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Motivations




e What would a quantum macroscopic fluctuation theory look
like 7

® Go beyond (statistical) average behavior in quantum systems
subject to statistical noise.

® Two sources of statistical noise

® Via monitoring, information read-out and random back-action
(Quantum trajectories)
® Via coupling to environments/baths/reservoirs

Prototype: Usige =€ U, dH, = Hodt+ ) LadBf

® Needs to go beyond the Lindblad formalism
® Goal: study in detail a simple specific model
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® A 1d chain of fermions, with hopping triggered by external
noise (with periodic boundary conditions)
® Unitary but random evolution

L
Hamiltonian: dH; = v/ D Z (CJTJrle dWi + CJTCJ'_H dWJt)
j=1
Evolution operator: Uy g = e "Mt U, (Ito convention)
Brownians: dW/dW, = 8% dWidWk = dWidW =0
Fermions: {c;, c):} = ik e e — {CJT, c;i} =0
® Beware : c},cj live at site j, but dW{,dWJ; live on the edge

UyJ +1).
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e (Classical macroscopic fluctuation theory equations

atn(X,t)+an(X,t) =0
j(X7t) = *D(n)axn(x>t)+ L’lﬁ(")E(Xﬂ“)

are hard to quantize (no time derivative of )

® So replace them with dissipative equations

atn+axj e 0

T 0:j = —D(n)dxn—mj+/nLto(n)&

with 1 — 400 and rescaling of ¢ and j

® Discretize space and look at quantum dissipative 1d systems
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e Simple example!: XX model with dissipation

dHt _ dHXX+ dHnOise

L
_ Z (cfhaci+ g ) de+ 2\/1172 cl;dBi

j=1

® Notice Bj lives at site j
= CTCJ (occupation number) and J; := 2ig(c THCJ = CJ-TCJ-H)
(current) satisfy

dnj = (Jj—1—J;)dt dJ; = —4nvrJi+somewhat an analog of above

® Take the large 1 limit (and then the continuum limit)
® At large n, only states invariant under the rotations induced by
the U(1) generators n;dB} survive.

'For more complicated ones, see SciPost Phys. 3, 033 (2017))
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e Effective (slow) dynamics on the invariant states: interaction
representation
® Easy because noises commute

dHtefF _ e2V/VE T ia chch{ dH:yef,'z\/W g cfc,'B{
L .
j YV
= 2£Z (CJT+1deW#(ﬂ)+CJTQ+1 th(ﬂ)>
j=1
dWin) = VTV BBl g g (1) 1= e i2V/Vr (B =Bl gy

® Brownian transmutation (related to the Wong-Zakai theorem):
at large n with rescaled time s o t/1 (slow dynamics)

Win) — Wi Wﬁ(n) — WJS indep. complex Brownian motions

® Qur, incoherently diffusive, model of interest is retrieved.
® In this context only meaningful on the invariant states
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Back to the model




® We study the statistical fluctuations of

(Ge)ij = Tr(pec) i)
Y J
® G; still depends on the external noise

® Enough to study the one particle sector in general
® Enough to compute everything in special cases
® Special class of density matrices preserved by the evolution

pr =2t exp(c*Mtc), Z: = Trexp(c'Mc) = det (1 + er)

® Matrix M; can be retrieved from G;

_ 1

= irew

® General correlation functions via Wick's theorem

Gt

® Even simpler, completely solvable case (left as an exercise):
joint statistical fluctuations of

(Co)i :="Tr(pec)) (Ce)j:=Tr(pec))
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e Solving the equations of motion...
dG,'J =-2D G,‘Jdl’ + D 5,’J(G,'+1J+1 aF Gi—lg—l)dt+
VD (Giyrd W + GigadW — Gy jdW'™ — Giyy yd W)

® Diffusion along the diagonal lead to contact terms proportional
to dt
. is too difficult
® Average large time stationary regime...

0 =—-2D G;;+ D;;(Gjy1j+1 + Gi—1,-1)
. is trivial : G x Id
® Higher moments of G in a stationary regime...
® Do the first, second, third, fourth moment
® Express the results in terms of Ny :=tr GF, k = 1,2,3,4...
which are time-independent because evolution is unitary
® Prove results for arbitrary moments

. are accessible, and (hopefully) interesting
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e Write E[- - -] for the average in the stationary regime
iJ
® Represent Gjj by e>—e
® For instance:
i i J k
Gj & o> for j#j GGy & @>—o>=e fori#j#k#i

