Deriving the SBE from weakly asymmetric interacting particle systems

Patrícia Gançalves

Joint with Cedric Bernardin (Nice), Oriane Blondel (Lyon), Tertuliano Franco (Bahia), Milton Jara (Rio de Janeiro), Nicolas Perkowski (Berlin), Adriana Neumann (Rio Grande do Sul), Sunder Sethuraman (Arizona) and Marielle Simon (Lille)

IRS, Institut Henri Poincaré, Paris 23rd January 2019

The universal law behind growth patterns: bacterial growth, coffee ring effects, freezing rain deposition, tumor growth...

The universal law behind growth patterns: bacterial growth, coffee ring effects, freezing rain deposition, tumor growth...

Analogy with a game that everybody knows...

Universality classes:

No sticky deposition of blocks.

Sticky deposition of blocks.

The KPZ/SBE equation

- Let $h(t, u)$ be the height of an interface $d h(t, u)=\kappa_{1} \Delta h(t, u) d t+\kappa_{2}(\nabla h(t, u))^{2} d t+\kappa_{3} W_{t}(K P Z)$.
- If $Y_{t}=\nabla h_{t}$, then $d Y_{t}=\kappa_{1} \Delta Y_{t} d t+\kappa_{2} \nabla Y_{t}^{2}+\kappa_{3} \nabla W_{t}$ (SBE).
- 1st a mathematical challenge:
- meaning of solution;
- Cole-Hopf solutions: $Z(t, u)=e^{\frac{\kappa_{3}}{\kappa_{1}} h(t, u)}$.
- 2nd a physical challenge:
- derive KPZ/SBE from microscopic models;
- many microscopic models do not satisfy Cole-Hopf.

Which microscopic models are described by KPZ/SBE?

Slowed exclusion processes: the dynamics

- η_{t} is an exclusion process, $\Omega=\{0,1\}^{\mathbb{Z}}$, for $x \in \mathbb{Z}, \eta(x)=1$ if the site is occupied, otherwise $\eta(x)=0$.
- The rates are given by

$$
\begin{aligned}
& \left(\frac{1}{2}-\frac{a}{2 n^{\gamma}}\right) \curvearrowleft \quad \curvearrowright\left(\frac{1}{2}+\frac{a}{2 n^{\gamma}}\right) \\
& 0000000000000
\end{aligned}
$$

- At the slow bond $\{-1,0\}$ the rates are given by

$$
\curvearrowright\left(\frac{\alpha}{2 n^{\beta}}+\frac{a}{2 n^{\gamma}}\right) \quad \curvearrowleft\left(\frac{\alpha}{2 n^{\beta}}-\frac{a}{2 n^{\gamma}}\right)
$$

00000000000000000000000000
We assume $\gamma>\beta$ or $\beta=\gamma$ and $\alpha \geq a$ (in last case if $a=\alpha$ then $\{-1,0\}$ is totally asymmetric).

- For $a=0$, we obtain the SSEP with a slow bond.
- For $\alpha=1$ and $\beta=0$ we obtain the WASEP - weak asymmetry.
- ν_{ρ} the Bernoulli product measure of parameter ρ is invariant.

Hydrodynamic limit: the case $a=0$

- For $\eta \in \Omega$, let $\pi_{t}^{n}(\eta ; d u)=\frac{1}{n} \sum_{x \in \mathbb{Z}} \eta_{t n^{2}}(x) \delta \frac{x}{n}(d u)$.
- Fix $\rho_{0}: \mathbb{R} \rightarrow[0,1]$ and μ_{n} such that for every $\delta>0$ and every continuous function $H: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\frac{1}{n} \sum_{x \in \mathbb{Z}} H\left(\frac{x}{n}\right) \eta(x) \rightarrow_{n \rightarrow \infty} \int_{\mathbb{R}} H(u) \rho_{0}(u) d u,
$$

wrt μ_{n}. Then for any $t>0, \pi_{t}^{n} \rightarrow \rho(t, u) d u$, as $n \rightarrow \infty$, where $\rho(t, u)$ evolves according to the heat equation $\partial_{t} \rho(t, u)=\Delta \rho(t, u):$

- $\beta<1$: no boundary conditions.
- $\beta=1$: with linear Robin boundary conditions $\partial_{u} \rho\left(t, 0^{-}\right)=\partial_{u} \rho\left(t, 0^{+}\right)=\alpha\left(\rho\left(t, 0^{+}\right)-\rho\left(t, 0^{-}\right)\right)$.
- $\beta>1$: with Neumann boundary conditions $\partial_{u} \rho\left(t, 0^{-}\right)=\partial_{u} \rho\left(t, 0^{+}\right)=0$.

