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The model

Random walk in random potential (RWRP) on Zd , with d ≥ 1,
has three ingredients.

(i) The underlying walk: Simple RW with a finite set R ∈ Zd

of allowed steps (covers directed and undirected). Induces a
probability measure Px on paths starting at x ∈ Zd .
Expectations denoted by Ex .

(ii) The environment: Take a probability space (Ω,S,P) with a
group {Tx : x ∈ Zd} of measurable transformations. Assume
P is invariant and ergodic w.r.t. this group. Expectations
denoted by E. Each ω ∈ Ω is an environment.

(iii) The potential: Take a measurable function V : Ω×R → R.
For every ω ∈ Ω, x ∈ Zd and z ∈ R, the quantity V (Txω, z)
is the potential at the ordered pair (x , x + z) in the
environment ω.



Given n ≥ 1 and ω ∈ Ω, define the quenched RWRP probability
measure

Qω
n,x((Xi )i≥0 ∈ ·) =

1

Zωn,x
Ex

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)1I{(Xi )i≥0∈·}

]
on paths starting at any x ∈ Zd . Here, (Xi )i≥0 denotes the
random path with increments Zi+1 = Xi+1 − Xi , and

Zωn,x = Ex

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)

]
is the quenched partition function.

We can take the underlying walk to be an RWRE with kernel given
by some p : Ω×R → [0, 1]. This is equivalent to adding
log p(ω, z) + log |R| to the potential V (ω, z).
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The canonical environment space: Assume without much LOG
that Ω = ΓZd

for some Borel Γ ⊂ R and S is the Borel σ-algebra.
Environments are of the form ω = (ωy )y∈Zd , and {Tx : x ∈ Zd}
are translations defined by (Txω)y = ωx+y .

Some extra assumptions (for later parts of the talk):

(Dir) Directed nearest-neighbor walk: R = {e1, . . . , ed}, the
standard basis for Rd , with d ≥ 2.

(Ind) Independent environment: The components of ω = (ωx)x∈Zd

are i.i.d. under P.

(Loc) Local potential: There exists a Vo : Γ×R → R such that
V (ω, z) = Vo(ω0, z) for every ω ∈ Ω and z ∈ R.

These assumptions enable us to use martingale techniques.
If Vo does not depend on z , then RWRP is a directed polymer.
We keep the z dependence to cover RWRE as well as for certain
large deviations applications.
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Quenched free energy and large deviations

In a previous work [RasSepYil2013], we proved the P-a.s. existence
of the quenched free energy

Λq(V ) := lim
n→∞

1

n
logZωn,0.

The statement of this result requires the following definition.

Definition
A measurable function F : Ω×R → R is said to be a centered
cocycle if it satisfies the following conditions.

(i) Centered: E[|F (·, z)|] <∞ and E[F (·, z)] = 0 for every
z ∈ R.

(ii) Cocycle:
n−1∑
i=0

F (Txiω, zi+1) depends only on ω ∈ Ω, x0 and xn.

The class of centered cocycles is denoted by K0.
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Theorem (RasSepYil2013)

The limiting quenched free energy exists P-a.s., is deterministic,
and satisfies

Λq(V ) = inf
F∈K0

P- ess sup
ω

{
log

(∑
z∈R

1

|R|
eV (ω,z)+F (ω,z)

)}
=: inf

F∈K0

K (V ,F ) ∈ (−∞,∞].

I The result is for V : Ω×R` → R with arbitrary ` ≥ 1.

I Gives two variational formulas for Λq(V ), but we omit the
second one here.

I Technical condition: V ∈ L. It holds if P is stationary &
ergodic and V is bounded, or if the environment is i.i.d. and
V ∈ Lp(P) for some p > d . In general, tradeoff between the
degree of mixing in P and the moment of V required.

I This assumption does not rule out Λq(V ) =∞.
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I The proof is based on applications of ergodic and minimax
theorems, developed in [KosRezVar2006, KosVar2008] for
stochastic homogenization of viscous HJ equations.

I The existence of the a.s. limit of the quenched free energy can
be shown more easily (without giving any formulas for Λq(V ))
by subadditivity arguments and additional estimates, e.g.,
concentration inequalities or lattice animal bounds. Done in
full generality in [RasSep2014].

I Gives a quenched large deviation principle (LDP) under Qω
n,x

for the empirical measure

Rn =
1

n

n−1∑
i=0

δTXi
ω,Zi+1

as well as for the average velocity Xn/n (via contraction).
Rate functions have natural variational formulas.

I Covers/strengthens various previous results for RWRE/RWRP.



