Non-equilibrium 2D Ising model with stationary uphill diffusion

Cristian Giardinà

The results presented here have been obtained in collaboration with:

Matteo Colangeli (L'Aquila)

Claudio Giberti (Modena)

Cecilia Vernia (Modena)

Work in progress:

Martin Kroger (ETH)

Thanks to:

Anna De Masi (L'Aquila)

Errico Presutti (GSSI)

Outline

- 1. Introduction.
- 2. Set up: model definition.
- 3. Hydrodynamics.
- 4. Numerical results.
- 5. Finite-size effects.
- 6. Perspectives.

1. Introduction

Boundary driven 2D Ising model

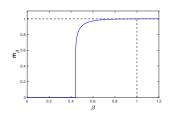
n.n. 2D Ising model: equilibrium

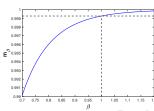
- model for ferromagnetism, exactly solvable (Onsager 1944)
- model for a fluid (lattice gas model)
- phase transition at inverse critical temperature

$$\beta_c = \frac{\ln(1+\sqrt{2})}{2} \approx 0.440686$$

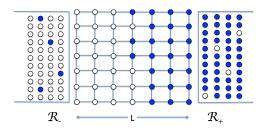
spontaneous magnetization

$$m_{eta} = \left\{ egin{array}{ll} 0 & ext{if } eta \leq eta_c \ \left[1 - \sinh^{-4}\left(2eta
ight)
ight]^{1/8} & ext{if } eta > eta_c \end{array}
ight.$$





Boundary driven 2D Ising model



Our setting:

- ► Kawasaki dynamics n.n. Ising 2D on $L \times L$ square
- ▶ Magnetic reservoirs \mathcal{R}_{\pm} with magnetizations m_{\pm} at the rigth/left boundary

Issues of this talk:

- > structure of the non-equilibrium steady state as a function of the reservoirs magnetizations m_\pm
- Fick's law, sign of the current, magnetization profile,

2. Set up

Model definition

2D n.n. ferromagnetic Ising model

- ▶ Volume $\Lambda = [1, L]^2 \cap \mathbb{Z}^2$
- ▶ Spin variable: $\Lambda \ni i = (x, y) \longmapsto \sigma_i \in \{-1, 1\}$
- ▶ Hamiltonian

$$H_{\Lambda}(\sigma) = -\frac{1}{2} \sum_{\substack{i,j \in \Lambda \\ |i-j|=1}} \sigma_i \sigma_j + H_{b.c.}(\sigma)$$

vertical: periodic b.c.

$$\sigma_{(x,L+1)} = \sigma_{(x,1)}$$

► horizontal: " $\frac{L}{4}$ b.c."

$$H_{b.c.}(\sigma) = -\frac{1}{2} \sum_{v=1}^{L} \sigma_{(1,v)} \sigma_{(1,v-\frac{L}{4})} - \frac{1}{2} \sum_{v=1}^{L} \sigma_{(L,v)} \sigma_{(L,v-\frac{L}{4})}$$

where $y - \frac{L}{4}$ stands for y minus the integer part of $\frac{L}{4}$ modulo L

Kawasaki dynamics + spin flips at the boundaries

Continuous time Markov process with rates:

▶ bulk: the spins on two n.n. sites i and j exchange values at rate

$$c(i,j;\sigma) = \mathbf{1}_{\sigma_i \neq \sigma_j} \cdot \begin{cases} 1 & \text{if } \Delta H(\sigma) = H(\sigma^{i,j}) - H(\sigma) \leq 0 \\ e^{-\beta \Delta H(\sigma)} & \text{otherwise} \end{cases}$$

► reservoirs: the spins at left/right boundary site i flip at rates

$$c_{-}(i;\sigma) = \frac{1 - \sigma_{i}m_{-}}{2}$$
 if $i = (1, y)$

$$c_+(i;\sigma) = \frac{1-\sigma_i m_+}{2}$$
 if $i=(L,y)$

3. Hydrodynamics

Hydrodynamic limit: high temperature region

Conjecture 1 (uniqueness regime). Let $0 \le \beta < \beta_c$.