Equilibrium density fluctuations: $a=0$

- Fix $\rho \in(0,1)$ and start the process from ν_{ρ}.
- The density fluctuation field $\left\{\mathcal{Y}_{t}^{\beta, \gamma, n} ; t \in[0, T]\right\}$ is given on functions $H \in \mathcal{S}_{\beta}(\mathbb{R})$ by

$$
\mathcal{Y}_{t}^{\beta, \gamma, n}(H):=\frac{1}{\sqrt{n}} \sum_{x \in \mathbb{Z}} H\left(\frac{x}{n}\right)\left(\eta_{t n^{2}}(x)-\rho\right) .
$$

Definition (Space of test functions)

Let $\mathcal{S}(\mathbb{R} \backslash\{0\})$ be the space of functions $H: \mathbb{R} \rightarrow \mathbb{R}$ such that:

1. H is smooth in $\mathbb{R} \backslash\{0\}$,
2. H is continuous from the right at 0 ,
3. for all non-negative integers k, ℓ, the function H satisfies

$$
\|H\|_{k, \ell}:=\sup _{u \neq 0}\left|\left(1+|u|^{\ell}\right) \frac{d^{k} H}{d u^{k}}(u)\right|<\infty .
$$

Space of test functions

1. For $\beta<1, \mathcal{S}_{\beta}(\mathbb{R}):=\mathcal{S}(\mathbb{R})$, the usual Schwartz space $\mathcal{S}(\mathbb{R})$.
2. For $\beta=1, \mathcal{S}_{\beta}(\mathbb{R})$ is the subset of $\mathcal{S}(\mathbb{R} \backslash\{0\})$ composed of functions H such that

$$
\frac{d^{2 k+1} H}{d u^{2 k+1}}\left(0^{+}\right)=\frac{d^{2 k+1} H}{d u^{2 k+1}}\left(0^{-}\right)=\alpha\left(\frac{d^{2 k} H}{d u^{2 k}}\left(0^{+}\right)-\frac{d^{2 k} H}{d u^{2 k}}\left(0^{-}\right)\right)
$$

for any integer $k \geq 0$.
3. For $\beta>1, \mathcal{S}_{\beta}(\mathbb{R})$ is the subset of $\mathcal{S}(\mathbb{R} \backslash\{0\})$ composed of functions H such that

$$
\frac{d^{2 k+1} H}{d u^{2 k+1}}\left(0^{+}\right)=\frac{d^{2 k+1} H}{d u^{2 k+1}}\left(0^{-}\right)=0
$$

for any integer $k \geq 1$.

Density fluctuation field for $a=0$

Theorem (Franco, G., Neumann, 13')
If $a=0$, the sequence of processes $\left\{\mathcal{Y}_{t}^{\beta, \gamma, n} ; t \in[0, T]\right\}_{n \in \mathbb{N}}$ converges to the Ornstein-Uhlenbeck process given by

$$
d \mathcal{Y}_{t}^{\beta}=\frac{1}{2} \Delta_{\beta} \mathcal{Y}_{t}^{\beta} d t+\sqrt{\chi(\rho)} \nabla_{\beta} d \mathcal{W}_{t}^{\beta},
$$

where $\left\{\mathcal{W}_{t}^{\beta} ; t \in[0, T]\right\}$ is an $\mathcal{S}_{\beta}^{\prime}(\mathbb{R})$-valued Brownian motion and $\chi(\rho)=\rho(1-\rho)$.