I The proof is based on applications of ergodic and minimax
theorems, developed in [KosRezVar2006, KosVar2008] for
stochastic homogenization of viscous HJ equations.

I The existence of the a.s. limit of the quenched free energy can
be shown more easily (without giving any formulas for Λq(V ))
by subadditivity arguments and additional estimates, e.g.,
concentration inequalities or lattice animal bounds. Done in
full generality in [RasSep2014].

I Gives a quenched large deviation principle (LDP) under Qω
n,x

for the empirical measure

Rn =
1

n

n−1∑
i=0

δTXi
ω,Zi+1

as well as for the average velocity Xn/n (via contraction).
Rate functions have natural variational formulas.

I Covers/strengthens various previous results for RWRE/RWRP.



Directed i.i.d. case: disorder regimes
Assume (Dir), (Ind) and (Loc). Define the annealed free energy

Λa(V ) := log

(∑
z∈R

1

|R|
E
[
eV (·,z)

])
∈ (−∞,∞].

Then,

Wn(ω) :=
Zωn,0

E[Zωn,0]
= E0

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−nΛa(V )

]
is a nonnegative martingale w.r.t. (Sn)n≥1, and

W∞ := lim
n→∞

Wn P-a.s.

exists.

Moreover, {W∞ = 0} is a tail event, and the Kolmogorov
zero-one law implies the following dichotomy:

either P(W∞ = 0) = 0 (weak disorder);

or P(W∞ = 0) = 1 (strong disorder).
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The so-called annealing bound (Jensen) gives Λq(V ) ≤ Λa(V ).
In the case of weak disorder, we have

0 = lim
n→∞

1

n
log Wn(ω) = lim

n→∞

1

n
logZωn,0 − Λa(V )

= Λq(V )− Λa(V )

for P-a.e. ω.

Therefore,

Λq(V ) < Λa(V ) (very strong disorder)

is a sufficient condition for strong disorder.
However, it is not known whether it is necessary for strong
disorder, more about this later.
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The disorder regime depends on (i) the dimension d and (ii) an
inverse temperature parameter β which is introduced to modify the
strength of the potential.

Theorem (ImbSpe1988, Bol1989, SonZho1996, ComYos2006,
ComVar2006, Lac2010)

Assume (Dir), (Ind) and (Loc) are satisfied, and that V does not
depend on z. (Not generalized to RWRP.)

(a) There exist 0 ≤ βc = βc(V , d) ≤ β′c = β′c(V , d) ≤ ∞ such
that the directed polymer with potential βV is in

(i) weak disorder if β ∈ {0} ∪ (0, βc),
(ii) strong disorder if β ∈ (βc ,∞), and

(iii) very strong disorder if β ∈ (β′c ,∞).

(b) βc = βc(V , d) and β′c = β′c(V , d) satisfy

(i) βc > 0 if d ≥ 4, and
(ii) β′c = 0 if d = 2, 3.



The disorder regime depends on (i) the dimension d and (ii) an
inverse temperature parameter β which is introduced to modify the
strength of the potential.

Theorem (ImbSpe1988, Bol1989, SonZho1996, ComYos2006,
ComVar2006, Lac2010)

Assume (Dir), (Ind) and (Loc) are satisfied, and that V does not
depend on z. (Not generalized to RWRP.)

(a) There exist 0 ≤ βc = βc(V , d) ≤ β′c = β′c(V , d) ≤ ∞ such
that the directed polymer with potential βV is in

(i) weak disorder if β ∈ {0} ∪ (0, βc),
(ii) strong disorder if β ∈ (βc ,∞), and
(iii) very strong disorder if β ∈ (β′c ,∞).

(b) βc = βc(V , d) and β′c = β′c(V , d) satisfy

(i) βc > 0 if d ≥ 4, and
(ii) β′c = 0 if d = 2, 3.



Results: Quenched free energy in the general case

Observe that

K (V ,F ) := P- ess sup
ω

{
log

(∑
z∈R

1

|R|
eV (ω,z)+F (ω,z)

)}

= P- ess sup
ω

{
log

(∑
z∈R

eV (ω,z)

|R|
g(Tzω)

g(ω)

)}

when F is of the form

F (ω, z) = (∇∗g)(ω, z) := log

(
g(Tzω)

g(ω)

)
for some g ∈ L+(Ω,S,P).

