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1. Introduction

Boundary driven 2D Ising model



n.n. 2D Ising model: equilibrium

I model for ferromagnetism, exactly solvable (Onsager 1944)
I model for a fluid (lattice gas model)
I phase transition at inverse critical temperature

βc =
ln(1 +

√
2)

2
≈ 0.440686

I spontaneous magnetization

mβ =

{
0 if β ≤ βc[
1− sinh−4 (2β)

]1/8
if β > βc
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Boundary driven 2D Ising model

L	 R+ R- 
Our setting:

I Kawasaki dynamics n.n. Ising 2D on L× L square
I Magnetic reservoirs R± with magnetizations m± at the rigth/left

boundary

Issues of this talk:
I structure of the non-equilibrium steady state as a function of the

reservoirs magnetizations m±
I Fick’s law, sign of the current, magnetization profile, ....



2. Set up

Model definition



2D n.n. ferromagnetic Ising model

I Volume Λ = [1,L]2 ∩ Z2

I Spin variable: Λ 3 i = (x , y) 7−→ σi ∈ {−1,1}
I Hamiltonian

HΛ(σ) = −1
2

∑
i,j∈Λ
|i−j|=1

σiσj + Hb.c.(σ)

I vertical: periodic b.c.
σ(x,L+1) = σ(x,1)

I horizontal: “ L
4 b.c.”

Hb.c.(σ) = −1
2

L∑
y=1

σ(1,y)σ(1,y− L
4 ) −

1
2

L∑
y=1

σ(L,y)σ(L,y− L
4 )

where y − L
4 stands for y minus the integer part of L

4 modulo L



Kawasaki dynamics + spin flips at the boundaries

Continuous time Markov process with rates:

I bulk: the spins on two n.n. sites i and j exchange values at rate

c(i , j ;σ) = 1σi 6=σj ·

{
1 if ∆H(σ) = H(σi,j)− H(σ) ≤ 0
e−β∆H(σ) otherwise

I reservoirs: the spins at left/right boundary site i flip at rates

c−(i ;σ) =
1− σim−

2
if i = (1, y)

c+(i ;σ) =
1− σim+

2
if i = (L, y)



3. Hydrodynamics



Hydrodynamic limit: high temperature region

Conjecture 1 (uniqueness regime). Let 0 ≤ β < βc .

Let m(r , t), r ∈ [0,1], t ≥ 0 be the macroscopic magnetization profile.

m(r , t) is the unique solution of:

∂m
∂t

=
∂

∂r

(
D(m)

∂m
∂r

)
m(0, t) = m−, m(1, t) = m+

m(r ,0) = m0(r)

with D(m) > 0 given by the Green Kubo formula.

Remark: At β = 0, the process degenerates to stirring process and
D(m) = 1/2.



Fick’s law in the uniqueness regime

Stationary solution m(r), r ∈ (0,1)

-1

0

1
m(r)

10 r

m
−

m
+

Current: J = −D(m)dm
dr = const.< 0 (downhill)

The statement should follow from:
I Varadhan, Yau: Diffusive limit lattice gas with mixing conditions (1997)
I Spohn, Yau: Bulk Diffusivity of Lattice Gases Close to Criticality (1995)
I Eyink, Lebowitz, Spohn: Hydrodynamics of stationary non-equilibrium

states for some stochastic lattice gas models (1990)

Difficulties: non-gradient system, reservoirs, ...



Hydrodynamic limit: low temperature region

I The analysis is much more complex when β > βc because of
phase-coexistence with regions (interfaces) where the
magnetization profile is not slowly varying.

I If the system is in only one phase the hydrodynamic limit should
still be described by a diffusion with D strictly positive. Thus if
both m+ and m− are ≥ mβ (or both ≤ −mβ) we expect that the
Fick law is satisfied as when β < βc .



Hydrodynamic limit: low temperature region

I What about hydrodynamics in the coexistence region (i.e.
β > βc , m+ in the plus region, m− in the minus region)?

I Spohn and Yau have proved that for β > βc

D(m) > 0 if |m| ≥ mβ, D(m) = 0 otherwise

I From now on, we assume m− = −m+

We distinguish two regimes:
I stable: m+ > mβ

I unstable: m+ < mβ



Hydrodynamic limit, m+ > mβ

Conjecture 2 (stable region): Let β > βc and m+ > mβ.

Let m(r , t), r ∈ [0,1], t ≥ 0 be the macroscopic magnetization profile.

(m(r , t),Rt ) is the unique solution of the Free Boundary Problem

∂m
∂t

=
∂

∂r

(
D(m)

∂m
∂r

)
r ∈ [0,Rt ) ∪ (Rt ,1]

m(0, t) = −m+, m(R−t , t) = −mβ

m(R+
t , t) = mβ, m(1, t) = m+

2mβṘt = −D(mβ)
∂m
∂r

(R+
t , t) + D(mβ)

∂m
∂r

(R−t , t)

m(r ,0) = m0(r)



Fick’s law

Stationary solution (m(r), 1
2)

-1

0

1
m(r)

10 r

-m𝛽

m𝛽

m+

-m+

J = −D(m)
dm
dr

= const.< 0 (downhill)



Stability of interface

m+ > mβ m+ < mβ

-1

0

1
m(r)

10 r

-m𝛽

m𝛽

m+

-m+
-1

0

1
m(r)

10 r

-m𝛽

m𝛽

-m+

1/2

m+

stable unstable (!)



Questions:

I What can we say when m+ is in the spinodal region?

I What about Fick’s law?

I Sign of the current?

I Optimal magnetization profiles?