Density fluctuation field for $a \neq 0$: removing the drift

We redefine for any $H \in \mathcal{S}_{\beta}(\mathbb{R})$

$$
\mathcal{Y}_{t}^{\beta, \gamma, n}(H)=\frac{1}{\sqrt{n}} \sum_{x \in \mathbb{Z}} H\left(\frac{x-n^{2-\gamma} a(1-2 \rho) t}{n}\right)\left(\eta_{t n^{2}}(x)-\rho\right) .
$$

To simplify take $\rho=1 / 2$.
Theorem (Franco, G., Simon, 16')
If one of these two conditions are satisfied:

- $\beta \leq 1 / 2$ and $\gamma>1 / 2$,
- $\beta>1 / 2$ and $\gamma \geq \beta$
then $\left\{\mathcal{Y}_{t}^{\beta, \gamma, n} ; t \in[0, T]\right\}_{n \in \mathbb{N}}$ converges to the
Ornstein-Uhlenbeck process as in the case $a=0$.
The influence of the asymmetry is NOT SEEN in the limit.

Effect of a stronger asymmetry $a \neq 0$: the KPZ scaling

Theorem (Franco, G., Simon, 16')
Fix $\rho=1 / 2$. For $\beta \leq 1 / 2$ and $\gamma=1 / 2,\left\{\mathcal{\nu}_{t}^{\beta, \gamma, n} ; t \in[0, T]\right\}_{n \in \mathbb{N}}$ converges to the stationary energy solution (SES) of the stochastic Burgers equation (SBE)

$$
d \mathcal{Y}_{t}=\frac{1}{2} \Delta \mathcal{Y}_{t} d t+a \nabla\left(\mathcal{Y}_{t}\right)^{2} d t+\sqrt{\chi(\rho)} \nabla d \mathcal{W}_{t}
$$

where $\left\{\mathcal{W}_{t} ; t \in[0, T]\right\}$ is an $\mathcal{S}^{\prime}(\mathbb{R})$-valued Brownian motion.

_- Stochastic Burgers equation (KPZ regime) OU process with no boundary conditions OU process with Robin boundary conditions

OU process with Neumann boundary conditions

- OU process with Robin boundary conditions, stronger noise

On the definition of SES of the SBE

Definition (Controlled process)

A pair of stochastic processes $\left\{\left(\mathcal{Y}_{t}, \mathcal{A}_{t}\right) ; t \in[0, T]\right\}$ with trajectories in $\mathcal{C}\left([0, T] ; \mathcal{S}^{\prime}(\mathbb{R})\right)$ is controlled by the
Ornstein-Uhlenbeck process given by
$d \mathcal{Y}_{t}=\frac{1}{2} \Delta \mathcal{Y}_{t} d t+\sqrt{\chi(\rho)} \nabla d \mathcal{W}_{t}$, if:
i) For each $t \in[0, T], \mathcal{Y}_{t}$ is a white noise of variance $2 \chi(\rho)$,
ii) for each $H \in \mathcal{S}(\mathbb{R})$, the process
$\mathcal{M}_{t}(H)=\mathcal{Y}_{t}(H)-\mathcal{Y}_{0}(H)-\int_{0}^{t} \mathcal{Y}_{s}\left(\frac{1}{2} \Delta H\right) d s-\mathcal{A}_{t}(H)$ is a Brownian motion of variance $\chi(\rho)\|\nabla H\|_{2}^{2} t$,
iii) for each $H \in \mathcal{S}(\mathbb{R})\left\{\mathcal{A}_{t}(H) ; t \geq 0\right\}$ is a.s. of zero quadratic variation: $E\left[\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \frac{1}{\varepsilon}\left(\mathcal{A}_{s+\varepsilon}(H)-\mathcal{A}_{s}(H)\right)^{2} d s\right]=0$.
iv) for each $T>0,\left\{\left(\mathcal{Y}_{T-t},-\left(\mathcal{A}_{T-t}-\mathcal{A}_{T}\right)\right) ; t \in[0, T]\right\}$ satisfies ii).

Proposition (Gubinelli and Perkowski, 18')
Let $\left\{\left(\mathcal{Y}_{t}, \mathcal{A}_{t}\right) ; t \geq 0\right\}$ be a controlled process and let $\left\{\iota_{\epsilon} ; \epsilon \in(0,1)\right\}$ be an approximation of the identity. Then, for any $H \in \mathcal{S}(\mathbb{R})$ the limit

$$
\mathcal{B}_{t}(H)=\lim _{\epsilon \rightarrow 0} \mathcal{B}_{t}^{\epsilon}(H):=\lim _{\epsilon \rightarrow 0} \int_{0}^{t} \int_{\mathbb{R}}\left(\mathcal{Y}_{s}\left(\iota_{\epsilon}(u)\right)\right)^{2} H^{\prime}(u) d u d s
$$