Here and throughout,

L+(Ω,S′,P) := {g : Ω→ R : g is S′-meas. and 0 < g(ω) <∞ for P-a.e. ω} and

L++(Ω,S′,P) := {g : Ω→ R : g is S′-meas. and ∃ c > 0 s.t. c < g(ω) <∞ for P-a.e. ω}

for every σ-algebra S′ ⊂ S on Ω.
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Theorem (RasSepYil2015)

Assume V ∈ L. Then,

Λq(V ) = inf
F∈K0

K (V ,F ) (qVar0)

= inf
g∈L+

K (V ,∇∗g) (qVar1)

= inf
g∈L++

K (V ,∇∗g). (qVar2)

Here, L+, L++ stand for (i) L+(Ω,S,P), L++(Ω,S,P) in general
and (ii) L+(Ω,S∞0 ,P), L++(Ω,S∞0 ,P) in the directed case.

Remark
K0 is the L1(Ω,S,P)-closure of

{∇∗g : ∃C > 0 s.t. C−1 < g(ω) < C for P-a.e. ω}.

Unfortunately, our understanding of K0 does not go much beyond
this characterization. Thus, for applications, (qVar1) and (qVar2)
are perhaps more useful than (qVar0).
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A few words about the proof of the theorem

Define

Λ̄q(V ) := lim sup
n→∞

1

n
logZωn,0.

Then,

Λ̄q(V ) ≤ inf
F∈K0

K (V ,F ) ≤ inf
g∈L+

K (V ,∇∗g) ≤ inf
g∈L++

K (V ,∇∗g) ≤ Λ̄q(V ).

The first inequality hinges on a certain control on the minima of
path integrals of centered cocycles on large sets which is implied
by an ergodic theorem. The second and third inequalities are
trivial. The last inequality follows from an elementary spectral
argument. Finally, Λ̄q(V ) = Λq(V ) by subadditivity [RasSep2014].
Hence, there is no need for minimax here, and this proof is
independent of the previous one.
(qVar0) always has a minimizer (nontrivial fact). What about
(qVar1) and (qVar2)?
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Results: Annealed free energy in the directed i.i.d. case
Recall

Λa(V ) := log

(∑
z∈R

1

|R|
E
[
eV (·,z)

])
∈ (−∞,∞].

Theorem (RasSepYil2015)

Assume (Dir), (Ind), and (Loc). Then,

Λa(V ) = inf
g∈L+∩L1

K (V ,∇∗g) (aVar1)

= inf
g∈L++∩L1

K (V ,∇∗g). (aVar2)

Here, L+, L++ and L1 stand for L+(Ω,S∞0 ,P), L++(Ω,S∞0 ,P)
and L1(Ω,S∞0 ,P), respectively.

Remark
We know that Λq(V ) < Λa(V ) in the case of very strong disorder.
This is particularly interesting as all of these sets are dense in K0.

Do (aVar1) and (aVar2) have minimizers?
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Theorem (RasSepYil2015)

Assume (Dir), (Ind), (Loc), and Λa(V ) <∞.

(a) (aVar1) has a minimizer if and only if there is weak disorder.
In this case, the minimizer is unique (up to a multiplicative
constant), and equal to W∞.

(b) (aVar2) has no minimizers unless Zω1,0 is P-essentially
constant, i.e., the RWRP is nothing but an RWRE (with zero
potential).

Other characterizations of weak disorder have been previously
given: delocalization, L1(P)-convergence or uniform integrability of
the martingale (Wn)n≥1, etc. As far as we know, ours is the first
variational characterization of weak disorder for RWRP. Its proof
builds on an earlier characterization [ComYos2006] for directed
polymers.
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Analysis of (qVar1) and (qVar2) in the directed i.i.d. case

Assume (Dir), (Ind) and (Loc). In the case of weak disorder,
Λq(V ) = Λa(V ) <∞. Therefore, the unique minimizer W∞ of
(aVar1) in L+ ∩ L1 is also a minimizer of (qVar1) in the larger
space L+. However, it is not a-priori clear whether W∞ is the
unique minimizer of (qVar1).

Theorem (RasSepYil2015)

Assume (Dir), (Ind), (Loc), and weak disorder.

(a) Up to a multiplicative constant, the unique minimizer W∞ of
(aVar1) is also the unique minimizer of (qVar1).

(b) (qVar2) has no minimizers unless Zω1,0 is P-essentially
constant, i.e., the RWRP is an RWRE.

What about in strong disorder? Do (qVar1) and (qVar2) have
minimizers then? This is more difficult.
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(aVar1) is also the unique minimizer of (qVar1).

(b) (qVar2) has no minimizers unless Zω1,0 is P-essentially
constant, i.e., the RWRP is an RWRE.

What about in strong disorder? Do (qVar1) and (qVar2) have
minimizers then? This is more difficult.