4. Numerical simulations



Simulations

We implemented two algorithms:

I Kinetic Monte Carlo (continuos time)
I Metropolis Monte Carlo (discrete time)

Parameters:

I (Inverse) temperature β = 1 (> βc ≈ 0.440686)
I Size L = 40
I Initial conditions: independent Bernoulli, istanton-like, ±1
I 1012 spin exchanges, 1010 steps (fluctuations 1%)



Observables

I Current

J = lim
T→∞

Jx ,y (T )

T
∀ (x , y) ∈ Λ

where Jx ,y (T ) is the current up to time T between (x , y) and
(x + 1, y), i.e.

Jx ,y (T ) = # positive spins moving from left to right
− # positive spins moving from right to left

I Magnetization profile

mx = lim
T→∞

1
T

∫ T

0

1
L

L∑
y=1

σ(x ,y)(t)

dt x = 1, . . . ,L



Current
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At β = 1 we found mcrit ≈ 0.9993 such that

I m+ > mcrit =⇒ J < 0 downhill
I m+ < mcrit =⇒ J > 0 uphill

Remark: mcrit is very close to m|β=1 = 0.9992757 (Onsager)



Movies

1. m+ = 0.9995 (> mcrit = 0.9993 ∼ m|β=1)

2. m+ = 0.9990 (< mcrit)

3. m+ = 0.9980 (< mcrit)



Movies

1. m+ = 0.9995 (> mcrit = 0.9993 ∼ m|β=1)
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Movies

1. m+ = 0.9995 (> mcrit = 0.9993 ∼ m|β=1)

2. m+ = 0.9990 (< mcrit)

3. m+ = 0.9980 (< mcrit)



Magnetization profile
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Zoom
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5. Finite-size effects

(I) metastable region

(II) critical value of m+



(I) Metastable region

The central panel (with one bump) is due to “metastability”

-m𝞫 m𝞫 m

f(m)

-m𝞫 m𝞫

f(m)

m

L =∞ L <∞

For finite volumes, stable regions are larger:
phase separation occurs at m = m∗ < mβ



Metastability: heuristics

Infinite volume Free Energy f (m) with f (mβ) = f (−mβ) = 0.
Finite volume convex continuation for m = mβ − δ for small δ > 0.

Compare:

1. homogeneous magnetization m = mβ − δ
2. droplet of −mβ in a sea of +mβ

(mβ − δ)Ld = −mβγdRd + (Ld − γdRd )mβ γd =
πd/2

Γ(d
2 + 1)

1
2

f ′′(mβ)δ2Ld = τdRd−1 τd = surface tension

Working out the algebra δ = cdL−
d

d+1 , R = c′dL
d

d+1



Metastability: Ising 2D

Consider the canonical Gibbs measure µ with magnetization m on the
torus [0,L]2 ∩ Z2: (see for instance Biskup, Chayes, Kotecký, 2003)

I If m ∈ (mβ − cL−2/3,mβ), c small enough, then µ is supported by
configurations with “small” contours (of size ≤ log L).

I If m = mβ − cL−2/3 there is a droplet of size L2/3.

1	 m	mβ	mβ	–	cL-2/3	

unstable	 metastable	 stable	

Thus:
I (mβ − cL−2/3,mβ) is the plus metastable region
I (−mβ,−mβ + cL−2/3) is the minus metastable region



Metastability: simulations

Varying L, fixed m+ = 0.9995 (< m|β=1 = 0.99927)
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(II) Critical value of m+

I To determine the critical value mcrit of m+, namely where the
current changes sign, we have run computer simulations of the
conservative dynamics (without reservoirs) with empirical
magnetization m = 0.

I With this setting, the magnetization meq on the last column must
coincides with the critical value mcrit of m+ because:

if m+ = meq (and m− = −meq) then the reservoirs are trying to
impose a magnetization which is already there, the current in the
presence of reservoirs is essentially the current without
reservoirs (which is zero).

I The value of meq is predicted by the theory of Wulff shape.



Wulff shape

I Consider the canonical Gibbs measure with Hamiltonian

HΛ(σ) = −1
2

∑
i,j∈Λ
|i−j|=1

σiσj + Hb.c.(σ)

and magnetization m = 0. This is the Wulff problem, first studied
by Dobrushin, Kotecký, Shlosman (1992).

I Typical configurations: there is a vertical strip centered at L/2 of
macroscopically infinitesimal thickness, to the right of the strip
the magnetization is essentially mβ and to the left −mβ.

I Without the additional hamiltonian Hb.c the magnetization on the
last column differs from mβ (or −mβ) and this is why we have
added Hb.c ( Bodineau and Presutti (2003))



Finite volume effects

I If L is finite the magnetization of the last column is not exactly
equal to mβ (or to −mβ). For L ≤ 40 we found mcrit(L) = meq(L)

I Furthermore
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I Thus we claim mcrit = mβ (in the infinite volume limit) and the
current J = 0.



6. Perspectives



Hydrodynamic limit, m+ < mβ

Conjecture 3 (unstable region): Let β > βc and m+ < mβ.

I J > 0 (uphill diffusion)
I The stationary magnetization profile has three discontinuities:

two at the boundaries (bumps) and one in the middle.

I Fick’s law is safisfied, except isolated points {0, 1
2 ,1}
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Hydrodynamic limit, m+ = mβ

Conjecture 4 (“at criticality”): Let β > βc .

m+(L)↗ mβ with m+(L) < mβ−cL−2/3
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Some final comments

I stationary uphill diffusion in the boundary driven Ising 2D model

I Fick’s law is satisfied

I role of reservoirs?

I experiments? (e.g. binary mixture)
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