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The universal law behind growth patterns: bacterial growth,
coffee ring effects, freezing rain deposition, tumor growth...

(KPZ in nature)
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The universal law behind growth patterns: bacterial growth,
coffee ring effects, freezing rain deposition, tumor growth...

(KPZ in nature)
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Analogy with a game that everybody knows...

(tetris) (stickytetris)
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Universality classes:

No sticky deposition of blocks.

Sticky deposition of blocks.



The KPZ/SBE equation

- Let h(t, u) be the height of an interface
dh(t, u) = κ1∆h(t, u)dt + κ2(∇h(t, u))2dt + κ3Wt (KPZ).

- If Yt = ∇ht , then
dYt = κ1∆Ytdt + κ2∇Y 2

t + κ3∇Wt (SBE).
- 1st a mathematical challenge:

I meaning of solution;
I Cole-Hopf solutions: Z (t, u) = e

κ3
κ1

h(t,u).
- 2nd a physical challenge:

I derive KPZ/SBE from microscopic models;
I many microscopic models do not satisfy Cole-Hopf.

Which microscopic models are described by KPZ/SBE?



Slowed exclusion processes: the dynamics

• ηt is an exclusion process, Ω = {0, 1}Z,
for x ∈ Z, η(x) = 1 if the site is occupied, otherwise η(x) = 0.
• The rates are given by

(12 −
a

2nγ ) x y (12 + a
2nγ )

### ## ## ###

• At the slow bond {−1, 0} the rates are given by
y ( α

2nβ + a
2nγ ) x ( α

2nβ −
a

2nγ )
### ## ## ### ### ### # ###

We assume γ > β or β = γ and α ≥ a (in last case if a = α then
{−1, 0} is totally asymmetric).
• For a = 0, we obtain the SSEP with a slow bond.
• For α = 1 and β = 0 we obtain the WASEP - weak asymmetry.
• νρ the Bernoulli product measure of parameter ρ is invariant.



Hydrodynamic limit: the case a = 0

- For η ∈ Ω, let πnt (η; du) = 1
n
∑

x∈Z ηtn2(x)δ x
n
(du).

- Fix ρ0 : R→ [0, 1] and µn such that for every δ > 0 and every
continuous function H : R→ R,

1
n
∑
x∈Z

H( xn ) η(x)→n→∞

∫
R
H(u) ρ0(u)du,

wrt µn. Then for any t > 0, πnt → ρ(t, u)du, as n→∞,
where ρ(t, u) evolves according to the heat equation
∂tρ(t, u) = ∆ρ(t, u):

I β < 1: no boundary conditions.
I β = 1: with linear Robin boundary conditions
∂uρ(t, 0−)=∂uρ(t, 0+) =α(ρ(t, 0+)−ρ(t, 0−)).

I β > 1: with Neumann boundary conditions
∂uρ(t, 0−) = ∂uρ(t, 0+) = 0.



Equilibrium density fluctuations: a = 0

- Fix ρ ∈ (0, 1) and start the process from νρ.
- The density fluctuation field {Yβ,γ,nt ; t ∈ [0,T ]} is given on
functions H ∈ Sβ(R) by

Yβ,γ,nt (H) := 1√
n
∑
x∈Z

H
(
x
n

)
(ηtn2(x)− ρ).

Definition (Space of test functions)
Let S(R\{0}) be the space of functions H : R→ R such that:
1. H is smooth in R\{0},
2. H is continuous from the right at 0,
3. for all non-negative integers k, `, the function H satisfies

‖H‖k,` := sup
u 6=0

∣∣∣(1 + |u|`)d
kH
duk (u)

∣∣∣ <∞.



Space of test functions

1. For β < 1, Sβ(R) := S(R), the usual Schwartz space S(R).
2. For β = 1, Sβ(R) is the subset of S(R\{0}) composed of

functions H such that

d2k+1H
du2k+1 (0+) = d2k+1H

du2k+1 (0−) = α
(d2kH
du2k (0+)− d2kH

du2k (0−)
)

for any integer k ≥ 0.
3. For β > 1, Sβ(R) is the subset of S(R\{0}) composed of

functions H such that

d2k+1H
du2k+1 (0+) = d2k+1H

du2k+1 (0−) = 0

for any integer k ≥ 1.