G,-J-Gj;<:>i{>j for i # j

e Work out on examples (and prove later in general) that
® E_J[Graph] vanishes unless the in and out degrees are the same

at each vertex (Eulerian graphs).
® E_.J[Graph] does not depend on the vertex labels (as long as
they are distinct for distinct vertices), i.e. correlators are
topological
® Remove vertex labels from the notation

Equilibrium Fluctuations...Extended Quantum Systems _ Sec. 2: Back to the model



® First moment

® Second moment
® Use that Ny := tr G;, N, := tr G2 are conserved quantities

Ny =LEL[Q]  MNo=L(L—1)En[QQ] + LELOO]

® Impose vanishing of contact terms
E-dO0) = E[QQ)] + Ew[ D]

N12—|-N2
L+

LNZ — N,
) =

0] =

Equilibrium Fluctuations...Extended Quantum Systems _ Sec. 2: Back to the model

® Solve to get

Eoom —



® Three conservation laws, plus three contact relations, lead to

-

EdOQQ] =

EdQQU =
B0 =
B[R] =

Eo[{D] =
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2N3 + N} + 3Na Ny
L(L+1)(L+2)
—2N3 + (L + 1)N3 + (L — 1)Ny N,
(L—1)L(L+1)(L+2)
4N3—|—(L2 2) N3 — 3LNi N>
2)(L—1)L(L+1)(L+2)
(L—1)Ny Ny — N3
JL(L+1)(L+2)
L2+2 N1N2—L(2N3+N3)
DL(L+1)(L+2)
3LN; N> + 2N}
DL(L+1)(L+2)

LN3 +

N3L2—
(L—=2)(L—
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® |ntroduce spectator matrix A, with Ay diagonal part of A and
check

® Second moments

Eo[(trAG)?] = En[QQ)] (trA)?2+ Eoo[(i)} tr A2
+ (EOOEO-O} — B Q¢ — Eoo{(:}D tr A2

® This computation does not use the explicit values of the
correlators, just that they are topological
® The coefficient of the non unitary invariant tr A3 vanishes
because of the contact relation
® Third moments
® The coefficient of the non unitary invariant contributions
vanish because of the contact relations
® We prove in general that at large time there is convergence to
a EoJl: - -] that is unitary invariant
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® Evolution preserves total fermion number
® Restrict to the 1 fermion sector
® Study the evolution Vi, g = e @V, on SU(L) where

dhy = \/EZ(EJ'HJ dW/ + Ej j11 dW)

with E; ; usual element({ary matrices
® “Proof” that stationary measures are SU(L) invariant
® The Ej;1,j and Ej j1 generate su(L) ® C =sl(L) (%)
® An invariant measure must be invariant under the
corresponding transformations, hence under all of su(L), i.e.
must be Haar QED
® This intuitive argument can be turned into a rigorous proof

® “Proof” of large time convergence towards Haar
® Either via Hérmander's theorem (relies on (x)) plus a variant
of Doeblin’s theory ...
® .. or the existence of a spectral gap for elliptic operators QED
® (%) means maximal noise in the 1 fermion sector

® To be contrasted with maximal noise in the full Fock space
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® Possible generalizations of these arguments when

dHi_L — Hodt + dHt

® Works smoothly for Hy a spatially inhomogeneous chemical
potential

® Preliminary weak coupling computations suggest that more
robustness, even when there in no 1 fermion dynamics anymore

® This hints at a possible large degree of universality for the
infinite time statistics of G.
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etrAG}

® Unitary invariance means that Z(A) := Eoo[ satisfies

Z(A) = Z(VAVT) for V € U(L)
® |f dn denotes the normalized Haar measure on U(L)

Z(A) = Em[etrAG}

— J dn(V)Eoo[etr VAVTG:|
U(L)

_ EooJ dn(v)etrAvTGv
U(L)

— EooJ dn(v)etrAVTGt:oV
U(L)

— J dT]( V) etr AVTGi_oV
U(L)

Equilibrium Fluctuations...Extended Quantum Systems _ Sec. 2: Back to the model



e If aj,gj, i,j =1,---, L denote the eigenvalues of A and G;—g

L1 et (e¥&)E._
7Z(A) = dan(V trAVIG—oV _ K1) - \E =1
- JU(L)H( e (}_Il ) Ala)A(g)

® This is in principle a complete, non perturbative, description of
the correlations in the stationary distributions...

