G}$ with the percolation measure $\mathbb{P}_{\it G}$

Theorem (G.Grimmett, I.M.)

For $k \in \{1, 2, 4, \ldots\}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1\mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2\mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.

Results II: arm exponents

For a periodic isoradial graph ${\it G}$ with the percolation measure $\mathbb{P}_{\it G}$

Theorem (G.Grimmett, I.M.)

For $k \in \{1, 2, 4, ...\}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1\mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2\mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.

Corollary

The one arm exponent and the 2j alternating arm exponents are universal for percolation on isoradial graphs.

 ${\it G}$ isoradial graph

G isoradial graph

G isoradial graph

 ${\it G}$ isoradial graph

G* dual isoradial graph

 ${\it G}$ isoradial graph

G* dual isoradial graph

G isoradial graph

G* dual isoradial graph

G isoradial graph

G* dual isoradial graph

 ${\it G}$ isoradial graph

G* dual isoradial graph

G isoradial graph

G* dual isoradial graph

G isoradial graph

G* dual isoradial graph

G isoradial graph

 G^* dual isoradial graph

G isoradial graph

 G^* dual isoradial graph

 G^{\diamond} diamond graph

Track system

G isoradial graph

 G^* dual isoradial graph

 G^{\diamond} diamond graph

Track system

Star-triangle transformation

$$\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1.$$

Take ω , respectively ω' , according to the measure on the left, respectively right. The families of random variables

$$\left(x \stackrel{\omega}{\longleftrightarrow} y : x, y = A, B, C\right), \quad \left(x \stackrel{\omega'}{\longleftrightarrow} y : x, y = A, B, C\right),$$

have the same joint law.

Coupling

where
$$P = (1 - p_0)(1 - p_1)(1 - p_2)$$
.

Path transformation

Strategy of proofs

Transform a regular square lattice into any isoradial graph; preserve properties (such as box-crossing property and arm exponents)

Step 1: From regular square lattice to any embedding of the square lattice.

Step 2: From square lattices to all periodic isoradial graphs

Strategy of proofs

Transform a regular square lattice into any isoradial graph; preserve properties (such as box-crossing property and arm exponents)

Step 1: From regular square lattice to any embedding of the square lattice.

Step 2: From square lattices to all periodic isoradial graphs

Open paths are preserved (unless the deleted edge was part of the path).

Construct a mixed isoradial square lattice:

Construct a mixed isoradial square lattice:

"regular" in the gray part, "irregular" in the rest.

$$\mathbb{P}_{irreg}\left(\begin{array}{|c|} \hline \\ \hline \\ \hline \\ \end{array} \right) \, \geq \, c \cdot \mathbb{P}_{reg}\left(\begin{array}{|c|} \hline \\ \hline \\ \end{array} \right)$$

$$\mathbb{P}_{irreg}\left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \end{array}\right) \, \geq \, c \cdot \mathbb{P}_{reg}\left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

$$\mathbb{P}_{irreg}\left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \end{array}\right) \ \geq \ c \cdot \mathbb{P}_{reg}\left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

$$\mathbb{P}_{irreg}\left(\begin{array}{|c|} \hline \\ \hline \\ \hline \\ \end{array} \right) \, \geq \, c \cdot \mathbb{P}_{reg}\left(\begin{array}{|c|} \hline \\ \hline \\ \end{array} \right)$$

$$\mathbb{P}_{irreg}\left(igg| igg) \geq c \cdot \mathbb{P}_{reg}\left(igg| igg| igg| igg| igg|$$

We obtain lower bounds on horizontal crossings in the irregular part:

$$\mathbb{P}_{irreg}\left(\boxed{ } \right) \ \geq \ c \cdot \mathbb{P}_{reg}\left(\boxed{ } \right)$$

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 18 / 29

$$\mathbb{P}_{irreg}\left(\bigcirc \right) \geq c \cdot \mathbb{P}_{reg}\left(\bigcirc \right)$$

Construct a mixed isoradial square lattice:

$$\mathbb{P}_{irreg}\left(\begin{array}{|c|} \hline \\ \hline \\ \hline \\ \end{array} \right) \ \geq \ c \cdot \mathbb{P}_{reg}\left(\begin{array}{|c|} \hline \\ \hline \\ \end{array} \right)$$

Transport of the arm exponents . . .