Let m(r,t), $r \in [0,1]$, $t \ge 0$ be the macroscopic magnetization profile. m(r,t) is the unique solution of:

$$\frac{\partial m}{\partial t} = \frac{\partial}{\partial r} \left(D(m) \frac{\partial m}{\partial r} \right)$$

$$m(0, t) = m_{-}, \quad m(1, t) = m_{+}$$

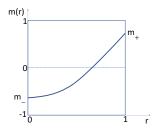
$$m(r, 0) = m_{0}(r)$$

with D(m) > 0 given by the Green Kubo formula.

Remark: At $\beta = 0$, the process degenerates to stirring process and D(m) = 1/2.

Fick's law in the uniqueness regime

Stationary solution m(r), $r \in (0, 1)$



Current:
$$J = -D(m)\frac{dm}{dr} = \text{const.} < 0$$
 (downhill)

The statement should follow from:

- ▶ Varadhan, Yau: Diffusive limit lattice gas with mixing conditions (1997)
- ► Spohn, Yau: Bulk Diffusivity of Lattice Gases Close to Criticality (1995)
- ► Eyink, Lebowitz, Spohn: *Hydrodynamics of stationary non-equilibrium states for some stochastic lattice gas models* (1990)

Difficulties: non-gradient system, reservoirs, ...

Hydrodynamic limit: low temperature region

- The analysis is much more complex when β > β_c because of phase-coexistence with regions (interfaces) where the magnetization profile is not slowly varying.
- ▶ If the system is in only one phase the hydrodynamic limit should still be described by a diffusion with D strictly positive. Thus if both m_+ and m_- are $\geq m_\beta$ (or both $\leq -m_\beta$) we expect that the Fick law is satisfied as when $\beta < \beta_c$.

Hydrodynamic limit: low temperature region

- ▶ What about hydrodynamics in the coexistence region (i.e. $\beta > \beta_c$, m_+ in the plus region, m_- in the minus region)?
- ▶ Spohn and Yau have proved that for $\beta > \beta_c$

$$D(m) > 0$$
 if $|m| \ge m_{\beta}$, $D(m) = 0$ otherwise

▶ From now on, we assume $m_- = -m_+$

We distinguish two regimes:

stable: m₊ > m_β
unstable: m₊ < m_β

4□ > 4□ > 4□ > 4□ > 4□ > 9<</p>

Hydrodynamic limit, $m_+ > m_\beta$

Conjecture 2 (stable region): Let $\beta > \beta_c$ and $m_+ > m_\beta$.

Let $m(r,t), r \in [0,1], t \ge 0$ be the macroscopic magnetization profile. $(m(r,t), R_t)$ is the unique solution of the Free Boundary Problem

$$\frac{\partial m}{\partial t} = \frac{\partial}{\partial r} \left(D(m) \frac{\partial m}{\partial r} \right) \qquad r \in [0, R_t) \cup (R_t, 1]$$

$$m(0, t) = -m_+, \quad m(R_t^-, t) = -m_\beta$$

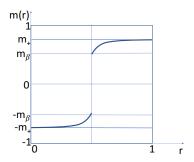
$$m(R_t^+, t) = m_\beta, \quad m(1, t) = m_+$$

$$2m_\beta \dot{R}_t = -D(m_\beta) \frac{\partial m}{\partial r} (R_t^+, t) + D(m_\beta) \frac{\partial m}{\partial r} (R_t^-, t)$$

$$m(r, 0) = m_0(r)$$

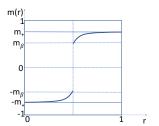
Fick's law

Stationary solution $(m(r), \frac{1}{2})$

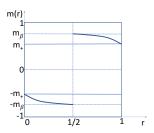


$$J = -D(m)\frac{dm}{dr} = \text{const.} < 0$$
 (downhill)

Stability of interface



 $m_+ < m_\beta$



stable

unstable (!)

Questions:

- ▶ What can we say when m_+ is in the spinodal region?
- ▶ What about Fick's law?
- ► Sign of the current?
- Optimal magnetization profiles?

