Non-equilibrium 2D Ising model
with stationary uphill diffusion
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1. Introduction

Boundary driven 2D Ising model
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n.n. 2D Ising model: equilibrium

model for ferromagnetism, exactly solvable (Onsager 1944)
model for a fluid (lattice gas model)
phase transition at inverse critical temperature

B = M1 +v2) : V2) . 0.440686

spontaneous magnetization

0 if B < fBec
Ms = { (1~ sinh* (25)}1/8 it 3> B
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Boundary driven 2D Ising model
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Our setting:
» Kawasaki dynamics n.n. Ising 2D on L x L square

» Magnetic reservoirs R with magnetizations m.. at the rigth/left
boundary

Issues of this talk:

» structure of the non-equilibrium steady state as a function of the
reservoirs magnetizations m.

» Fick’s law, sign of the current, magnetization profile, ....



2. Setup

Model definition



2D n.n. ferromagnetic Ising model

» Volume A = [1, L] N Z?
» Spin variable: A 3 i = (x,y) — o; € {-1,1}
» Hamiltonian

1
Hn(o) = ~3 Z ojoj + Hp.c. (o)
i

» vertical: periodic b.c.
O(x,L4+1) = O(x,1)

» horizontal: “4 b.c”

L
Hp.c.(0) = 52 1.5)° Z TLY)O(Ly—}

y:

~

where y — % stands for y minus the integer part of % modulo L



Kawasaki dynamics + spin flips at the boundaries

Continuous time Markov process with rates:

» bulk: the spins on two n.n. sites i and j exchange values at rate

. 1 if AH(0) = H(o™) — H(s) <0
c(i,fi0) = g;20; - e PAH(e)  otherwise

» reservoirs: the spins at left/right boundary site / flip at rates

1 —om_

c_(i;o0) = 5

ifi=(1,y)

¢ (is0) = 1‘%”” iti = (L y)



3. Hydrodynamics



Hydrodynamic limit: high temperature region

Conjecture 1 (uniqueness regime). Let 0 < 3 < .
Let m(r,t),r € [0,1], t > 0 be the macroscopic magnetization profile.

m(r, t) is the unique solution of:

m(0,t)=m_, m(1,t)=m,
m(r,0) = mo(r)

with D(m) > 0 given by the Green Kubo formula.

Remark: At g = 0, the process degenerates to stirring process and
D(m) =1/2.



Fick’s law in the uniqueness regime

Stationary solution m(r), r € (0,1)

m(r) |
1

0 1 r
Current: J = —D(m)%" = const.< 0 (downhill)

The statement should follow from:

» Varadhan, Yau: Diffusive limit lattice gas with mixing conditions (1997)
» Spohn, Yau: Bulk Diffusivity of Lattice Gases Close to Criticality (1995)

» Eyink, Lebowitz, Spohn: Hydrodynamics of stationary non-equilibrium
states for some stochastic lattice gas models (1990)

Difficulties: non-gradient system, reservoirs, ...



Hydrodynamic limit: low temperature region

» The analysis is much more complex when 3 > . because of
phase-coexistence with regions (interfaces) where the
magnetization profile is not slowly varying.

» If the system is in only one phase the hydrodynamic limit should
still be described by a diffusion with D strictly positive. Thus if
both m; and m_ are > mg (or both < —mg) we expect that the
Fick law is satisfied as when 5 < .



Hydrodynamic limit: low temperature region

» What about hydrodynamics in the coexistence region (i.e.
B > B¢, my in the plus region, m_ in the minus region)?

» Spohn and Yau have proved that for 5 > (¢

D(m) >0 if |[m| > mg, D(m) = 0 otherwise

» From now on, we assume m_ = —m_.

We distinguish two regimes:

» stable: my > mg
» unstable: m_ < mg



Hydrodynamic limit, m, > mg

Conjecture 2 (stable region): Let 5 > 8¢ and my > mg.
Let m(r,t),r € [0,1], t > 0 be the macroscopic magnetization profile.

(m(r, t), Rt) is the unique solution of the Free Boundary Problem

om 9 (D(W%T) rel0,R) U (R 1]

ot or
m(0,t) = —my, m(R;,t)=—mg
m(R;,t) = mg, m(1,t)=m;
: om om, __
2mgRy = —D(mg)E(R;’, t) + D(mﬂ)E(Rt 1)

m(r,0) = mo(r)



Fick’s law
Stationary solution (m(r), 3)

m(r)

J= —D(m)(z:7 = const.< 0 (downhill)



Stability of interface

my > mﬁ my < mﬂ

m(r)’ m(r):

1 1

m, mpg

mg m,

0

m -m,

—mli J -mg

-1 -1

0 r 0 1/2

stable unstable (!)
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Questions:

What can we say when m, is in the spinodal region?
What about Fick’s law?
Sign of the current?

Optimal magnetization profiles?



