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Branching Brownian Motion with Death

time

Dynamics: In a small time interval
dt, a particle

e branches into 2 with proba. bdt
e dies with proba. d dt
e diffuses with proba. 1 — (b + d) dt

x(t + dt) = x(t) + n(t) dt
where (n(t)) =0
(n()n(t)) =2D6(t - t')

b, d and D = 3 parameters of the model
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e diffuses with proba. 1 — (b + d) dt
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(n()n(t)) =2D6(t - t')

b, d and D = 3 parameters of the model

BBM = prototype model

e Evolutionary system (biology)

e Genealogy

e Cascade model (nuclear physics)

e Directed polymer (statistical physics)
e Epidemic spread, ....etc.
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Q: extreme and gap statistics of BBM ?

= Difficult problem because x1(t) > x2(t) > x3(t) > - - - are strongly
correlated
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= Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)



© Fluctuations of the particle number
© Order and gap statistics of BBM with no death (a reminder)

© Extreme and order statistics with death



@ Fluctuations of the particle number
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Evolution of Population Size

(b=d) (b <d)

population size n(t) = random variable

P(n,t) = Prob.[n(t) = n] statisfies a backward equation



Evolution of Population Size: approach
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n=0



Phase transition at b — d
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Phase transition at b — d
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Consequently:
400, b>d supercritical
(n(t)) = elb=dt 2 1 ,b=d critical

0 ,b<d subcritical



Typical vs. Average Population Size

(b<d)




Typical vs. Average Population Size

(b=d) (b<d)

e Supercritical phase (b > d): P(n,t) ~ exp [—n%(t)}

Typical size n*(t) ~ e(P~9)t and Average size (n(t)) = elP=¢



Typical vs. Average Population Size

(b=d) (b<d

A

Ty X3T9T]

e Supercritical phase (b > d): P(n,t) ~ exp [—n%(t)}

b—d)t b—d)t

Typical size n*(t) ~ el and Average size (n(t)) = el

e Critical point (b= d): P(n,t) ~ exp { %}

_n*



Typical vs. Average Population Size

(b=d) (b<d)

A

Ty X3T9T]

e Supercritical phase (b > d): P(n,t) ~ exp [—n%(t)}

b—d)t b—d)t

Typical size n*(t) ~ el and Average size (n(t)) = el
e Critical point (b= d): P(n,t) ~ exp {—n*—’zt)}

Typical size n*(t) ~ bt while Average size (n(t)) =1



Typical vs. Average Population Size
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e Supercritical phase (b > d): P(n,t) ~ exp [—n%(t)}

b—d)t b—d)t

Typical size n*(t) ~ el and Average size (n(t)) = el
e Critical point (b= d): P(n,t) ~ exp {—n*—’zt)}
Typical size n*(t) ~ bt while Average size (n(t)) =1

= Strong fluctuations at the critical point



© Order and gap statistics of BBM with no death (a reminder)
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0 X R0

FISHER WAVE

<n(t) >= ebl |

time

t

ordered positions (right to left)

X1 > X, 0 >X30) > e
R(x,t) = Prob.[x;(t) > x] satisfies Fisher-KPP equation:
Ok —DIR L bR~ bR? starting from R(x,0) = 6(—x)

Ox?

travelling front solution: R(x,t) — f(x — vt) with speed v = 2v/bD

x1(t) - 2vVbDt+ O(Int)| at late times

Mckean '75, Bramson '78, Lalley & Selke '87, Kessler et. al. '97,..,Brunet & Derrida '09,...

see also B. Derrida’s talk for large deviations
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Order and Gap Statistics

Brunet & Derrida, 2009-2010

Xk(t) T2\/th

Gap: gk(t) = xk(t) — xk11(t)

— stationary random variable
as t — o0

In units of \/D/b:

(g1) ~ 0.496, (g») ~ 0.303, ...

time

X1 > X,0 >X;0 > e

1 1
<gk>m>;—m+...

Heuristic argument for the first gap distribution (Brunet & Derrida, '10):

P(gi,t — 00) ~ exp {—(1 ++/2)y/b/D gl]
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Order and Gap Statistics for ¢ > 0 — this talk

e Question: What happens to order & gap statistics when the death rate
d > 0 is switched on ? In particular, at the critical point d = b

(ebtfed[)

o Recall: Prob.[n(t) =0] = P(0,t) =d beFi—de®)

Consequently, for d > 0, with a nonzero proba. there may not be any
particle at any given time t!

e Naturally leads one to study the Conditioned Ensemble where the
system is conditioned to have a fixed n particles at time t.

e Prob. distr. of any observable O in the full problem

2, e O.,t|n) P n, 2, «
P(0,1) = Z=g 20N . Q(O, ] (1))

where Q(O

t|n) — proba. of O in the Conditioned Ensemble
n*(t) — typical population size



© Extreme and order statistics with death
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C(n,x,t) — proba. of having n
0 space  — particles at t with all of them to the

/<< left of x
P(n,t) — Proba. of having exactly n
particles at t — known exactly

time

Conditional prob.
432 1 X Q(x, t|n) = C,ﬁ(”,f;)f) — given that
X> X0 > X, () >X30) >eee> X (0) there are n particles at t, the prob.

that all of them are to the left of x
Exact backward evolution equation for C(n, x, t) 4+ known P(n,t) —

AQ(x, t|n) D 0?Q(x, t|n

ot Ox?

)+ a(t) 31, t1r)Q(x, tln — 1) — Q(x, en)]

(b*d)z e(b+d)t .
where a(t) = (e o) (pei—gerry and one starts with Q(x,t|0) =1

= linear in Q(x, t|n) and can be solved recursively
[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]
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e Rightmost particle diffuses at the critical point b = d irrespective of n

2
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2

1 X
Xp | — 2k

47Dt exp |: 4Dt

e Similarly the second, the third...all diffuse: P(x, t|n) —
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Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ~ /D t, the gaps gi(t) = xk(t) — xk+1(t)

= stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble
(fixed n)
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e n = 2 sector:

= Exact solution for the stationary gap distribution

p(g1l2) = \/MIDf (\/K,TD g1>

with f(x) = —4x++2r 2% (1 + 4x?)erfc (\/ﬁx)
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e n > 2 sector: solve by recursion

p(g1ln) - 8D g3

oo
e Similarly for the k-th gap — universal power-law tail for all k and n

p(gk|n) m %gﬁ?’



Numerical simulations at the critical point 6 = d
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Other observables at the critical point:

e Joint distribution of the rightmost and leftmost positions of the BBM
up to time t

e Full distribution of the span S up to time t as t — oo
p(S) —— (87V3) % S3
S—o0

[K. Ramola, S. N. Majumdar & G. S., PRE 2015]
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