exists in \mathbb{L}^{2}.
Definition (Stationary energy solution)
A controlled process $\left\{\left(\mathcal{Y}_{t}, \mathcal{A}_{t}\right) ; t \geq 0\right\}$ is a SES of the SBE

$$
d \mathcal{Y}_{t}=\frac{1}{2} \Delta \mathcal{Y}_{t} d t+a \nabla\left(\mathcal{Y}_{t}\right)^{2} d t+\sqrt{\chi(\rho)} \nabla d \mathcal{W}_{t}
$$

if $\mathcal{A}_{t}(H)=a \mathcal{B}_{t}(H)$ a.s. for all $H \in \mathcal{S}(\mathbb{R})$ and $t \in[0, T]$.

Definition (Stationary energy solution)

We say that a process $\left\{\mathcal{Y}_{t} ; t \in[0, T]\right\}$ with trajectories in $\mathcal{C}\left([0, T], \mathcal{S}^{\prime}(\mathbb{R})\right)$ is a stationary energy solution of the SBE

$$
d \mathcal{Y}_{t}=\frac{1}{2} \Delta \mathcal{Y}_{t} d t+a \nabla\left(\mathcal{Y}_{t}\right)^{2} d t+\sqrt{\chi(\rho)} \nabla d \mathcal{W}_{t}
$$

if:
(i) for each $t \in[0, T], \mathcal{Y}_{t}$ is a white noise of variance $2 \chi(\rho)$,
(ii) there exists $\kappa>0$ s.t. for any $H \in \mathcal{S}(\mathbb{R})$ and $0<\delta<\epsilon<1$

$$
\mathbb{E}\left[\left(\mathcal{B}_{s, t}^{\epsilon}(H)-\mathcal{B}_{s, t}^{\delta}(H)\right)^{2}\right] \leq \kappa \epsilon(t-s)\|\nabla H\|_{2}^{2}, \quad \text { (energy estimate) }
$$

where

$$
\mathcal{B}_{s, t}^{\epsilon}(H):=\int_{s}^{t} \int_{\mathbb{R}}\left(\mathcal{Y}_{r}\left(\iota_{\epsilon}(u)\right)^{2} H^{\prime}(u) d u d r\right.
$$

and for $u \in \mathbb{R}$ the function $\iota_{\varepsilon}(u): \mathbb{R} \rightarrow \mathbb{R}$ is given by $\iota_{\varepsilon}(u)(v):=\varepsilon^{-1} 1_{] u, u+\varepsilon]}(v)$,
(iii) for any $H \in \mathcal{S}(\mathbb{R})$ the process

$$
\mathcal{Y}_{t}(H)-\mathcal{Y}_{0}(H)-\int_{0}^{t} \mathcal{Y}_{s}\left(\frac{1}{2} \Delta H\right) d s+a \mathcal{B}_{t}(H)
$$

is a Brownian motion of variance $\chi(\rho)\|\nabla H\|_{2}^{2} t$, where $\mathcal{B}_{t}(H)=\lim _{\epsilon \rightarrow 0} \mathcal{B}_{0, t}^{\epsilon}(H)$ in \mathbb{L}^{2},
(iv) the reversed process $\left\{\mathcal{Y}_{T-t} ; t \in[0, T]\right\}$ also satisfies (iii) with a replaced by $-a$.

Proposition (Gubinelli and Perkowski, 18')
There exists only ONE stationary energy solution of the stochastic Burgers equation.

How do we prove the results?

(1) First, we prove tightness.
(2) Second, we characterize the limit point.

The KPZ scaling: how to get the SES

To show that \mathcal{Y}_{t} is a stationary energy solution of the SBE

$$
d \mathcal{Y}_{t}=\frac{1}{2} \Delta \mathcal{Y}_{t} d t+a \nabla\left(\mathcal{Y}_{t}\right)^{2} d t+\sqrt{\chi(\rho)} \nabla d \mathcal{W}_{t}
$$

we need to prove that $\left\{\mathcal{M}_{t}: t \in[0, T]\right\}$ given by

$$
\mathcal{M}_{t}(H):=\mathcal{Y}_{t}(H)-\mathcal{Y}_{0}(H)-\frac{1}{2} \int_{0}^{t} \mathcal{Y}_{s}(\Delta H) d s+a \mathcal{B}_{t}(H)
$$