Density fluctuation field for a = 0

Theorem (Franco, G., Neumann, 13’)
If a = 0, the sequence of processes {Yβ,γ,nt ; t ∈ [0,T ]}n∈N
converges to the Ornstein-Uhlenbeck process given by

dYβt = 1
2∆βYβt dt +

√
χ(ρ)∇βdWβ

t ,

where {Wβ
t ; t ∈ [0,T ]} is an S ′β(R)-valued Brownian motion and

χ(ρ) = ρ(1− ρ).



Density fluctuation field for a 6= 0: removing the drift

We redefine for any H ∈ Sβ(R)

Yβ,γ,nt (H) = 1√
n
∑
x∈Z

H
(

x−n2−γa(1−2ρ)t
n

)
(ηtn2(x)− ρ).

To simplify take ρ = 1/2.

Theorem (Franco, G., Simon, 16’)
If one of these two conditions are satisfied:
• β ≤ 1/2 and γ > 1/2,
• β > 1/2 and γ ≥ β

then {Yβ,γ,nt ; t ∈ [0,T ]}n∈N converges to the
Ornstein-Uhlenbeck process as in the case a = 0.
The influence of the asymmetry is NOT SEEN in the limit.



Effect of a stronger asymmetry a 6= 0: the KPZ scaling

Theorem (Franco, G., Simon, 16’)
Fix ρ = 1/2. For β ≤ 1/2 and γ = 1/2, {Yβ,γ,nt ; t ∈ [0,T ]}n∈N
converges to the stationary energy solution (SES) of the
stochastic Burgers equation (SBE)

dYt = 1
2∆Ytdt + a∇(Yt)2dt +

√
χ(ρ)∇dWt ,

where {Wt ; t ∈ [0,T ]} is an S ′(R)-valued Brownian motion.
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Stochastic Burgers equation (KPZ regime)
OU process with no boundary conditions
OU process with Robin boundary conditions

OU process with Neumann boundary conditions

OU process with Robin boundary conditions, stronger noise

Figure: Macroscopic density fluctuations. In the region β > γ the
process is not defined (negative rates).



On the definition of SES of the SBE

Definition (Controlled process)
A pair of stochastic processes {(Yt ,At); t ∈ [0,T ]} with
trajectories in C([0,T ];S ′(R)) is controlled by the
Ornstein-Uhlenbeck process given by
dYt = 1

2∆Ytdt +
√
χ(ρ)∇dWt , if:

i) For each t ∈ [0,T ], Yt is a white noise of variance 2χ(ρ),
ii) for each H ∈ S(R), the process
Mt(H) = Yt(H)− Y0(H)−

∫ t
0 Ys(12∆H)ds −At(H) is a

Brownian motion of variance χ(ρ)‖∇H‖22t,
iii) for each H ∈ S(R) {At(H); t ≥ 0} is a.s. of zero quadratic

variation: E [limε→0
∫ t
0

1
ε (As+ε(H)−As(H))2ds] = 0.

iv) for each T > 0, {(YT−t ,−(AT−t −AT )); t ∈ [0,T ]} satisfies
ii).



Proposition (Gubinelli and Perkowski, 18’)
Let {(Yt ,At); t ≥ 0} be a controlled process and let
{ιε; ε ∈ (0, 1)} be an approximation of the identity. Then, for any
H ∈ S(R) the limit

Bt(H) = lim
ε→0
Bεt(H) := lim

ε→0

∫ t

0

∫
R

(
Ys(ιε(u))

)2H ′(u) du ds

exists in L2.

Definition (Stationary energy solution)
A controlled process {(Yt ,At); t ≥ 0} is a SES of the SBE

dYt = 1
2∆Ytdt + a∇(Yt)2dt +

√
χ(ρ)∇dWt ,

if At(H) = aBt(H) a.s. for all H ∈ S(R) and t ∈ [0,T ].