Define
hλn(ω) := E0

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−nλ

]
for every n ≥ 1, λ ∈ R and ω ∈ Ω, and consider the future
measurable functions

hλ∞(ω) := lim inf
n→∞

hλn(ω) and h̄λ∞(ω) := lim sup
n→∞

hλn(ω).

With this notation, Wn = hλn and W∞ = hλ∞ = h̄λ∞ when
λ = Λa(V ) <∞. For general λ ∈ R, we know that

lim
n→∞

1

n
log hλn(ω) = Λq(V )− λ

holds for P-a.e. ω. Therefore,

P(hλ∞ = h̄λ∞ = 0) = 1 if λ > Λq(V ), and

P(hλ∞ = h̄λ∞ =∞) = 1 if λ < Λq(V ).

Hence, the only nontrivial choice of parameter is λ = Λq(V ).



When λ = Λq(V ), drop λ from the notation. Each of the events

{h∞ = 0}, {0 < h∞ <∞}, {h∞ =∞},
{h̄∞ = 0}, {0 < h̄∞ <∞}, {h̄∞ =∞}

has P-probability zero or one.The idea is to use these sets to
characterize the disorder regimes.

Theorem (RasSepYil2015)

Assume (Dir), (Ind), (Loc) and V ∈ L. Then, there is weak
disorder if and only if P(0 < h∞ <∞) = 1.

Regarding nonexistence of minimizers, we have the following result.
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Assume (Dir), (Ind), (Loc) and V ∈ L. If there is strong disorder
and P(h̄∞ = 0) = 0, then (qVar1) and (qVar2) have no minimizers.
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A sufficient condition for P(h̄∞ =∞) = 1

Let

Hn(ω) := E0

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−nΛq(V )1I{Xn=(n/d ,...,n/d)}

]
be the “bridge” analog of hn. We clearly have hn ≥ Hn.

Proposition
Assume (Dir), (Ind), (Loc) and V ∈ L. If there exists an
increasing sequence (a(n))n≥1 such that

lim
n→∞

a(n) =∞, lim
n→∞

a(n − 1)

a(n)
= 1, and lim sup

n→∞
P (log Hn ≥ a(n)) > 0,

then

P
(

lim sup
n→∞

log Hn

a(n)
≥ 1

)
= 1.

In particular, P(h̄∞ =∞) = 1.
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[BorCorRem2013] shows that n−1/3 log Hn has an FGUE

distributional limit for the log-gamma polymer model on Z2 with
parameter γ ∈ (0, γ∗) for some γ∗ > 0.
In particular, the conditions are satisfied with a(n) = n1/3.
On the other hand, since d = 2 in this example, it is in the very
strong disorder regime.

Corollary

Assume (Dir), (Ind), (Loc) and V ∈ L. Then, (qVar1) and
(qVar2) do not always have any minimizers in the case of very
strong disorder.
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Remarks and open problems

I The critical inverse temperatures βc = βc(V , d) and
β′c = β′c(V , d) satisfy βc = β′c = 0 for d = 2, 3, and it is
natural to expect that βc = β′c for every d ≥ 2. However, this
is an open problem.

I Furthermore, it is generally believed that there is strong
disorder at βc for d ≥ 4. The latter claim is supported by the
analogous result in the context of directed polymers on trees
[KahPey1976].

I With this background, here is our conjecture regarding the
very strong disorder regime.

Conjecture

Assume (Dir), (Ind), (Loc) and V ∈ L. Then,

P(0 = h∞ < h̄∞ =∞) = 1

whenever there is very strong disorder.
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If this conjecture is indeed true, it would readily give the following
quenched characterization of the disorder regimes:

(a) If there is weak disorder, then

P(0 < h∞ = h̄∞ <∞) = 1.

(b) If there is critically strong disorder, then

P(h∞ = h̄∞ = 0) = 1.

(c) If there is very strong disorder, then

P(0 = h∞ < h̄∞ =∞) = 1.

I Parts (a) and (b) are trivial since Λq(V ) = Λa(V ) and
h∞ = h̄∞ = W∞.

I Part (c) would imply that (qVar1) and (qVar2) never have
any minimizers in the case of very strong disorder.
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The result of Borodin et al. that we have used is a form of KPZ
universality and is expected to hold for a large class of models.
However, our proposition is much more modest since it does not
require any sharp estimates such as the n1/3 scaling in KPZ
universality. Indeed, slowly growing sequences, e.g.,
a(n) = log log log n, would suffice.

Finally, observe that our theorem is not applicable in the
(hypothetical) case of critically strong disorder since, then,
P(h̄∞ = 0) = 1. Therefore, we refrain from making any claims
regarding the existence of any minimizers of (qVar1) and (qVar2)
in that case.

Thank you for your attention.
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