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General Percolation

Homogeneous percolation on Z2: all edges have intensity p ∈ [0, 1].

Question: is there an infinite connected component?
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scale behaviour! Trivial large
scale behaviour!

Criticality
Scale invariance
Large scale limit.

Universality.
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General Percolation

Homogeneous bond percolation on Z2

p

p

Theorem (Kesten 80)

p ≤ 1
2
, a.s. no infinite cluster;

p > 1
2
, a.s. existence of infinite cluster.

Method:

self-duality + RSW + sharp-threshold

( (( (P1
2

= 1
2 ≥ c P1

2+ǫ (0 ↔ ∞) > 0⇒ ⇒P1
2

Also implies:
p < 1/2⇒ exponential decay.
p > 1/2⇒ exponential decay of holes in infinite cluster.
p = 1/2⇒ power-law bounds.
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Isoradial Percolation

Isoradial percolation

θe
e

Each face of G is inscribed in a circle of
radius 1.
PG percolation with pe :

pe

1− pe
=

sin(π−θ(e)
3 )

sin( θ(e)
3 )

.

1

π

1
2

π
2

0
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Isoradial Percolation

Inhomogeneous models on lattices

p

p

p = 1
2 , p = 2 sin π

18
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Isoradial Percolation

Inhomogeneous models on lattices

p1 p2

p0

p2 p1

p1 + p2 = 1, κ4(p) = p0 + p1 + p2 − p0p1p2 = 1
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Isoradial Percolation

Inhomogeneous models on lattices

p1

p2

p3

p

q1 q′1

q2 q′2

p

q1

q2

q3

pi + qi = 1, κ4(p, qi , q
′
i ) = p + qi + q′i − pqiq

′
i = 1
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Percolation - Details The phase transition

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles ABCD there exists
c(BC/AB) = c(ρ) > 0 s. t. for all N large enough:

P ∈ [c, 1− c]

A

B C

D

N

ρN

Equivalent for the primal and dual model.

Theorem

If Pp satisfies the box-crossing property, then it is critical.
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Percolation - Details The phase transition

Results I: the box-crossing property

For a periodic isoradial graph G with the percolation measure PG

Theorem (G.Grimmet, I.M.)

PG satisfies the box-crossing property.

Corollary

PG is critical.

Pp(infinite cluster) = 0,

Pp+ε(infinite cluster) = 1.
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Percolation - Details Critical exponents

Arm exponents

For a critical percolation measure P,
as n→∞, we expect:

one-arm exponent 5
48 :

P(rad(C0) ≥ n) = P(A1(n)) ≈ n−ρ1 ,

2j-alternating-arms exponents 4j2−1
12 :

P[A2j(n)] ≈ n−ρ2j .

Moreover ρi does not depend on the
underlying model.

O

n

A1(n)

Power-law bounds are given by the box-crossing property.
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Percolation - Details Critical exponents

For Pp critical we expect:

Exponents at criticality.

Volume exponent δ = 91
5

:

Pp(|C0| = n) ≈ n−1−1/δ.

Connectivity exponent η = 5
24

:

Pp(0↔ x) ≈ |x |−η.

Radius exponent ρ = 48
5

:

Pp(rad(C0) = n) ≈ n−1−1/ρ.

(ρ = 1
ρ1

)

Exponents near criticality.

Percolation probability β = 5
36

:

Pp+ε(|C0| =∞) ≈ εβ as ε ↓ 0.

Correlation length ν = 4
3
:

ξ(p− ε) ≈ ε−ν as ε ↓ 0, were
− 1

n
log Pp−ε(rad(C0) ≥ n)→n→∞

1
ξ(p−ε)

.

Mean cluster-size γ = 43
18

:

Pp+ε(|C0|; |C0| <∞) ≈ |ε|−γ as ε→ 0.

Gap exponent ∆ = 91
36

:
Pp+ε(|C0|k+1;|C0|<∞)

Pp+ε(|C0|k ;|C0|<∞)
≈ |ε|−∆. for k ≥ 1, as ε→ 0.

Kesten scaling relations: these exponents are functions of 1 and 4 arm exponents.

(some symmetry conditions are necessary)
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Percolation - Details Critical exponents

Results II: arm exponents

For a periodic isoradial graph G with the percolation measure PG

Theorem (G.Grimmett, I.M.)

For k ∈ {1, 2, 4, . . .} there exist constants c1, c2 > 0 such that:

c1PZ2 [Ak(n)] ≤ PG [Ak(n)] ≤ c2PZ2 [Ak(n)],

for n ∈ N.

Corollary

The one arm exponent and the 2j alternating arm exponents are universal for
percolation on isoradial graphs.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 10 / 29



Percolation - Details Critical exponents

Results II: arm exponents

For a periodic isoradial graph G with the percolation measure PG

Theorem (G.Grimmett, I.M.)

For k ∈ {1, 2, 4, . . .} there exist constants c1, c2 > 0 such that:

c1PZ2 [Ak(n)] ≤ PG [Ak(n)] ≤ c2PZ2 [Ak(n)],

for n ∈ N.

Corollary

The one arm exponent and the 2j alternating arm exponents are universal for
percolation on isoradial graphs.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 10 / 29



Isoradial graphs – details

Isoradial Graphs

G isoradial graph
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Isoradial graphs – details

Isoradial Graphs
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Isoradial graphs – details

Isoradial Graphs

G isoradial graph

G∗ dual isoradial graph

G 3 diamond graph

Track system
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Isoradial graphs – details

Isoradial Graphs

G isoradial graph

G∗ dual isoradial graph
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Star–triangle transformation

Star–triangle transformation

A

C

B

C

A

B
O

p0

p1

p2

κ4(p) = p0 + p1 + p2 − p0p1p2 = 1.