Definition (Stationary energy solution)
We say that a process {Yt ; t ∈ [0,T ]} with trajectories in C([0,T ],S′(R)) is a stationary energy solution of
the SBE

dYt =
1
2

∆Ytdt + a∇(Yt )2dt +
√

χ(ρ)∇dWt ,

if:
(i) for each t ∈ [0,T ], Yt is a white noise of variance 2χ(ρ),
(ii) there exists κ > 0 s.t. for any H ∈ S(R) and 0 < δ < ε < 1

E
[(
Bεs,t (H)− Bδs,t (H)

)2]
≤ κε(t − s)‖∇H‖22, (energy estimate)

where

Bεs,t (H) :=

∫ t

s

∫
R

(
Yr (ιε(u)

)2
H′(u) du dr

and for u ∈ R the function ιε(u) : R→ R is given by ιε(u)(v) := ε−1 1]u,u+ε](v),

(iii) for any H ∈ S(R) the process

Yt (H)− Y0(H)−

∫ t

0

Ys ( 12 ∆H)ds + aBt (H)

is a Brownian motion of variance χ(ρ)‖∇H‖22t, where Bt (H) = limε→0 Bε0,t (H) in L2,

(iv) the reversed process {YT−t ; t ∈ [0,T ]} also satisfies (iii) with a replaced by −a.



Proposition (Gubinelli and Perkowski, 18’)
There exists only ONE stationary energy solution of the stochastic
Burgers equation.

How do we prove the results?

(1) First, we prove tightness.
(2) Second, we characterize the limit point.



The KPZ scaling: how to get the SES

To show that Yt is a stationary energy solution of the SBE

dYt = 1
2∆Ytdt + a∇(Yt)2dt +

√
χ(ρ)∇dWt ,

we need to prove that {Mt : t ∈ [0,T ]} given by

Mt(H) := Yt(H)− Y0(H)− 1
2

∫ t

0
Ys(∆H)ds + aBt(H)

is a continuous martingale with quadratic variation

〈M(H)〉t = χ(ρ)‖∇H‖22t,

where
Bt(H) = lim

ε→0

∫ t

0

∫
R

(
Ys(ιε(u))

)2H ′(u) du ds

in L2, and ιε(u)(v) = 1
ε1u<v≤u+ε, for v ∈ R.



Features of the models: the instantaneous current

It is simple to check that Lη(x) = jnx−1,x (η)− jnx ,x+1(η), where

jnx ,x+1(η) = jn,Sx ,x+1(η) + jn,Ax ,x+1(η)

with

jn,Ax ,x+1(η) = an2
2nγ (η(x + 1)− η(x))2, x ∈ Z,

jn,Sx ,x+1(η) = n2
2 (η(x)− η(x + 1)), x 6= −1,

jn,S−1,0(η) = αn2
2nβ (η(−1)− η(0)).

Important:
(1) jn,Sx ,x+1(η) is a gradient!
(2) jn,Ax ,x+1(η) = −2(η(x)− ρ)(η(x + 1)− ρ) + 1

2 .



Associated martingales

Simple computations show that

Mn
t (H) := Yn

t (H)− Yn
0 (H)− Int (H)− Bnt (H),

plus some negligible term, where

Int (H) := 1
2

∫ t

0

1√
n
∑
x∈Z

(ηsn2(x)−ρ)∆H
(
x
n

)
ds = 1

2

∫ t

0
Yn
s (∆H) ds,

(Note that Int (H) is written in terms of the density field!) and

Bnt (H) = −a
√
n

nγ
∫ t

0

∑
x∈Z

(ηsn2(x + 1)− ρ)(ηsn2(x)− ρ)∇H
(
x
n

)
ds.

Last term is the hard one since it is not written in terms of the
density field! (Attention to the dependence on γ!)



The 2nd order Boltzmann-Gibbs Principle

Theorem (Boltzmann-Gibbs Principle)
Let v be a function such that ‖v‖22,n := 1

n
∑

x∈Z v2
(
x
n

)
<∞.

