
Equilibrium Fluctuations in
Maximally Noisy Extended

Quantum Systems

MB, Denis Bernard, Tony Jin
Based on arXiv:1811.09427

Inhomogeneous Random Systems, IHP, January 22-23, 2019

Equilibrium Fluctuations...Extended Quantum Systems 1/25



Plan

1 Motivations

2 Back to the model

3 Conclusions

Equilibrium Fluctuations...Extended Quantum Systems 2/25



Motivations



Motivations

• What would a quantum macroscopic fluctuation theory look
like ?
• Go beyond (statistical) average behavior in quantum systems

subject to statistical noise.
• Two sources of statistical noise

• Via monitoring, information read-out and random back-action
(Quantum trajectories)

• Via coupling to environments/baths/reservoirs

Prototype: Ut+dt = e−idHtUt dHt = H0dt +
∑
α

LαdB
α
t

• Needs to go beyond the Lindblad formalism
• Goal: study in detail a simple specific model

Equilibrium Fluctuations...Extended Quantum Systems 3/25 Sec. 1: Motivations



The model
• A 1d chain of fermions, with hopping triggered by external

noise (with periodic boundary conditions)
• Unitary but random evolution

Hamiltonian: dHt =
√
D

L∑
j=1

(
c†j+1cj dW

j
t + c†j cj+1 dW

j
t

)

Evolution operator: Ut+dt = e−idHtUt (Itō convention)

Brownians: dW j
t dW

k
t = δjk dW j

t dW
k
t = dW

j
tdW

k
t = 0

Fermions: {cj , c
†
k } = δjk {cj , ck } = {c†j , c

†
k } = 0

• Beware : c†j , cj live at site j , but dW j
t , dW

j

t live on the edge
(j , j + 1).
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Origin of the model (I)

• Classical macroscopic fluctuation theory equations

∂tn(x , t) + ∂x j(x , t) = 0

j(x , t) = −D(n)∂xn(x , t) +
√

L−1σ(n) ξ(x , t)

are hard to quantize (no time derivative of j)
• So replace them with dissipative equations

∂tn + ∂x j = 0

τf ∂t j = −D(n)∂xn − η j +
√
ηL−1σ(n) ξ

with η→ +∞ and rescaling of t and j

• Discretize space and look at quantum dissipative 1d systems
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Origin of the model (II)
• Simple example1: XX model with dissipation

dHt = dHxx
t + dHnoise

t

= 2ε
L∑

j=1

(
c†j+1cj + c†j cj+1

)
dt+ 2

√
ηνf

L∑
j=1

c†j cjdB
j
t

• Notice B j
t lives at site j

• nj := c†j cj (occupation number) and Jj := 2iε(c†j+1cj − c†j cj+1)

(current) satisfy

dnj = (Jj−1−Jj)dt dJj = −4ηνf Jj+somewhat an analog of above

• Take the large η limit (and then the continuum limit)
• At large η, only states invariant under the rotations induced by

the U(1) generators njdB
j
t survive.

1For more complicated ones, see SciPost Phys. 3, 033 (2017))
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Origin of the model (III)
• Effective (slow) dynamics on the invariant states: interaction

representation
• Easy because noises commute

dHeff
t = e i2

√
ηνf

∑L
j=1 c†j cjB

j
tdHxy

t e−i2
√
ηνf

∑L
j=1 c†j cjB

j
t

= 2ε
L∑

j=1

(
c†j+1cj dW

j
t (η) + c†j cj+1 dW

j

t(η)
)

dW j
t (η) := e i2

√
ηνf (B

j+1
t −B j

t )dt dW
j

t(η) := e−i2
√
ηνf (B

j+1
t −B j

t )dt

• Brownian transmutation (related to the Wong-Zakai theorem):
at large η with rescaled time s ∝ t/η (slow dynamics)

W j
t (η) → W j

s W
j

t(η) → W
j

s indep. complex Brownian motions

• Our, incoherently diffusive, model of interest is retrieved.
• In this context only meaningful on the invariant states
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Back to the model



