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Branching Brownian Motion with Death
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Dynamics: In a small time interval
dt, a particle

• branches into 2 with proba. b dt
• dies with proba. d dt
• diffuses with proba. 1− (b + d) dt

x(t + dt) = x(t) + η(t) dt

where 〈η(t)〉 = 0
〈η(t)η(t ′)〉 = 2D δ(t − t ′)

b, d and D ⇒ 3 parameters of the model

BBM ⇒ prototype model

• Evolutionary system (biology)
• Genealogy
• Cascade model (nuclear physics)
• Directed polymer (statistical physics)
• Epidemic spread, ....etc.
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Motivation: extreme and gap statistics

K. Ramola, S. N. Majumdar, G. S., PRL 2014

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

Q: extreme and gap statistics of BBM ?

=⇒ Difficult problem because x1(t) > x2(t) > x3(t) > · · · are strongly
correlated
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Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmax
span

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)



Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmax
span

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)



Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmax
span

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)



Outline

1 Fluctuations of the particle number

2 Order and gap statistics of BBM with no death (a reminder)

3 Extreme and order statistics with death
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Evolution of Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

population size n(t) ⇒ random variable

P(n, t) = Prob.[n(t) = n] statisfies a backward equation
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Evolution of Population Size: backward approach

︸︷︷︸

d∆t b∆t 1− (b + d)∆t

t

x

0

∆t

∆x = η(0)∆t

A) B) C)

t +∆t

x = 0

P(n, t + ∆t) = d∆tδn,0 + b∆t
n∑

n′=0

P(n′, t)P(n − n′, t) + (1− (b + d)∆t)P(n, t)

dP(n, t)

dt
= −(b + d)P(n, t) + d δn,0 + b

n∑

n′=0

P(n′, t)P(n − n′, t)

Exact solution via generating function: P̃(z , t) =
∞∑

n=0

zn P(n, t)



Phase transition at b = d

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

P(n, t) = (b − d)2 e(b+d)t (bebt−bedt)n−1

(bebt−dedt)n+1 for n ≥ 1

= d
(ebt−edt)

(bebt−dedt) for n = 0

Consequently:

〈n(t)〉 = e(b−d)t −→
t→∞





+∞ , b > d supercritical

1 , b = d critical

0 , b < d subcritical
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Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp
[
− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp
[
− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point
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Extremal statistics with no death d = 0
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x1

ordered positions (right to left)

x 1(t) > x
2

(t) > x
3

(t) >

n(t) = e
bt

0
x

1

R(x,t)

v

FISHER WAVE

R(x , t) = Prob.[x1(t) > x ] satisfies Fisher-KPP equation:

∂R
∂t = D ∂2R

∂x2 + b R − b R2 starting from R(x , 0) = θ(−x)

travelling front solution: R(x , t)→ f (x − vt) with speed v = 2
√
b D

x1(t)→ 2
√
b D t + O(ln t) at late times

Mckean ’75, Bramson ’78, Lalley & Selke ’87, Kessler et. al. ’97,..,Brunet & Derrida ’09,...

see also B. Derrida’s talk for large deviations
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Order and Gap Statistics for d = 0
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x 1(t) > x
2
(t) > x

3
(t) >

345 2 1

g

gap

k
= x

k
−x k+1

g
4 1

g

Brunet & Derrida, 2009-2010

xk(t) −−−→
t→∞

2
√
b D t

Gap: gk(t) = xk(t)− xk+1(t)

−→ stationary random variable
as t →∞

In units of
√
D/b:

〈g1〉 ≈ 0.496, 〈g2〉 ≈ 0.303, ...

〈gk〉 −−−→
k→∞

1
k − 1

k ln k + . . .

Heuristic argument for the first gap distribution (Brunet & Derrida, ’10):

P(g1, t →∞) ≈ exp
[
−(1 +

√
2)
√

b/D g1

]
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Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rate
d > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)
(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be any
particle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where the
system is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable Ô in the full problem

P(Ô, t) =
∑

n>0 Q(Ô,t|n) P(n,t)∑
n>0 P(n,t) ≈ Q(Ô, t|n∗(t))

where Q(Ô, t|n) −→ proba. of Ô in the Conditioned Ensemble

n∗(t) −→ typical population size
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Extremal statistics for d > 0 with fixed nber of part.
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x

x

23 14

> x
1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having n
particles at t with all of them to the
left of x

P(n, t) → Proba. of having exactly n
particles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)
P(n,t) → given that

there are n particles at t, the prob.
that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t
= D

∂2Q(x , t|n)

∂x2
+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively
[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]
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Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t
= D

∂2Q(x , t|n)

∂x2
+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 1
2 erfc

(
− x√

4Dt

)
for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√
4πDt

exp
[
− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√
4πDt

exp
[
− x2

k

4Dt

]
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Particles diffuse (as a bunch) when b = d
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x

Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ∼
√
D t, the gaps gk(t) = xk(t)− xk+1(t)

=⇒ stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble
(fixed n)
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Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =
√

b
16D f

(√
b

16D g1

)

with f (x) = −4 x +
√

2π e2 x2

(1 + 4 x2) erfc
(√

2 x
)

p(g1|2) ∼
√

πb
8D as g1 → 0

∼ 8D
b g−3

1 as g1 →∞
[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→
g1→∞

8 D
b g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→
gk→∞

8D
b g−3

k
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Numerical simulations at the critical point b = d
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Summary and Conclusion

• Working in the Conditioned Ensemble, we computed the order and the
gap statistics for branching Brownian motion with death

• At the critical point b = d , this provides exact results for the full
ensemble

• At late times gaps become stationary with universal algebraic tail at
the critical point (b = d)

p(gk) −−−−→
gk→∞

8D
b g−3

k
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Summary and Conclusion

Other observables at the critical point:

• Joint distribution of the rightmost and leftmost positions of the BBM
up to time t

−Y

Xmin

Xmax

X

t time

space

0

span

s = Xmax −Xmin

• Full distribution of the span S up to time t as t →∞
p(S) −−−−→

S→∞
(8π
√

3) D
b S−3

[K. Ramola, S. N. Majumdar & G. S., PRE 2015]
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