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Extreme Events: rare but devastating
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Applications

Climate studies, finance and economics, hydrology, sports,....

Random walks, disordered systems, random matrices, number theory, .....
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Average vs. Extreme
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General setting:
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{x1, x2, . . . , xN} =⇒ random
variables drawn from a joint pdf

P(x1, x2, . . . , xN)

independent or correlated
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{x1, x2, . . . , xN} =⇒ random
variables drawn from a joint pdf

P(x1, x2, . . . , xN)

independent or correlated

Extreme Value Statistics: global maximum or minimum

xmax = max{x1, x2, . . . , xN}

xmin = min{x1, x2, . . . , xN}

Q: Given P(x1, x2, . . . , xN), what can we say about the statistics of xmax

and xmin?
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Other extreme observables: times at which
extremes occur
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Q: Given P(x1, x2, . . . , xN), statistics of the times imax and imin?
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Other extreme observables: Order and Gap statistics

Order the random variables: {x1, x2, . . . , xN} ⇒ {y1, y2, . . . , yN}

such that: {y1 > y2 > y3 . . . > yN}

yk → k-th maximum k = 1, 2 . . . ,N

Given P(x1, x2, . . . , xN):

Order statistics: statistics of the k-th maximum yk?

Gap statistics:

gk = yk − yk+1 ⇒ gap between the k-th and (k+1)-th maximum
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Other extreme observables: Record statistics
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A record happens at step k if

xk > {x1, x2, . . . , xk−1}

or equivalently: xk > max [x1, x2, . . . , xk−1]
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Record statistics for a random sequence
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{x1, x2, . . . , xN} =⇒ random
variables drawn from a joint pdf

P(x1, x2, . . . , xN)

independent or correlated

• RN → no. of records in step N; statistics of RN?

• How long does a record survive? Ages of records: {l1, l2, . . . , lRN
}

• Age of the longest (shortest) record?

lmax = max [l1, l2, . . . , lRN
]

lmin = min [l1, l2, . . . , lRN
]
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1, x2, . . . , xN} =⇒ set of N i.i.d random variables

each drawn from p(x)→ P(x1, x2, . . . , xN) =
N∏
i=1

p(xi )

In this case, several extreme observables can be computed explicitly:

• limiting laws (large N) of xmax and xmin (Fréchet, Gumbel and Weibull)

• statistics of imax and imin

• Order and Gap statistics

• Record statistics

• . . .

For a recent review, see G. Schehr and S.M., arXiv:1305.0639
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Extreme value statistics of i.i.d random variables

i.i.d =⇒ P(x1, x2, . . . , xN) =
N∏
i=1

p(xi )

Maximum: xmax = max(x1, x2, . . . , xN)

Cumulative dist. of the maximum:

QN(x) = Prob[xmax ≤ x ] = Prob[x1 ≤ x , x2 ≤ x , . . . xN ≤ x ]

Independence =⇒ QN(x) =
[∫ x

−∞ p(x ′) dx ′
]N

=
[
1−

∫∞
x

p(x ′) dx ′
]N

Scaling limit: N large, x large: QN(x)→ F [(x − aN)/bN ]
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Three universal extreme value distributions

Scale factors aN and bN =⇒ Non-universal (depends on the precise tail
of p(x))

But only 3 possible varieties of scaling functions F (z) (depending only on
the generic tail of p(x))

=⇒ LAW OF EXTREMES

[Fréchet (1927), Fisher and Tippet (1928), Gnedenko (1943), Gumbel
(1958)...]

Several applications =⇒ Climate, Finance, Oceanography, Disordered
Systems (Random Energy Model of Derrida),.....
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Three canonical extreme value distributions

Type I (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

FI (z) = exp[−e−z ]

Type II (FRÉCHET): If p(x) has power law tails: p(x) ∼ x−(γ+1)

FII (z) = 0 z ≤ 0
= exp[−z−γ ] z ≥ 0

Type III (WEIBULL): If p(x) is bounded: p(x) ∼ (1− x)(γ−1)

FIII (z) = exp[−|z |γ ] z ≤ 0
= 1 z ≥ 0

−5 0 5
z

0

0.2

0.4

0.6

0.8

1

F
’(z

)

GUMBEL

FRECHET
WEIBULL
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Type II (FRÉCHET): If p(x) has power law tails: p(x) ∼ x−(γ+1)