Fermion bilinears
• We study the statistical fluctuations of

(Gt)ij = Tr(ρtc
†
j ci )

• Gt still depends on the external noise
• Enough to study the one particle sector in general
• Enough to compute everything in special cases

• Special class of density matrices preserved by the evolution

ρt = Z−1
t exp(c†Mtc), Zt =: Tr exp(c†Mtc) = det

(
1 + eMt

)
• Matrix Mt can be retrieved from Gt

Gt =
1

1 + e−Mt

• General correlation functions via Wick’s theorem
• Even simpler, completely solvable case (left as an exercise):

joint statistical fluctuations of

(Ct)i := Tr(ρtci ) (C t)j := Tr(ρtc
†
j )
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Goals
• Solving the equations of motion...

dGi ,j = −2D Gi ,jdt + D δi ,j(Gi+1,j+1 + Gi−1,j−1)dt +

i
√
D
(
Gi ,j−1dW

j−1
+ Gi ,j+1dW

j − Gi−1,jdW
i−1 − Gi+1,jdW

i
)

• Diffusion along the diagonal lead to contact terms proportional
to dt

... is too difficult
• Average large time stationary regime...

0 = −2D Gi ,j + D δi ,j(Gi+1,j+1 + Gi−1,j−1)

... is trivial : G ∝ Id
• Higher moments of G in a stationary regime...

• Do the first, second, third, fourth moment
• Express the results in terms of Nk := trG k

t , k = 1, 2, 3, 4...
which are time-independent because evolution is unitary

• Prove results for arbitrary moments
... are accessible, and (hopefully) interesting
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Diagrammatic representation
• Write E∞[· · · ] for the average in the stationary regime

• Represent Gij by
i j

• For instance:

Gij ⇔ i j

for i 6= j GijGjk ⇔ i j k
for i 6= j 6= k 6= i

GijGji ⇔ i j for i 6= j

• Work out on examples (and prove later in general) that
• E∞[Graph] vanishes unless the in and out degrees are the same

at each vertex (Eulerian graphs).
• E∞[Graph] does not depend on the vertex labels (as long as

they are distinct for distinct vertices), i.e. correlators are
topological

• Remove vertex labels from the notation
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First and second moment
• First moment

E∞[ ] =
N1

L
• Second moment

• Use that N1 := trGt , N2 := trG 2
t are conserved quantities

N1 = LE∞[ ] N2 = L(L− 1)E∞[ ]
+ LE∞[ ]

• Impose vanishing of contact terms

E∞[ ] = E∞[ ]
+ E∞[ ]

• Solve to get

E∞[ ] =
N2
1 + N2

L(L+ 1)

E∞[ ]
=

LN2
1 − N2

L(L2 − 1)

E∞[ ]
=

LN2 − N2
1

L(L2 − 1)
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Third moment
• Three conservation laws, plus three contact relations, lead to

E∞[ ]
=

2N3 + N3
1 + 3N2N1

L(L+ 1)(L+ 2)

E∞[ ] =
−2N3 + (L+ 1)N3

1 + (L− 1)N1N2

(L− 1)L(L+ 1)(L+ 2)

E∞[ ] =
4N3 +

(
L2 − 2

)
N3

1 − 3LN1N2

(L− 2)(L− 1)L(L+ 1)(L+ 2)

E∞[ ] =
LN3 + (L− 1)N1N2 − N3

1
(L− 1)L(L+ 1)(L+ 2)

E∞[ ]
=

(
L2 + 2

)
N1N2 − L

(
2N3 + N3

1
)

(L− 2)(L− 1)L(L+ 1)(L+ 2)

E∞[ ]
=

N3L
2 − 3LN1N2 + 2N3

1
(L− 2)(L− 1)L(L+ 1)(L+ 2)
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Unitary invariance (I)
• Introduce spectator matrix A, with Ad diagonal part of A and

check
• Second moments

E∞[(trAG )2
]

= E∞[ ]
(trA)2 + E∞[ ]

trA2

+
(

E∞[ ] − E∞[ ]
− E∞[ ])

trA2
d

• This computation does not use the explicit values of the
correlators, just that they are topological