... using the same strategy as for the box-crossing property.

$$c_1 \mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n))$$

$$c_1 \mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n))$$

$$c_1\mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n)) \leq c_2\mathbb{P}_{reg}(A_k(n)).$$

$$c_1\mathbb{P}_{sq}(A_k(n)) \leq \mathbb{P}_{gen}(A_k(n)) \leq c_2\mathbb{P}_{sq}(A_k(n)).$$

Isoradial Random Cluster

Let G be a finite isoradial graph

 $\phi_{G,q}$ random cluster with parameters $q \geq 1$ and p_e :

$$\frac{p_{\rm e}}{1-p_{\rm e}} = \sqrt{q} \frac{\sin(\frac{r}{\pi}(\pi-\theta))}{\sin(\frac{r}{\pi}\theta)}, \qquad \text{where } r = \arccos\left(\frac{\sqrt{q}}{2}\right)$$

with the measure given by

$$\phi_{G,q}(\omega) = \frac{1}{Z_G} \prod_{e \in E: \omega_e = 1} p_e \prod_{e \in E: \omega_e = 0} (1 - p_e) \cdot q^{\text{\#clusters}},$$

for $\omega \in \{0,1\}^E$.

24 / 29

Boundary conditions

$$\phi_{G,q}(\omega) = \frac{1}{Z_G} \prod_{e \in E: \omega_e = 1} p_e \prod_{e \in E: \omega_e = 0} (1 - p_e) \cdot q^{\text{\#clusters}},$$

for $\omega \in \{0,1\}^E$.

Different boundary conditions lead to different measures:

- Wired boundary conditions $\Rightarrow \phi^1_{G,q}$: all clusters touching the boundary are counted as the same one.
- Free boundary conditions $\Rightarrow \phi_{G,q}^0$: clusters touching the boundary are counted separately.

$$\phi^0_{G,q} \leq_{\mathrm{st}} \phi^1_{G,q}$$

May define infinite volume measures (on infinite graphs G) by taking limits. These may depend on boundary conditions.

RSW on square lattice

On the regular square lattice:

Theorem (Duminil-Copin, Sidoravicius, Tassion '15)

Depending on q two behaviour are possible:

ullet continuous phase transition $(\phi^0_{\mathbb{Z}^2,q}=\phi^1_{\mathbb{Z}^2,q})$, then

$$\phi\left(\begin{array}{|c|c|c|} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}\right) \geq c > 0 \quad \text{and} \quad \phi\left(\begin{array}{|c|c|} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}\right) \geq c > 0$$

• discontinuous phase transition $(\phi^0_{\mathbb{Z}^2,q} < \phi^1_{\mathbb{Z}^2,q})$, then $\phi^0_{\mathbb{Z}^2,q}$ has exponential decay; $\phi^1_{\mathbb{Z}^2,q}$ has infinite cluster

Moreover, for $q \le 4$, the phase transition is continuous.

Expected: for q > 4, the phase transition is discontinuous.

Work in progress

With H. Duminil-Copin and J.H. Li:

- ullet For all periodic isoradial graphs G, ϕ_G is critical
- The phase transition is of the same type for all periodic isoradial graphs
- For $q \leq 4$, the arm exponents are the same for all periodic isoradial graphs

Idea of proof:

The star-triangle transformation applies to isoradial random cluster. The randomness in the star-triangle transformations is independent. The same estimates apply.

Differences:

Adding/removing edges changes the measure. Scaling relations do not apply.

Thank you!