is a continuous martingale with quadratic variation

$$
\langle\mathcal{M}(H)\rangle_{t}=\chi(\rho)\|\nabla H\|_{2}^{2} t,
$$

where

$$
\mathcal{B}_{t}(H)=\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\mathbb{R}}\left(\mathcal{Y}_{s}\left(\iota_{\epsilon}(u)\right)\right)^{2} H^{\prime}(u) d u d s
$$

in \mathbb{L}^{2}, and $\iota_{\varepsilon}(u)(v)=\frac{1}{\varepsilon} \mathbf{1}_{u<v \leq u+\varepsilon}$, for $v \in \mathbb{R}$.

Features of the models: the instantaneous current
It is simple to check that $\mathcal{L} \eta(x)=j_{x-1, x}^{n}(\eta)-j_{x, x+1}^{n}(\eta)$, where

$$
j_{x, x+1}^{n}(\eta)=j_{x, x+1}^{n, S}(\eta)+j_{x, x+1}^{n, A}(\eta)
$$

with

$$
\begin{aligned}
j_{x, x+1}^{n, A}(\eta) & =\frac{a n^{2}}{2 n^{\gamma}}(\eta(x+1)-\eta(x))^{2}, \\
j_{x, x+1}^{n, S}(\eta) & =\frac{n^{2}}{2}(\eta(x)-\eta(x+1)), \\
j_{-1,0}^{n, S}(\eta) & =\frac{\alpha n^{2}}{2 n^{\beta}}(\eta(-1)-\eta(0)) .
\end{aligned}
$$

Important:
(1) $j_{x, x+1}^{n, S}(\eta)$ is a gradient!
(2) $j_{x, x+1}^{n, A}(\eta)=-2(\eta(x)-\rho)(\eta(x+1)-\rho)+\frac{1}{2}$.

Associated martingales

Simple computations show that

$$
\mathcal{M}_{t}^{n}(H):=\mathcal{Y}_{t}^{n}(H)-\mathcal{Y}_{0}^{n}(H)-\mathcal{I}_{t}^{n}(H)-\mathcal{B}_{t}^{n}(H),
$$

plus some negligible term, where
$\mathcal{I}_{t}^{n}(H):=\frac{1}{2} \int_{0}^{t} \frac{1}{\sqrt{n}} \sum_{x \in \mathbb{Z}}\left(\eta_{\operatorname{sn}^{2}}(x)-\rho\right) \Delta H\left(\frac{x}{n}\right) d s=\frac{1}{2} \int_{0}^{t} \mathcal{V}_{s}^{n}(\Delta H) d s$,
(Note that $\mathcal{I}_{t}^{n}(H)$ is written in terms of the density field!) and

$$
\mathcal{B}_{t}^{n}(H)=-a \frac{\sqrt{n}}{n^{\gamma}} \int_{0}^{t} \sum_{x \in \mathbb{Z}}\left(\eta_{s n^{2}}(x+1)-\rho\right)\left(\eta_{s n^{2}}(x)-\rho\right) \nabla H\left(\frac{x}{n}\right) d s .
$$

Last term is the hard one since it is not written in terms of the density field! (Attention to the dependence on $\gamma!$)

The 2nd order Boltzmann-Gibbs Principle

Theorem (Boltzmann-Gibbs Principle)
Let v be a function such that $\|v\|_{2, n}^{2}:=\frac{1}{n} \sum_{x \in \mathbb{Z}} v^{2}\left(\frac{x}{n}\right)<\infty$.
Then, there exists $C>0$ such that for any $t>0$ and $\ell \in \mathbb{N}$:

$$
\begin{aligned}
& \mathbb{E}_{\rho}\left[\left(\int_{0}^{t} \sum_{x \in \mathbb{Z}} v\left(\frac{x}{n}\right)\left\{\bar{\eta}_{s n^{2}}(x) \bar{\eta}_{s n^{2}}(x+1)-\left(\left(\bar{\eta}_{s n^{2}}^{\ell}(x)\right)^{2}-\frac{\chi(\rho)}{\ell}\right)\right\} d s\right)^{2}\right] \\
& \leq C t\left\{\frac{\ell}{n}+\frac{n^{\beta}}{\alpha n}+\frac{t n}{\ell^{2}}\right\}\|v\|_{2, n}^{2}+C t\left\{\frac{n^{\beta}\left(\log _{2}(\ell)\right)^{2}}{\alpha n}\right\} \frac{1}{n} \sum_{x \neq-1} v^{2}\left(\frac{x}{n}\right),
\end{aligned}
$$