• The coefficient of the non unitary invariant trA2
d vanishes

because of the contact relation
• Third moments

• The coefficient of the non unitary invariant contributions
vanish because of the contact relations

• We prove in general that at large time there is convergence to
a E∞[· · · ] that is unitary invariant
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Unitary invariance (II)
• Evolution preserves total fermion number

• Restrict to the 1 fermion sector
• Study the evolution Vt+dt = e−idhtVt on SU(L) where

dht =
√
D
∑
j

(Ej+1,j dW
j
t + Ej,j+1 dW

j

t)

with Ei,j usual elementary matrices
• “Proof” that stationary measures are SU(L) invariant

• The Ej+1,j and Ej,j+1 generate su(L)⊗ C = sl(L) (?)
• An invariant measure must be invariant under the

corresponding transformations, hence under all of su(L), i.e.
must be Haar QED

• This intuitive argument can be turned into a rigorous proof
• “Proof” of large time convergence towards Haar

• Either via Hörmander’s theorem (relies on (?)) plus a variant
of Doeblin’s theory ...

• ... or the existence of a spectral gap for elliptic operators QED
• (?) means maximal noise in the 1 fermion sector

• To be contrasted with maximal noise in the full Fock space
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Unitary invariance (III)

• Possible generalizations of these arguments when

dHt → H0dt + dHt

• Works smoothly for H0 a spatially inhomogeneous chemical
potential

• Preliminary weak coupling computations suggest that more
robustness, even when there in no 1 fermion dynamics anymore

• This hints at a possible large degree of universality for the
infinite time statistics of G .
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Unitary invariance (IV)
• Unitary invariance means that Z (A) := E∞[etrAG ] satisfies

Z (A) = Z (VAV †) for V ∈ U(L)

• If dη denotes the normalized Haar measure on U(L)

Z (A) = E∞[etrAG
]

=

∫
U(L)

dη(V )E∞[etrVAV †G
]

= E∞
[∫

U(L)
dη(V )etrAV †GV

]

= E∞
[∫

U(L)
dη(V )etrAV †Gt=0V

]

=

∫
U(L)

dη(V )etrAV †Gt=0V
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HarishChandra-Itzykson-Zuber integral

• If ai , gj , i , j = 1, · · · , L denote the eigenvalues of A and Gt=0

Z (A) =

∫
U(L)

dη(V ) etrAV †Gt=0V = (

L−1∏
k=1

k!)
det (eaigj )Li ,j=1

∆(a)∆(g)

• This is in principle a complete, non perturbative, description of
the correlations in the stationary distributions...

• Perturbative expansion in terms of Young diagrams and
characters matches

• ... but there is a denominator whose 0s are canceled by 0s of
the numerator !

• For example, take A to be diagonal with only one nonzero
matrix element so that Z (A) describes the statistics of the
fermion number at a single site (see later)
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Extensive scaling limit
• Large L scaling limit, Gt=0 such that each Nk := trG k

t=0,
k = 0, 1, · · · scales like ∼ L.
• Arises for instance when ρt=0 describes independent sites with

one site density matrix diagonal in the fermion number basis.
• There is a concentration phenomenon : Gt=∞ is non random

Gt=∞ = Geq = ρ1Id
• ... where we set ρk := limL→∞ Nk

L
.

• There are interesting corrections:
• For instance limL→∞ LE∞[ ]

= ρ2 − ρ
2
1: for a factorized

diagonal but inhomogeneous density matrix at t = 0, the
coherences at t = ∞ have non-trivial fluctuations

• There is a large deviation function (and principle)
w(A) := limL→∞ 1

L logZ (LA)

Conjecture: w(A) =
∑
k≥1

1
k

(
lim
L→∞ E∞[cycle of length k ]

)
trAk

w(A) = ρ1 trA+
1
2
(ρ2−ρ

2
1) trA2+

1
3
(ρ3−3ρ2ρ1+2ρ31) trA3+· · ·
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Other explicit results via invariant theory
• One-site fermion number fluctuations

E∞[〈c†i ci 〉n] = n!(L− 1)!
(L+ n − 1)!