4. Numerical simulations

Simulations

We implemented two algorithms:

- ► Kinetic Monte Carlo (continuos time)
- Metropolis Monte Carlo (discrete time)

Parameters:

- (Inverse) temperature $\beta = 1$ (> $\beta_c \approx 0.440686$)
- ► Size *L* = 40
- ► Initial conditions: independent Bernoulli, istanton-like, ±1
- ▶ 10¹² spin exchanges, 10¹⁰ steps (fluctuations 1%)

Observables

Current

$$J = \lim_{T \to \infty} \frac{J_{x,y}(T)}{T} \qquad \forall (x,y) \in \Lambda$$

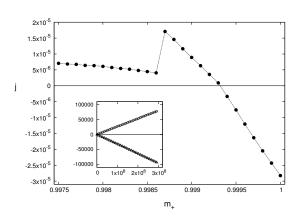
where $J_{x,y}(T)$ is the current up to time T between (x,y) and (x+1,y), i.e.

 $J_{x,y}(T) = \#$ positive spins moving from left to right - # positive spins moving from right to left

Magnetization profile

$$m_x = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\frac{1}{L} \sum_{v=1}^L \sigma_{(x,y)}(t) \right) dt$$
 $x = 1, \dots, L$

Current



At $\beta = 1$ we found $m_{\rm crit} \approx 0.9993$ such that

- ► $m_+ > m_{\rm crit} \Longrightarrow J < 0$ downhill
- ► $m_+ < m_{\rm crit} \Longrightarrow J > 0$ uphill

Remark: m_{crit} is very close to $m_{|_{\beta=1}}=0.9992757$ (Onsager)

Movies

1.
$$m_+ = 0.9995 \ (> m_{\rm crit} = 0.9993 \sim m_{|_{\beta=1}})$$

Movies

1.
$$m_+ = 0.9995 \ (> m_{\rm crit} = 0.9993 \sim m_{|_{\beta=1}})$$

2.
$$m_+ = 0.9990 \ (< m_{crit})$$

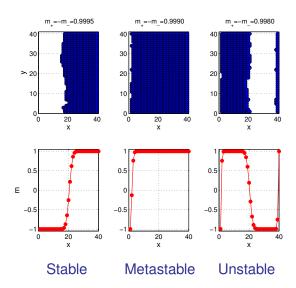
Movies

1.
$$m_+ = 0.9995 \ (> m_{\rm crit} = 0.9993 \sim m_{|_{\beta=1}})$$

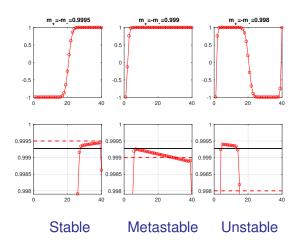
2.
$$m_+ = 0.9990 \ (< m_{crit})$$

3.
$$m_+ = 0.9980 \ (< m_{crit})$$

Magnetization profile



Zoom

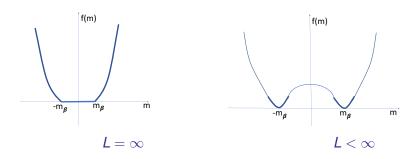


5. Finite-size effects

- (I) metastable region
- (II) critical value of m_+

(I) Metastable region

The central panel (with one bump) is due to "metastability"



For finite volumes, stable regions are larger: phase separation occurs at $m = m^* < m_\beta$

Metastability: heuristics

Infinite volume Free Energy f(m) with $f(m_{\beta}) = f(-m_{\beta}) = 0$. Finite volume convex continuation for $m = m_{\beta} - \delta$ for small $\delta > 0$.

Compare:

- 1. homogeneous magnetization $m=m_{\beta}-\delta$
- 2. droplet of $-m_{\beta}$ in a sea of $+m_{\beta}$

$$(m_{\beta} - \delta)L^{d} = -m_{\beta}\gamma_{d}R^{d} + (L^{d} - \gamma_{d}R^{d})m_{\beta} \qquad \gamma_{d} = \frac{\pi^{d/2}}{\Gamma(\frac{d}{2} + 1)}$$

$$rac{1}{2}f''(m_{eta})\delta^{2}L^{d}= au_{d}R^{d-1}$$
 $au_{d}= ext{surface tension}$

Working out the algebra $\delta = c_d L^{-\frac{d}{d+1}}, \ R = c'_d L^{\frac{d}{d+1}}$

Metastability: Ising 2D

Consider the canonical Gibbs measure μ with magnetization m on the torus $[0, L]^2 \cap \mathbb{Z}^2$: (see for instance Biskup, Chayes, Kotecký, 2003)

- ▶ If $m \in (m_{\beta} cL^{-2/3}, m_{\beta})$, c small enough, then μ is supported by configurations with "small" contours (of size $\leq \log L$).
- ▶ If $m = m_{\beta} cL^{-2/3}$ there is a droplet of size $L^{2/3}$.