where $\bar{\eta}(x)=\eta(x)-\rho$ and

$$
\vec{\eta}^{\ell}(x)=\frac{1}{\ell} \sum_{y=x+1}^{x+\ell} \bar{\eta}(y)
$$

Consequences of the Boltzmann-Gibbs Principle

It shows that for $\gamma>1 / 2$ the field $\mathcal{B}_{t}^{n}(H)$ vanishes, as $n \rightarrow \infty$ but for $\gamma=1 / 2$ and for $\ell=\epsilon n$ it can be replaced by

$$
-a \int_{0}^{t} \sum_{x \in \mathbb{Z}}\left(\vec{\eta}_{s n^{2}}^{\in n}(x)\right)^{2} \nabla H\left(\frac{x}{n}\right) d s,
$$

which is equal to

$$
-a \int_{0}^{t} \frac{1}{n} \sum_{x \in \mathbb{Z}}\left(\mathcal{Y}_{s}^{n}\left(\iota_{\epsilon}(x)\right)\right)^{2} \nabla H\left(\frac{x}{n}\right) d s,
$$

where $\iota_{\varepsilon}(x)(y)=\frac{1}{\varepsilon} \mathbf{1}_{x<y \leq x+\varepsilon}$, for $y \in \mathbb{R}$, and in the limit as $n \rightarrow \infty$ it converges to

$$
\int_{0}^{t} \int_{\mathbb{R}}\left(\mathcal{Y}_{s}\left(\iota_{\epsilon}(x)\right)\right)^{2} H^{\prime}(x) d x d s
$$

The idea of the proof of the Boltzmann-Gibbs

The idea consists in using the following decomposition of the local function

$$
\begin{aligned}
& \bar{\eta}(x) \bar{\eta}(x+1)-\left(\vec{\eta}^{L}(x)\right)^{2}+\frac{x(\rho)}{L} \\
&= \bar{\eta}(x)\left(\bar{\eta}(x+1)-\vec{\eta}^{\ell_{0}}(x)\right) \\
&+\vec{\eta}^{\ell_{0}}(x)\left(\eta(x)-\overleftarrow{\eta}^{\ell_{0}}(x)\right) \\
&+\overleftarrow{\eta}^{\ell_{0}}(x)\left(\vec{\eta}^{\ell_{0}}(x)-\vec{\eta}^{L}(x)\right) \text { (needs a multi-scale analysis) } \\
&+\vec{\eta}^{L}(x)\left(\bar{\eta}^{\ell_{0}}(x)-\eta(x)\right) \\
&+\vec{\eta}^{L}(x) \bar{\eta}(x)-\left(\vec{\eta}^{L}(x)\right)^{2}+\frac{(\bar{\eta}(x)-\bar{\eta}(x+1))^{2}}{2 L} \\
&-\frac{(\bar{\eta}(x)-\bar{\eta}(x+1))^{2}}{2 L}+\frac{\chi(\rho)}{L} .
\end{aligned}
$$

Averaging over a box:

Proposition (Replacing occupation sites by averages)
Let $\ell_{0} \in \mathbb{N}$ and $\psi: \Omega \rightarrow \mathbb{R}$ a local function whose support does not intersect the set of points $\left\{1, \ldots, \ell_{0}\right\}$. We assume that ψ has mean zero with respect to ν_{ρ} and we denote by $\operatorname{Var}(\psi)$ its variance. Then, for any $t>0$:

$$
\begin{aligned}
& \mathbb{E}_{\rho}\left[\left(\int_{0}^{t} \sum_{x \in \mathbb{Z}}\right.\right.\left.\left.v\left(\frac{x}{n}\right) \tau_{x} \psi\left(\eta_{s n^{2}}\right)\left(\bar{\eta}_{s n^{2}}(x+1)-\vec{\eta}_{s n^{2}}^{\ell_{0}}(x)\right) d s\right)^{2}\right] \\
& \leq C(\rho) t \operatorname{Var}(\psi)\left(\frac{\ell_{0}^{2}}{n}\|v\|_{2, n}^{2}+\frac{\ell_{0} n^{\beta}}{n^{2} \alpha} \sum_{x \in \Lambda_{1}^{\ell_{0}-1}} v^{2}\left(\frac{x}{n}\right)\right),
\end{aligned}
$$

where $\Lambda_{1}^{\ell_{0}-1}=\left\{-\ell_{0}, \ldots,-2\right\}$.

