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Many-body localization (MBL)

Original point of view: super-insulator

Ao(T) 0 & e
NI A 22
e?/h
Cﬁ—? _____________
< Insulator»

T, Tn) (el ; From Basko et al. ‘06

Anderson |localization with interactions among the electrons

Anderson, Fleishman '80, Gornyi, Mirlin, Polyakov 05, Basko, Aleiner, Altshuler ‘06



Many-body localization (MBL)

Current view: ergodicity breaking

Key features: e non-integrable, interacting, ‘generic'...
e NO transport on any time scale
e crgodicity breaking

Ergodicity breaking: e no thermalization: no flow towards a maximal entropy state,
e more constraints than the macroscopic conserved guantities

E.g. quantum guench:
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Many-body localization (MBL)

Example: disordered spin chain
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H = ) ihiof + JL( i1+ 0; |+1) + Jofoi,

~W < h; < W i.i.d.(W = disorder strength).

Anderson localized (MBL) ergodic (ETH)

0 4 transition JIW
J| /W <« 1 (small bare localization length)

Gornyi et al. ‘05, Basko et al. ‘06,
Oganesyan et al. '07, Serbyn et al. '13, Huse et al '14, Imbrie ’16, etc...



Plan of the talk

Mechanism for thermalization:
instability of the MBL phase to the inclusion of thermal spots

N low disorder = thermal spots

1) Response to a single spot (microscopic)

2) General considerations on the transition

3) Picture of the transition through a multi-scale analysis (RG)



Part I:
Single spot



Anderson insulator coupled to an imperfect bath

h )

Anderson insulator: J=0

Imperfect bath = fixed (and small) number of spins:

random matrix interaction

Minimal model for MBL with non-trivial phase diagram



Possibility of avalanches

The ergodic spot thermalizes the near spins...

... and becomes a larger spot

Eventually, the full material could become thermal

d=1 and large disorder: fallacy! (see Imbrie '12)

In general (inclu

ding d>1): this can happen!



Move to the Anderson basis

J et/
S oy Ve e e g

f : localization length

H = Hp + Zhgaf + JZe_E/gaéaz
¢>1 ¢>1

Ho, = R+ Rf, R=GOE(2"“ x 2), L, fixed

|dealization: e h,no longer I.i.d.

e fluctuations around Je*/¢



How many spins are thermalized?

matrix element e—t/€ g=s(T)(Lo+£)/2

G(t) == level spacing - eS(T)(LbM))

s(T =o00) = log(2) (entropy density) random matrix assumption

G(¢) < 1 :spinat £ islocalized
G(¢) > 1 :spinat ¢ is thermalized

cfr. W. De Roeck and F. H., PRB 17, for more justifications



Upper bound on the localization length

Avalanche stops when G(£) < 1, i.e. for

1
0 ~ L
_ log 2
&1 -5

Write gc — 2/ 10g2

£ <& : The avalanche will eventually stop

&> &+ MBLis unstable

The value of & depends on the lattice:
e Spins on both sides of the spot: & = 1/log?2
¢ d > 1 . gc — O



Expected phase diagram
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(qualitative picture)

see also M. Znidaric and M. Ljubotina, PNAS ‘18



Numerical check

Lp = 3 : Hpath = GOE(8 x 8)
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from D. Luitz, F. H. and W. De Roeck, PRL 117, 2017



Part Il:

General ‘facts’
about the

transition




Spots all over the chain

Disorder fluctuations generate small baths (Griffiths regions):

Simplified model:
- . Anderson insulator with localization length &
@ : resonant spot = imperfect bath

e = density of n.n. resonances

spot of size k: k consecutive resonances

some relation between {1 and e: & = 1/log(K/e)



Effective diagonalisation

Classical and effective algorithm to deal with resonances

e = density of resonant spots (inverse disorder strength)

effective diagonalisation

p(e) = density of thermal spots

p(e) = 1 : the material is thermal

p(e) < 1 : the material is localized



Two basic assumptions

Hard task to find a good scheme. Some conclusions can
first be drawn from general arguments. Let

T(L) = thethermalregion. Thus p = |T(L)|/L

Two ‘reasonable’ assumptions:

Al1: ¢ — (|T(L)|)s is continuous and non-decreasing

A2: T(L) c T(L") if we enlarge the system from L to L

Remark: A2 does probably not hold true at the microscopic
level (proximity effects). Neglected here.



consequences
Thermal density: p(L) = |T(L)|/L

Cil:Forany ¢, (p(L))s = p*(e) as L —

Follows from A2 by Fekete’s superadditivity lemma

C2: concentration around the mean:
P(lp(L) — p*(e)| > ) — O Vo >0 as L — o

In particular, 2 possibilities at criticality:

1) MBL with probability 1if p*(ec) < 1

2) Thermal with probability 1if p*(ec) = 1



Why C27?