Then, there exists C > 0 such that for any t > 0 and ` ∈ N:

Eρ
[( ∫ t

0

∑
x∈Z

v
(
x
n

){
η̄sn2(x)η̄sn2(x+1)−

((−→η `sn2(x)
)2−χ(ρ)

`

)}
ds
)2]

≤ Ct
{ `
n + nβ

αn + tn
`2

}
‖v‖22,n + Ct

{nβ(log2(`))2
αn

}1
n
∑
x 6=−1

v2
(
x
n

)
,

where η̄(x) = η(x)− ρ and

−→η `(x) = 1
`

x+∑̀
y=x+1

η̄(y).



Consequences of the Boltzmann-Gibbs Principle
It shows that for γ > 1/2 the field Bnt (H) vanishes, as n→∞ but
for γ = 1/2 and for ` = εn it can be replaced by

−a
∫ t

0

∑
x∈Z

(−→η εnsn2(x)
)2∇H( xn) ds,

which is equal to

−a
∫ t

0

1
n
∑
x∈Z

(
Yn
s (ιε(x))

)2∇H( xn) ds,

where ιε(x)(y) = 1
ε1x<y≤x+ε, for y ∈ R, and in the limit as

n→∞ it converges to∫ t

0

∫
R

(
Ys(ιε(x))

)2H ′(x) dx ds.



The idea of the proof of the Boltzmann-Gibbs
The idea consists in using the following decomposition of the local
function

η̄(x)η̄(x + 1)−
(−→η L(x)

)2 + χ(ρ)
L

= η̄(x)
(
η̄(x + 1)−−→η `0(x)

)
+−→η `0(x)

(
η(x)−←−η `0(x)

)
+←−η `0(x)

(−→η `0(x)−−→η L(x)
)
(needs a multi-scale analysis)

+−→η L(x)
(←−η `0(x)− η(x)

)
+−→η L(x)η̄(x)−

(−→η L(x)
)2 +

(
η̄(x)− η̄(x + 1)

)2
2L

−
(
η̄(x)− η̄(x + 1)

)2
2L + χ(ρ)

L .



Averaging over a box:

Proposition (Replacing occupation sites by averages)
Let `0 ∈ N and ψ : Ω→ R a local function whose support does not
intersect the set of points {1, . . . , `0}. We assume that ψ has
mean zero with respect to νρ and we denote by Var(ψ) its
variance. Then, for any t > 0:

Eρ
[( ∫ t

0

∑
x∈Z

v
(
x
n

)
τxψ(ηsn2)

(
η̄sn2(x + 1)−−→η `0sn2(x)

)
ds
)2]

≤ C(ρ)tVar(ψ)
(
`20
n ‖v‖

2
2,n + `0nβ

n2α
∑

x∈Λ`0−11

v2
( x
n

))
,

where Λ`0−11 = {−`0, . . . ,−2}.



Doubling the size of the box:

Proposition (Doubling the box)
Let `k ∈ N, `k+1 = 2`k and ψ : Ω→ R a local function whose
support does not intersect the set of points {1, . . . , `k+1}. We
assume that ψ has mean zero with respect to νρ and we denote by
Var(ψ) its variance. Then, for any t > 0:

Eρ
[( ∫ t

0

∑
x∈Z

v
( x
n
)
τxψ(ηsn2)

(−→η `ksn2(x)−−→η `k+1
sn2 (x)

)
ds
)2]

≤ C(ρ)tVar(ψ)
(
`2k
n ‖v‖

2
2,n + nβ`k

n2α
∑
x 6=−1

v2
( x
n
))
.



On the UNIVERSALITY of the
stationary energy solution of the SBE
from microscopic stochastic dynamics



Exclusion processes (with M. Jara)

• ηt a Markov process with space state Ω := {0, 1}Z.

• Jump rates: pnr(τxη)η(x)(1− η(x + 1)) and
(1− pn)r(τxη)η(x + 1)(1− η(x)), where pn = 1

2 + a
2nγ ,

• Where r : Ω→ R is a local function that satisfies:

[i] There exists ε0 > 0 such that ε0 < r(η) < ε−10 for any η ∈ Ω.