Doubling the size of the box:

Proposition (Doubling the box)
Let $\ell_{k} \in \mathbb{N}, \ell_{k+1}=2 \ell_{k}$ and $\psi: \Omega \rightarrow \mathbb{R}$ a local function whose support does not intersect the set of points $\left\{1, \ldots, \ell_{k+1}\right\}$. We assume that ψ has mean zero with respect to ν_{ρ} and we denote by $\operatorname{Var}(\psi)$ its variance. Then, for any $t>0$:

$$
\begin{aligned}
& \mathbb{E}_{\rho}\left[\left(\int_{0}^{t} \sum_{x \in \mathbb{Z}} v\left(\frac{x}{n}\right) \tau_{x} \psi\left(\eta_{s n^{2}}\right)\left(\vec{\eta}_{s n^{2}}^{\ell_{k}}(x)-\vec{\eta}_{s n^{2}}^{\ell_{k+1}}(x)\right) d s\right)^{2}\right] \\
& \quad \leq C(\rho) t \operatorname{Var}(\psi)\left(\frac{\ell_{k}^{2}}{n}\|v\|_{2, n}^{2}+\frac{n^{\beta} \ell_{k}}{n^{2} \alpha} \sum_{x \neq-1} v^{2}\left(\frac{x}{n}\right)\right) .
\end{aligned}
$$

On the UNIVERSALITY of the stationary energy solution of the SBE from microscopic stochastic dynamics

Exclusion processes (with M. Jara)

- η_{t} a Markov process with space state $\Omega:=\{0,1\}^{\mathbb{Z}}$.
- Jump rates: $p_{n} r\left(\tau_{x} \eta\right) \eta(x)(1-\eta(x+1))$ and $\left(1-p_{n}\right) r\left(\tau_{x} \eta\right) \eta(x+1)(1-\eta(x))$, where $p_{n}=\frac{1}{2}+\frac{a}{2 n^{\gamma}}$,
- Where $r: \Omega \rightarrow \mathbb{R}$ is a local function that satisfies:
[i] There exists $\varepsilon_{0}>0$ such that $\varepsilon_{0}<r(\eta)<\varepsilon_{0}^{-1}$ for any $\eta \in \Omega$.
[ii] There exists $\omega: \Omega \rightarrow \mathbb{R}$ s. t.
$r(\eta)(\eta(1)-\eta(0))=\tau_{1} \omega(\eta)-\omega(\eta)$, for any $\eta \in \Omega$.

Zero-range processes (with M. Jara and S. Sethuraman)

- η_{t} a Markov process with space state $\Omega:=\mathbb{N}^{\mathbb{Z}}$.
- for $x \in \mathbb{Z}, \eta(x)$ counts the number of particles at the site x, the jump rate of a particle at the site x only depends on the number of particles at x and is given by a function $g: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$such that $g(0)=0, g(k)>0$ for $k \geq 1$ and g is Lipschitz:

$$
\sup _{k \geq 0}|g(k+1)-g(k)|<\infty .
$$

- Jump rates: $p_{n} g(\eta(x))$ and $\left(1-p_{n}\right) g(\eta(x+1))$, where $p_{n}=\frac{1}{2}+\frac{a}{2 n^{\gamma}}$.
- Spectral gap condition: restrict the dynamics to configurations with k particles on a box of size ℓ, then if $W(k, \ell)$ denotes the inverse of the spectral gap, we need $E\left[(W(k, \ell))^{2}\right] \leq C \ell^{4}$.