Compare with a systems cut into blocks of size Lg

Lo large enough so that (p(Lo))e ~ p™(¢) (by C1)

C2 holds true for the ‘block’ system, hence by A2,
P(p(L)— p*(e) >—-90) - 0 as L — oo

concentration in the other direction: p*(¢) is the average



MBL fixed point

C3:c — p*(e) is left-continuous and non-decreasing

Follows by standard arguments from A1 and C1
Two possibilities:

A

p*(e) percolation
1 |
Thermal MBL ETH
fixed point NO
Ec €>
7)) avalanche
1 —_—
MBL
MBL ETH
fixed point YES
Ec 5»

because § < &c,and £ - o0 asp — 1



Part lll:

Multi-scale

analysis (RG)




The need for more

e Develop a picture for how the transition happens
e |s & = 1/log?2 still the critical localization length?

Avoid paradoxes: resonances percolate at some & < &

L
< 0 ~
‘—I—b > < / > fC—f*
® O ® O @ o
Impossible: pc < 1 ‘VR“NG

* Finite size scalings, critical exponents and distributions...



Issues in finding a good effective scheme

main issue: interactions among spots

e Effective spot issuing from these two”

e Effective localization length for the large spot?
al»> -
e \What spots to deal with first?

Several earlier proposals: Vosk and Altman 14, Vosk, Huse and Altman '15, Potter,
Vasseur and Parameswaran '15, Imbrie '16, Zhang, Zhao, Devakul and Huse '16,
Dumitrescu, Vasseur and Potter '17, Goremykina, Vasseur and Serbyn ‘18

Imbrie "16: main inspiration for our RG



Simplified RG scheme

Flow on a few effective parameters by some approximations
e Scale k: resonant spot of size k
e Deal with the smallest scales first (to avoid non-sense)

e 1st parameter: effective localization length &k

large spot small spot

N N/
Eeff > &1 Seff = &1

due to the presence
of smaller spots



Simplified RG scheme

Rule of halted decay: no decay through thermal regions

:
—L/&ett — a—(—4n)/Eo _
€ € = Seff = S0 7 ™,

Ui : number of spins thermalized at previous scales : bare spots + collar

e 2nd parameter: effective response to thermal inclusions:
length of the thermalized region by a k resonance:

K
fc—fk7

e 3d parameter: thermal density from k resonant spots:

b ~ Ec=1/log?2

pk ~ ek(K+ fy)



Simplified RG scheme

Flow on the parameters &k, fxand pk:

fk_11 — (1 — pk) §k_1 rule of halted decay
K
fk — thermal length for k resonant spots
fc — fk
Pk = Ek(k -+ fk) thermal density from k resonant spots

&k — & < +oo from the MBL side but ¢y diverges:
MBL: /4 /k — ¢ as k—

critical : /k/K — oo as Kk —

thermal : /x/k =00 for some k < oo (avalanche)



Qualitative diagram

no proper divergent length scale
on the thermal side

Thermal

§c =1/ log?2

From T. Thiery, F. H., M. Mueller, W. De Roeck, PRL 121, 2018



Issues with the approximations

1. Fluctuations have been neglected. Finite size scalings

and critical exponent (computed numerically) violate the
rigorous Harris bound.

E.g.: p(e, L): probability that a system of size L is thermal
p(g, L) ~ F::(L/L (5))

MBL side: L ~ ‘gc—g‘_y—

Thermal side: L, ~ |ec —¢g|™™*

At criticality: p(ec,L) ~ L™°

Wrong exponents (Harris: v+ > 2) but polynomial behavior
at criticality is correct.

Remark: no reason to expect v, = v_.




Issues with the approximations

2. Interactions among spot of the same size have been
neglected. The thermal density pk Is underestimated

Sparse resonant structures (Cantor set like) may result in
huge effective resonant regions

acts effectively as

As a result:

K K*(¢)

e — ¢ with «a(e) < 1



Microscopic effective scheme

Cure to these problems:

e Abandon the reduced description wit
ead, fix precise rules to deal with the effect of

NS
di
SPOtS. Cfr. T. Thiery, M. Miiller and W. De Roeck, arXiv:1711.09880

vidual resonant spots, including interaction a

e Solve the scheme numerically

Upshot:

N a few parameters

mong

e The overall picture of the simplified scheme is confirmed
e Critical exponents are agree with Harris bound



Conclusions
Instability of the MBL phase:

e A single imperfect bath can destabilize MBL
e | ocalized transition point, with finite loc. length

e Discontinuity of the thermal density at the transition
(unlike percolation)

e Physical picture from RG, scale dependent loc. length

e Divergent response to the inclusion of thermal spots