[ii] There exists ω : Ω→ R s. t.
r(η)(η(1)− η(0)) = τ1ω(η)− ω(η), for any η ∈ Ω.

Ref: Gonçalves, P., Jara, M. (2014): Nonlinear fluctuations of weakly asymmetric interacting particle systems,
Archive for Rational Mechanics and Analysis, Volume 212, Issue 2, 597 - 644.



Zero-range processes (with M. Jara and S. Sethuraman)
• ηt a Markov process with space state Ω := NZ.

• for x ∈ Z, η(x) counts the number of particles at the site x , the
jump rate of a particle at the site x only depends on the number of
particles at x and is given by a function g : N0 → R+ such that
g(0) = 0, g(k) > 0 for k ≥ 1 and g is Lipschitz:

sup
k≥0
|g(k + 1)− g(k)| <∞.

• Jump rates: png(η(x)) and (1− pn)g(η(x + 1)), where
pn = 1

2 + a
2nγ .

• Spectral gap condition: restrict the dynamics to configurations
with k particles on a box of size `, then if W (k, `) denotes the
inverse of the spectral gap, we need E [

(
W (k, `)

)2] ≤ C`4.



Kinetically constrained (with M. Jara and S. Sethuraman)

• ηt is a Markov process with space state Ω = {0, 1}Z.

• here particles more likely hop to unoccupied nearest-neighbor
sites when at least m − 1 ≥ 1 other neighboring sites are full.

• Jump rates: pncm,nx ,x+1(η)η(x)(1− η(x + 1)) and
(1− pn)cm,nx+1,x (η)η(x + 1)(1− η(x)), where pn = 1

2 + a
2nγ and

cm,nx ,x+1(η) = cm,nx+1,x (η) =
m∑

k=1

k∏
j=−(m−k)

j 6=0,1

η(x + j) + θ

2n , θ > 0.

• For m = 2, c2,nx ,x+1(η) =
[
η(x − 1) + η(x + 2) + θ

2n

]
.



Degenerate rates (with O. Blondel and M. Simon)

• The previous models with θ = 0. For example, if m = 2, then

c2x ,x+1(η) =
[
η(x − 1) + η(x + 2)

]
.

• Existence of blocked configurations.

...# ## ## ## ## #...

• Boltzmann-Gibbs Principle works thanks to:
(1) the existence of a mobile cluster.

... ##  # ## ## ...
(2) the probability to find a blocked configuration in a finite box is
exponentially small in the size of the box.



Exclusion with long jumps (with M. Jara)

• We consider transition probabilities pn : Z→ [0, 1] with p(0) = 0
and given by pn(z) = s(z) + γna(z), where:

- s(z) is irreducible, with finite variance:∑
z∈Z z2s(z) = σ2 <∞.

- a(z) satisfies: |a(z)| ≤ Cs(z), for any z ∈ Z.
- γn
√
n→n→∞ b 6= 0.

We get, for ρ = 1/2, the SBE given by

dYt = σ2

2 ∆Ytdt + bm∇(Yt)2dt +
√

σ
2∇dWt ,

where m =
∑

z∈Z za(z).

Example: s(z) = c
|z|1+β , a(z) = sgn(z)s(z) and β > 2.



Exclusion with reservoirs (with C. Landim and A. Milanes)

(WEAK asymmetry) γ = 1, α 6= β. Out of equilibrium and uses
the microscopic Cole-Hopf.

β

(
1 + E

n

)
(1− β)

1− α(
1 + E

n

)
α

1 1 + E
n



Exclusion with reservoirs (with N. Perkowski and M. Simon)

(STRONG asymmetry), α = β = 1
2 , γ = 1/2.

1
2

(
1
2 + E

2nγ
)

1
2(

1
2 + E

2nγ
)

1 1 + E
nγ



Future directions

• Derive SBE with other types of boundary conditions ?
• Models with several conserved quantities
(work in progress with C. Bernardin and M. Simon):

- Each one lives in its own time scale.
- The quantities depend on each other.
- The picture behind universality classes is richer that in
systems with 1 conservation law.

• Obtain other singular SPDEs from IPS...
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Thank you and...
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