∑
nk ,

∑
k≥1 knk=n

∏
k

1
nk !

(
Nk

k

)nk

• Relation with cumulant formulæ
• Large L scaling limit, Gt=0 such that each Nk := trG k

t=0,
k = 1, 2 · · · scales like ∼ Lk .
• Arises for instance when ρt=0 describes independent sites with

one site density matrix non-diagonal in the fermion number
basis.

E∞[etrAG
]
= e

∑
k≥1

Nk tr Ak

kLk + o(L0)

• Can be crosschecked against one-site fermion number
fluctuations
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Invariant theory and contact terms (I)
• The relevant invariant theory is that of invariants in the nth

symmetric power of the adjoint representation of U(L) because
G leaves in the adjoint representation2

• Obtained from the invariant theory of the nth tensor power of
the adjoint representation of U(L)
• There are n! fundamental invariants indexed by permutations

Iσi1j1,··· ,injn := δiσ(1)j1 · · · δiσ(n)jn

• A most important object is the matrix
(
Lc(στ

−1)
)
σ,τ∈Sn

where c(σ) denotes the number of cycles in the cycle
decomposition of σ

• It gives a natural metric on the space of invariants
• It simplifies at large L ⇒ Large L limits
• It satisfies two remarkable sum rules ⇒ One-site fermion

number fluctuations
2Case of (Ct)i := Tr(ρtci ) and (C t)j := Tr(ρtc†j ): only one invariant remains
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Invariant theory and contact terms (II)

• Recall graphical notation Gij ⇔ i j

• If Γ is any Eulerian graph, it follows from invariant theory that

E∞[Γ ] = ∑
γ

mΓ |γE∞[γ]
where
• The γs are graphs whose connected components are all cycles
• The decomposition is unique
• The mΓ |γs are multiplicities (non-negative integers): mΓ |γ is

the number of times γ arises when the vertices of Γ are
blown-up in simple (one in one out edge) vertices in every
possible ways

• Example: E∞[ ] = E∞[ ] + E∞[ ]
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Invariant theory and contact terms (III)
• More complicated example: decomposition of the sumotori

E∞
  = 3E∞


+ 2E∞




+2E∞



+1E∞

 
• Simple sum rule: each n = nin = nout vertex can be blown up

in n! ways
3+ 2+ 2+ 1 = 8 = (2!)3
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Invariant theory and contact terms (IV)
• The number of contact relations, unitary invariance

constraints, and cycle decompositions are all the same
• Going from one set to the other requires a change of basis
• Examples:

• Second moments contact relation

E∞[ ] = E∞[ ]
+ E∞[ ]

• Third moments contact relations

E∞[ ]
= E∞[ ]

+ E∞[ ]
E∞[ ] = E∞[ ]

+ E∞[ ]
E∞[ ]

= E∞[ ] + 2E∞[ ]
• The last relation is a combination of the first two and the

cycle decomposition

E∞
[ ]

= 2E∞[ ]
+ 3E∞[ ]

+ E∞[ ]
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Conclusions



Conclusions
• We studied a simple model of diffusion triggered by external

noise
• The model is kind of a paradigm
• It has roots as effective dynamics in a class of strongly

dissipative models
• The large time behavior of the statistical fluctuations of an

important class of quantum averages can be studied in detail
• Stationary fluctuations have topological nature
• Perturbative computations
• Explicit description of the invariant measure (Haar) with the

HarishChandra-Itzykson-Zuber formula as a non-perturbative
generating function of fluctuations

• Several large size scaling limits
• Non-trivial coherences fluctuations, large deviation principle

• Deep connections with classical representation/invariant theory
• Access to some finite size observables
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Perspectives

• Explore further the universality issue
• Look at open boundary conditions with injection/extraction

• Find injection/extraction terms that do not kill coherences

• Replace classical (Brownian) noises by quantum noises
• Find a natural physical interpretation of statistical fluctuations

• Naively, if the noise is not controlled
• Only joint quantum/statistical averages are accessible
• Higher statistical moments of quantum averages are out of

reach
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