FII (z) = 0 z ≤ 0
= exp[−z−γ ] z ≥ 0

Type III (WEIBULL): If p(x) is bounded: p(x) ∼ (1− x)(γ−1)

FIII (z) = exp[−|z |γ ] z ≤ 0
= 1 z ≥ 0

−5 0 5
z

0

0.2

0.4

0.6

0.8

1

F
’(z

)

GUMBEL

FRECHET
WEIBULL

S.N. Majumdar Extreme Value Statistics in Stochastic Processes



Three canonical extreme value distributions

Type I (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

FI (z) = exp[−e−z ]
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Extreme statistics of correlated variables

In many situations, however, the underlying random variables

{x1, x2, . . . , xN} ⇒ correlated

Joint distribution is not factorisable: P(x1, x2, . . . , xN) 6=
N∏
i=1

p(xi )

Extreme statistics of correlated variables ⇒ nontrivial
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Extreme statistics in weakly correlated systems

Weakly correlated variables {x1, x2, . . . , xN}
→ finite correlation length ξ << N

ξ ξ ξ

i

global  maximum

• zi → maximum in the i-th block ⇒ uncorrelated

• Global maximum: xmax = max (z1, z2, . . .)

=⇒ Fréchet, Gumbel or Weibull
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Extreme statistics in strongly correlated systems

For strongly correlated {x1, x2, . . . , xN}: correlation length ξ ∼ O(N)

Extreme statistics → nontrivial

=⇒ few exact results
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Example: Random Walks/Lévy flights in 1-d

O

space

i

x i

N

Discrete-time random walk on a line:

xi = xi−1 + ηi , x0 = 0

ηi → i.i.d jump lengths, each drawn from a symmetric p(η)

if σ2 =
∫
η2 p(η) dη is finite → normal walk

if p(η) ∼ |η|−1−µ as |η| → ∞ with 0 < µ < 2 → Lévy flight

Even though the increments ηi ’s are uncorrelated, the position xi ’s are
strongly correlated
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Extreme statistics of Random walks/Lévy flights

��
��
��

��
��
��

O

space

i

x i
x max

N

Applications: fluctuating interfaces, disordered systems (Sinai model),
finance, ecology,....

Extreme statistics and related questions: Record statistics, Order and
Gap statistics, statistics of maximal relative height, Convex hulls in 2-d,
etc. have been studied recently with many nontrivial results

[Comtet, Dumonteil, Godrèche, Kearney, Mounaix, Rosso,
Randon-Furling, Sabhapandit, Schehr, Wergen, Ziff, Zoia...+ S.M.]

for a recent review see, G. Schehr and S.M., arXiv:1305.0639
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for a recent review see, G. Schehr and S.M., arXiv:1305.0639
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Extreme statistics in physics of disordered systems

Extreme statistics is also important in disordered systems: spin glasses,
polymers in disordered medium, combinatorial optimization, ...

(Bouchaud & Mézard, ’97)

• underlying random variables → strongly correlated

• Example: directed polymer in a random medium

At each site i , εi → quenched energy (each drawn independently from a
distribution ρ(ε)) =⇒ defines the random medium

Consider now n-step directed (up-right) polymer paths starting from O
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Directed polymer in a disordered medium
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For fixed disorder εi ’s: Epath =
∑

j∈path

εj

Ground state energy: E0 = min
paths

[Epath−1,Epath−2, ....,Epath−2n ]

Clearly, energies of different polymer paths are strongly correlated as they
share some common εi ’s (sites common to both paths)

Baik, Comets, Corwin, Deift, Johansson, Johnstone, Péché, Quastel, Rains,....

Brunet, Calabrese, Derrida, Dotsenko, Le Doussal, Rambeau, Rosso, Sasamoto, Schehr, Spohn,....
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Extreme statistics in correlated systems

For correlated {x1, x2, . . . , xN} variables: P(x1, x2, . . . , xN) 6=
N∏
i=1

p(xi )

Extreme statistics → nontrivial

=⇒ few exact results

Some examples that will be discussed today:

• Logarithmically correlated Gaussian random variables and
Liouville field theory

talks by Keating, Le Doussal, Rosso

• Extreme statistics in Random Matrices

talks by Keating, Péché

• Branching Brownian motion in 1-d

talks by Derrida, Schehr, Shi
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