Thus:

- \blacktriangleright $(m_{\beta}-cL^{-2/3},m_{\beta})$ is the plus metastable region
- \blacktriangleright $(-m_{\beta}, -m_{\beta} + cL^{-2/3})$ is the *minus metastable region*

Metastability: simulations

Varying *L*, fixed $m_+ = 0.9995 \ (< m_{|_{\beta=1}} = 0.99927)$

$$L = 10$$
 $L = 15$ $L = 20$ $L = 40$

(II) Critical value of m_+

- ▶ To determine the critical value m_{crit} of m_+ , namely where the current changes sign, we have run computer simulations of the conservative dynamics (without reservoirs) with empirical magnetization m = 0.
- ▶ With this setting, the magnetization m_{eq} on the last column must coincides with the critical value m_{crit} of m_+ because:
 - if $m_+ = m_{eq}$ (and $m_- = -m_{eq}$) then the reservoirs are trying to impose a magnetization which is already there, the current in the presence of reservoirs is essentially the current without reservoirs (which is zero).
- ▶ The value of m_{eq} is predicted by the theory of Wulff shape.

Wulff shape

Consider the canonical Gibbs measure with Hamiltonian

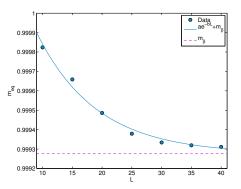
$$H_{\Lambda}(\sigma) = -\frac{1}{2} \sum_{\substack{i,j \in \Lambda \\ |i-j|=1}} \sigma_i \sigma_j + H_{b.c.}(\sigma)$$

and magnetization m = 0. This is the Wulff problem, first studied by Dobrushin, Kotecký, Shlosman (1992).

- ▶ Typical configurations: there is a vertical strip centered at L/2 of macroscopically infinitesimal thickness, to the right of the strip the magnetization is essentially m_{β} and to the left $-m_{\beta}$.
- ▶ Without the additional hamiltonian $H_{b.c}$ the magnetization on the last column differs from m_{β} (or $-m_{\beta}$) and this is why we have added $H_{b.c}$ (Bodineau and Presutti (2003))

Finite volume effects

- ▶ If *L* is finite the magnetization of the last column is not exactly equal to m_{β} (or to $-m_{\beta}$). For $L \leq 40$ we found $m_{\text{crit}}(L) = m_{eq}(L)$
- ► Furthermore



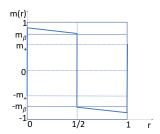
► Thus we claim $m_{\text{crit}} = m_{\beta}$ (in the infinite volume limit) and the current J = 0.

6. Perspectives

Hydrodynamic limit, $m_+ < m_\beta$

Conjecture 3 (unstable region): Let $\beta > \beta_c$ and $m_+ < m_\beta$.

- ► *J* > 0 (uphill diffusion)
- ► The stationary magnetization profile has three discontinuities: two at the boundaries (bumps) and one in the middle.
- ► Fick's law is safisfied, except isolated points $\{0, \frac{1}{2}, 1\}$



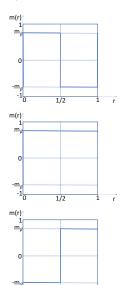
Hydrodynamic limit, $m_+ = m_\beta$

Conjecture 4 ("at criticality"): Let $\beta > \beta_c$.

$$m_+(L) \nearrow m_\beta$$
 with $m_+(L) < m_\beta - cL^{-2/3}$

$$m_+(L) \nearrow m_\beta$$
 with $m_+(L) > m_\beta - cL^{-2/3}$

$$m_+(L) \searrow m_\beta$$



1/2

Some final comments

- stationary uphill diffusion in the boundary driven Ising 2D model
- Fick's law is satisfied
- ▶ role of reservoirs?
- experiments? (e.g. binary mixture)

THANK YOU FOR YOUR ATTENTION