Kinetically constrained (with M. Jara and S. Sethuraman)

- η_{t} is a Markov process with space state $\Omega=\{0,1\}^{\mathbb{Z}}$.
- here particles more likely hop to unoccupied nearest-neighbor sites when at least $m-1 \geq 1$ other neighboring sites are full.
- Jump rates: $p_{n} c_{x, x+1}^{m, n}(\eta) \eta(x)(1-\eta(x+1))$ and $\left(1-p_{n}\right) c_{x+1, x}^{m, n}(\eta) \eta(x+1)(1-\eta(x))$, where $p_{n}=\frac{1}{2}+\frac{a}{2 n^{\gamma}}$ and

$$
c_{x, x+1}^{m, n}(\eta)=c_{x+1, x}^{m, n}(\eta)=\sum_{k=1}^{m} \prod_{\substack{j=-(m-k) \\ j \neq 0,1}}^{k} \eta(x+j)+\frac{\theta}{2 n}, \theta>0 .
$$

- For $m=2, c_{x, x+1}^{2, n}(\eta)=\left[\eta(x-1)+\eta(x+2)+\frac{\theta}{2 n}\right]$.

Degenerate rates (with O. Blondel and M. Simon)

- The previous models with $\theta=0$. For example, if $m=2$, then

$$
c_{x, x+1}^{2}(\eta)=[\eta(x-1)+\eta(x+2)] .
$$

- Existence of blocked configurations.

- Boltzmann-Gibbs Principle works thanks to:
(1) the existence of a mobile cluster.
...0○○00○0○00000...
(2) the probability to find a blocked configuration in a finite box is exponentially small in the size of the box.

Exclusion with long jumps (with M. Jara)

- We consider transition probabilities $p_{n}: \mathbb{Z} \rightarrow[0,1]$ with $p(0)=0$ and given by $p_{n}(z)=s(z)+\gamma_{n} a(z)$, where:
- $s(z)$ is irreducible, with finite variance:

$$
\sum_{z \in \mathbb{Z}} z^{2} s(z)=\sigma^{2}<\infty
$$

- $a(z)$ satisfies: $|a(z)| \leq \operatorname{Cs}(z)$, for any $z \in \mathbb{Z}$.
- $\gamma_{n} \sqrt{n} \rightarrow_{n \rightarrow \infty} b \neq 0$.

We get, for $\rho=1 / 2$, the SBE given by

$$
d \mathcal{Y}_{t}=\frac{\sigma^{2}}{2} \Delta \mathcal{Y}_{t} d t+b m \nabla\left(\mathcal{Y}_{t}\right)^{2} d t+\sqrt{\frac{\sigma}{2}} \nabla d \mathcal{V}_{t}
$$

where $m=\sum_{z \in \mathbb{Z}} z a(z)$.
Example: $s(z)=\frac{c}{|z|^{1+\beta}}, a(z)=\operatorname{sgn}(z) s(z)$ and $\beta>2$.

Exclusion with reservoirs (with C. Landim and A. Milanes)

(WEAK asymmetry) $\gamma=1, \alpha \neq \beta$. Out of equilibrium and uses the microscopic Cole-Hopf.

$$
\left(1+\frac{E}{n}\right)(1-\beta)
$$

$$
\begin{gathered}
1-\alpha \\
\left(1+\frac{E}{n}\right) \alpha
\end{gathered}
$$

Exclusion with reservoirs (with N. Perkowski and M. Simon)

(STRONG asymmetry), $\alpha=\beta=\frac{1}{2}, \gamma=1 / 2$.

Future directions

- Derive SBE with other types of boundary conditions ?
- Models with several conserved quantities (work in progress with C. Bernardin and M. Simon):
- Each one lives in its own time scale.
- The quantities depend on each other.
- The picture behind universality classes is richer that in systems with 1 conservation law.
- Obtain other singular SPDEs from IPS...

References:

1. Franco, T., G., P., Simon, M.: Crossover to the Stochastic Burgers Equation for the WASEP with a slow bond, CMP, 346 (3), (2016).
2. G., P., Jara, M.: Stochastic Burgers equation from long range exclusion interactions, SPA, 127 (12) (2017).
3. G., P., Landim, C., Milanes, A.: Nonequilibrium fluctuations of one-dimensional boundary driven weakly asymmetric exclusion processes, AAP, 27 (1), (2017).
4. G., P., Perkowski, N., Simon, M.: Derivation of the Stochastic Burgers equation with Dirichlet boundary conditions from the WASEP, to appear in AHL.
5. G, P., Jara, M., Sethuraman, S.: A stochastic Burgers equation from a class of microscopic interactions, AoP, 43 (1), (2015).

Thank you and...