4. Numerical simulations



Simulations

We implemented two algorithms:

» Kinetic Monte Carlo (continuos time)
» Metropolis Monte Carlo (discrete time)

Parameters:

(Inverse) temperature g =1 (> . ~ 0.440686)

Size L=40

Initial conditions: independent Bernoulli, istanton-like, +1
102 spin exchanges, 10'0 steps (fluctuations 1%)
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Observables

» Current JoAT
J— fim Je(T)

T—o0 T

V(x,y) €N

where Jy ,(T) is the current up to time T between (x, y) and
(x+1,y) ie

Jxy(T) = # positive spins moving from left to right
— # positive spins moving from right to left

» Magnetization profile

L
my = I|m T/ (LZ Xy ) X:1,...,L



Current
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At 3 =1 we found mgit =~ 0.9993 such that

> My > Mgy = J < 0 downhill
> My < Mgy = J > 0 uphill

Remark: mgit is very close to my,_, = 0.9992757 (Onsager)



Movies

1. m; =0.9995 (> Mgy =0.9993 ~ m|,_,)



Movies

1. m; =0.9995 (> Mgy =0.9993 ~ m|,_,)

2. my =0.9990 (< M)



Movies

1. m; =0.9995 (> Mgy =0.9993 ~ m|,_,)

2. my =0.9990 (< M)

3. my =0.9980 (< Myit)



Magnetization profile

m,=-m =0.9995 m,=-m =0.9990

m,=-m =0.9980

Stable Metastable

Unstable




Zoom

m, =-m_=0.9995 m_ =-m_=0.999 m_=-m =0.998
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5. Finite-size effects

(I) metastable region

(1) critical value of m,



(I) Metastable region

The central panel (with one bump) is due to “metastability”

f(m) f(m)

For finite volumes, stable regions are larger:
phase separation occurs at m = m* < mg



Metastability: heuristics
Infinite volume Free Energy f(m) with f(mg) = f(—mg) = 0.
Finite volume convex continuation for m = mg — § for small 6 > 0.
Compare:

1. homogeneous magnetization m = mg — ¢
2. droplet of —mg in a sea of +-mg

dj2
ms — 6)LY = —mgygR? + (LY — vgR%)m -
(mg —0) 57d (L7 = vgR%)mg Yd @)
%f”(mﬁ)d‘?Ld = 4R 74 = surface tension

Working out the algebra 0= ch_d%, R= c(’;,Ld%1



Metastability: Ising 2D
Consider the canonical Gibbs measure ;. with magnetization m on the
torus [0, L]2 N Z?: (see for instance Biskup, Chayes, Kotecky, 2003)

» If me (mg — cL=2/3, mg), ¢ small enough, then 1 is supported by
configurations with “small” contours (of size < log L).

» If m= mg — cL=2/3 there is a droplet of size L?/3.

unstable metastable stable

mg— cL?/? mg 1 m
Thus:
» (ms — cL=2/3 my) is the plus metastable region

» (—mg, —mg + cL=2/3) is the minus metastable region



Metastability: simulations

—~

Varying L, fixed m, = 0.9995 (< m,_, = 0.99927)
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() Critical value of m..

» To determine the critical value mq; of m., namely where the
current changes sign, we have run computer simulations of the
conservative dynamics (without reservoirs) with empirical
magnetization m = 0.

» With this setting, the magnetization meq on the last column must
coincides with the critical value mg;; of m, because:

if my = meq (and m_ = —meq) then the reservoirs are trying to
impose a magnetization which is already there, the current in the
presence of reservoirs is essentially the current without
reservoirs (which is zero).

» The value of meq is predicted by the theory of Wulff shape.



Wulff shape

» Consider the canonical Gibbs measure with Hamiltonian

.1
Hp(o) = 5 Z ojoj+ Hpc.(0)
ijen
li—jl=1
and magnetization m = 0. This is the Wulff problem, first studied
by Dobrushin, Kotecky, Shlosman (1992).

» Typical configurations: there is a vertical strip centered at L/2 of
macroscopically infinitesimal thickness, to the right of the strip
the magnetization is essentially mg and to the left —mg.

» Without the additional hamiltonian H, . the magnetization on the
last column differs from mg (or —mpg) and this is why we have
added H, . ( Bodineau and Presutti (2003))



Finite volume effects

» If Lis finite the magnetization of the last column is not exactly
equal to mg (or to —mg). For L < 40 we found mgit(L) = meqg(L)

» Furthermore
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» Thus we claim mgi; = mg (in the infinite volume limit) and the
current J = 0.



6. Perspectives



Hydrodynamic limit, my < mg

Conjecture 3 (unstable region): Let 5 > 8c and m, < mg.
» J > 0 (uphill diffusion)

» The stationary magnetization profile has three discontinuities:
two at the boundaries (bumps) and one in the middle.

» Fick’s law is safisfied, except isolated points {0, 3,1}

m(r)!




Hydrodynamic limit, m; = mg

Conjecture 4 (“at criticality”): Let 5 > Se. i
m. (L) / mg with my (L) < mg—cL=2/3 0

m(r)!

m. (L) / mg with my (L) > mg—cL=2/3 0

m.(L) . mp 0

1/2
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Some final comments

stationary uphill diffusion in the boundary driven Ising 2D model
Fick’s law is satisfied
role of reservoirs?

experiments? (e.g. binary mixture)
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