Take ω, respectively ω′, according to the measure on the left, respectively right.
The families of random variables(

x
ω←→ y : x , y = A,B,C

)
,
(

x
ω′

←→ y : x , y = A,B,C
)
,

have the same joint law.
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Star–triangle transformation

Coupling

and similarly for all pairs of edges

(1− p0)p1p2
P

p0p1p2
P

p0(1− p1)p2
P

p0p1(1− p2)

P

(1− p0)p1p2
P

p0p1p2
P

p0(1− p1)p2
P

p0p1(1− p2)

P

and similarly for all single edges

T

T

S

S

S

T

where P = (1− p0)(1− p1)(1− p2).
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Star–triangle transformation

Path transformation

A

B C

A

B C

A

B C

A

B C

A

B C

O

O

A

B C

A

B C
O
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Proof for box-crossing property

Strategy of proofs

Transform a regular square lattice into any isoradial graph; preserve properties
(such as box-crossing property and arm exponents)

Step 1: From regular square lattice to any embedding of the square lattice.

Step 2: From square lattices to all periodic isoradial graphs
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Proof for box-crossing property From Z2 to isoradial square lattice.

Track exchange

Two parallel tracks s1 and s2 with no intersection between them.
We may exchange s1 and s2 using star–triangle transformations.
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Proof for box-crossing property From Z2 to isoradial square lattice.

Principal
outcome

Secondary
outcome

Probability
of secondary
outcome

pπ−θ1
pθ2

pθ1pπ−θ2

pπ−θ1
pπ−θ2+θ1

pθ1pθ2−θ1

pθ2pπ−θ2+θ1

pπ−θ2
pθ2−θ1

pθ2pπ−θ2+θ1

pπ−θ2
pθ2−θ1

pπ−θ1
pπ−θ2+θ1

pθ1pθ2−θ1

Initial
configuration

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

Open paths are
preserved (unless
the deleted edge was
part of the path).
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Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of horizontal crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.
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Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of horizontal crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

We obtain lower bounds on horizontal crossings in the irregular part:

c · Preg( ) ( )Pirreg ≥
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Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of horizontal crossings

Geo

1 1

We obtain lower bounds on horizontal crossings in the irregular part:

c · Preg( ) ( )Pirreg ≥
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Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From Z2 to isoradial square lattice.

Transport of vertical crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.

Ioan Manolescu (University of Fribourg) Percolation on isoradial graphs 26th January 2016 19 / 29



Proof for box-crossing property From square lattices to general graphs

Track stacking
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Proof for box-crossing property From square lattices to general graphs

Track stacking

c · Preg( ) ( )Pirreg ≥
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Proof for box-crossing property Arm exponents

Transport of the arm exponents . . .

. . . using the same strategy as for the box-crossing property.
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Proof for box-crossing property Arm exponents

Square lattices
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Proof for box-crossing property Arm exponents

Square lattices

c1Preg (Ak(n)) ≤ Pirreg (Ak(n))
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Proof for box-crossing property Arm exponents

Square lattices

c1Preg (Ak(n)) ≤ Pirreg (Ak(n)) ≤ c2Preg (Ak(n)).
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Proof for box-crossing property Arm exponents

From square lattices to general graphs
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Proof for box-crossing property Arm exponents

From square lattices to general graphs

c1Psq(Ak(n)) ≤ Pgen(Ak(n)) ≤ c2Psq(Ak(n)).
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Isoradial FK percolation

Isoradial Random Cluster

Let G be a finite isoradial graph θe
e

φG ,q random cluster with parameters q ≥ 1 and pe :

pe

1− pe
=
√

q
sin( r

π (π − θ))

sin( r
π θ)

, where r = arccos

(√
q

2

)
with the measure given by

φG ,q(ω) =
1

ZG

∏
e∈E :ωe=1

pe

∏
e∈E :ωe=0

(1− pe) · q#clusters,

for ω ∈ {0, 1}E .
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Isoradial FK percolation

Boundary conditions

φG ,q(ω) =
1

ZG

∏
e∈E :ωe=1

pe

∏
e∈E :ωe=0

(1− pe) · q#clusters,

for ω ∈ {0, 1}E .

Different boundary conditions lead to different measures:

Wired boundary conditions ⇒ φ1
G ,q:

all clusters touching the boundary are counted as the same one.
Free boundary conditions ⇒ φ0

G ,q:
clusters touching the boundary are counted separately.

φ0
G ,q ≤st φ

1
G ,q

May define infinite volume measures (on infinite graphs G ) by taking limits.
These may depend on boundary conditions.
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Isoradial FK percolation

RSW on square lattice

On the regular square lattice:

Theorem (Duminil-Copin, Sidoravicius, Tassion ’15)

Depending on q two behaviour are possible:

continuous phase transition (φ0
Z2,q = φ1

Z2,q), then

φ( ) ≥ c > 0 φ( ) ≥ c > 0and

discontinuous phase transition (φ0
Z2,q < φ1

Z2,q), then

φ0
Z2,q has exponential decay; φ1

Z2,q has infinite cluster

Moreover, for q ≤ 4, the phase transition is continuous.

Expected: for q > 4, the phase transition is discontinuous.
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Isoradial FK percolation

Work in progress

With H. Duminil-Copin and J.H. Li:

For all periodic isoradial graphs G , φG is critical

The phase transition is of the same type for all periodic isoradial graphs

For q ≤ 4, the arm exponents are the same for all periodic isoradial graphs

Idea of proof:
The star-triangle transformation applies to isoradial random cluster.
The randomness in the star-triangle transformations is independent.
The same estimates apply.

Differences:
Adding/removing edges changes the measure.
Scaling relations do not apply.
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Isoradial FK percolation

Thank you!
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