® Perturbative expansion in terms of Young diagrams and
characters matches
® ... but there is a denominator whose Os are canceled by Os of
the numerator !
® For example, take A to be diagonal with only one nonzero
matrix element so that Z(A) describes the statistics of the
fermion number at a single site (see later)
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® |arge L scaling limit, G;—g such that each N, :=tr Gtkzo,
k=0,1,--- scales like ~ L.
® Arises for instance when p;:—q describes independent sites with
one site density matrix diagonal in the fermion number basis.
® There is a concentration phenomenon : G;—, is non random
Gt:oo = Geq - plld
® ... where we set px :=lim; %
® There are interesting corrections:
® For instance lim; LEOOM = pa — p3: for a factorized
diagonal but inhomogeneous density matrix at t = 0, the
coherences at t = co have non-trivial fluctuations
® There is a large deviation function (and principle)
w(A) :=lim;_,o + log Z(LA)

1
Conjecture: w(A) = E P (Llim EJcycle of length k]> tr Ak
—00
k>1

1 1
w(A) = py tr A+§(p2—p§) trA2+§(p3—3p2p1+2p§) e AR
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® QOne-site fermion number fluctuations

i ] A(L—1)! 1 N\™
EOO[<C"C’>}_(L+n—1)! 2 an!<k>

Ny, Zk21 knk:n k

® Relation with cumulant formulae
® |arge L scaling limit, G;—g such that each N := tr Gtk:o,
k=1,2--- scales like ~ L¥.
® Arises for instance when p;—q describes independent sites with
one site density matrix non-diagonal in the fermion number

basis.
Ny tx AK

Eoo|:etrAG:| — ezkz]_ P + O(LO)

® Can be crosschecked against one-site fermion number
fluctuations
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® The relevant invariant theory is that of invariants in the nt"
symmetric power of the adjoint representation of U(L) because

G leaves in the adjoint representation?
e Obtained from the invariant theory of the nt" tensor power of
the adjoint representation of U(L)
® There are n! fundamental invariants indexed by permutations

5

/O, e
i1y sinjn

ig(1)a " 6i6(n)jn

® A most important object is the matrix (LC“’TA))
0, Te6,

where c(0) denotes the number of cycles in the cycle
decomposition of o
® |t gives a natural metric on the space of invariants
¢ |t simplifies at large L = Large L limits
¢ It satisfies two remarkable sum rules = One-site fermion
number fluctuations

2Case of (G); := Tr(pcc;) and (C.); = Tr(ptcjf): only one invariant remains
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i
® Recall graphical notation G & e3>—e

e |f " is any Eulerian graph, it follows from invariant theory that

Eoo[r] = Z mrlyEooh/]
Y

where
® The ys are graphs whose connected components are all cycles
® The decomposition is unique
® The mr|,s are multiplicities (non-negative integers): mpr/,, is
the number of times y arises when the vertices of I are

blown-up in simple (one in one out edge) vertices in every
possible ways

e Example: E,fOQ] = Eoo[@Q] + EOO[(:}]
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® More complicated example: decomposition of the sumotori

@ iy

+2E-

et

® Simple sum rule: each n = nj, = ny,: vertex can be blown up
in n! ways

342+2+1=8=(2)3

Equilibrium Fluctuations...Extended Quantum Systems _ Sec. 2: Back to the model



® The number of contact relations, unitary invariance
constraints, and cycle decompositions are all the same

® Going from one set to the other requires a change of basis
® Examples:
® Second moments contact relation

E-JOO) = E[QQ) +Exc|CD)]

® Third moments contact relations

Ex/C0] = Ex[QO] +E{D)
EJOOD] = EQQQ) +E QO]

E[ 0] = EdOOO] + 2ELCDO]

® The last relation is a combination of the first two and the
cycle decomposition

EOOBE}J = 26.[{] + 3EL[QCD| + E£[QQVY)
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Conclusions




e We studied a simple model of diffusion triggered by external
noise

® The model is kind of a paradigm
® |t has roots as effective dynamics in a class of strongly
dissipative models

® The large time behavior of the statistical fluctuations of an
important class of quantum averages can be studied in detail
® Stationary fluctuations have topological nature
® Perturbative computations
® Explicit description of the invariant measure (Haar) with the
HarishChandra-ltzykson-Zuber formula as a non-perturbative

generating function of fluctuations
® Several large size scaling limits

¢ Non-trivial coherences fluctuations, large deviation principle
® Deep connections with classical representation/invariant theory
¢ Access to some finite size observables
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Explore further the universality issue

Look at open boundary conditions with injection/extraction

® Find injection/extraction terms that do not kill coherences

Replace classical (Brownian) noises by quantum noises

Find a natural physical interpretation of statistical fluctuations
® Naively, if the noise is not controlled

® Only joint quantum /statistical averages are accessible
® Higher statistical moments of quantum averages are out of
reach

Equilibrium Fluctuations...Extended Quantum Systems _ Sec. 3: Conclusions



	Motivations
	Back to the model
	Conclusions

