Selected topics on the dynamics of quantum walkers

Jean-Marc Luck
Institut de Physique Théorique (Université Paris-Saclay, CEA \& CNRS)

Based on work in collaboration with Paul Krapivsky and Kirone Mallick

Inhomogeneous Random Systems, IHP, Paris, January 22-23, 2019

Prelude

Quantum walks have become popular lately...

- In quantum computing (mostly in discrete time)

The natural advanced tool for building quantum algorithms
The Turing machine of the quantum world

Review by S. E. Venegas-Andraca (2012)

- In Physics (mostly in continuous time)

The simplest of all quantum-mechanical dynamical systems
Related to experiments manipulating coherent quantum states
e.g. cold-atom systems or photonic devices

The simplest of all quantum walks

A tight-binding particle hopping on a 1D lattice (in continuous time)

Many properties have been investigated in many situations
I. Elementary properties (Form of the wavefunction)
II. One-body effects (Effect of absorption)
III. Many-body effects (Bound-state dynamics)

This talk will roughly follow the above setup

I. Form of the wavefunction

Assume the particle is launched from the origin

$$
\mathrm{i} \frac{\mathrm{~d} \psi_{n}(t)}{\mathrm{d} t}=\psi_{n+1}(t)+\psi_{n-1}(t) \quad \text { with } \quad \psi_{n}(0)=\delta_{n 0}
$$

Then

$$
\psi_{n}(t)=\int \frac{\mathrm{d} q}{2 \pi} \mathrm{e}^{\mathrm{i} n q-2 \mathrm{itcos} q}=\mathrm{i}^{-n} J_{n}(2 t) \quad \text { (Bessel functions) }
$$

$$
t=50
$$

Ballistic spreading

- Ballistic growth of moments

$$
\left\langle n^{2}\right\rangle=2 t^{2}, \quad\left\langle n^{4}\right\rangle=6 t^{4}+2 t^{2}
$$

- Marginal recurrence $\quad($ dimension of trajectory $=$ space dimension $=1)$

$$
T_{0}(t)=\int_{0}^{t}\left|\psi_{0}\left(t^{\prime}\right)\right|^{2} \mathrm{~d} t^{\prime} \approx \frac{\ln t}{2 \pi}
$$

- Dispersion relation $\omega(q)=2 \cos q, \quad v(q)=\mathrm{d} \omega(q) / \mathrm{d} q=-2 \sin q$

Maximum of $v(q)$ yields spreading velocity $\quad V=2$

$$
\begin{aligned}
& \star \text { Allowed region } \quad(|n|<2 t) \\
& \quad\left|\psi_{n}(t)\right|^{2} \rightarrow \frac{1}{\pi \sqrt{4 t^{2}-n^{2}}} \\
& \star \text { Ballistic peaks } \quad(n \approx \pm V t \approx 2 t) \\
& \quad|n|=2 t+z t^{1 / 3} \\
& \quad \psi_{n}(t) \approx \mathrm{i}^{-n} t^{-1 / 3} \mathrm{Ai}(z) \quad \text { (Airy function) }
\end{aligned}
$$

A measurable consequence: Bifractality
Dynamical IPRs (inverse participation ratios)

$$
\begin{aligned}
& I_{k}(t)=\sum_{n}\left|\psi_{n}(t)\right|^{2 k} \sim t^{-\tau(k)} \\
& \tau(k)= \begin{cases}k-1 & \text { for } k<2 \\
\frac{2 k-1}{3} & \text { for } k>2\end{cases}
\end{aligned}
$$

- Normal scaling $(k<2)$ due to allowed region
- Anomalous scaling $(k>2)$ due to ballistic peaks
- Usual IPR $(k=2)$ has logarithmic correction: $I_{2}(t) \approx \frac{\ln t}{2 \pi^{2} t}$

Bifractality persists in the presence of weak diagonal disorder

$$
\begin{aligned}
& \mathrm{i} \frac{\mathrm{~d} \psi_{n}(t)}{\mathrm{d} t}=\psi_{n+1}(t)+\psi_{n-1}(t)+V_{n} \psi_{n}(t) \\
& \left\langle V_{n}\right\rangle=0, \quad\left\langle V_{m} V_{m}\right\rangle=w^{2} \delta_{m n} \quad(w \ll 1)
\end{aligned}
$$

- Very same bifractal scaling for asymptotic IPRs $\quad\left(t \gg \xi_{0} \sim 1 / w^{2}\right)$

$$
I_{k}(\infty) \sim w^{2 \tau(k)}
$$

Due to anomalous band-edge scaling (Halperin, Derrida-Gardner)

- Scaling law in crossover regime

$$
I_{k}(t) \approx t^{-\tau(k)} F_{k}\left(w^{2} t\right)
$$

S. de Toro Arias and JML (1998)

II. Effect of absorption

Warming up: a single trap at the origin

- Trap modelled as optical potential of strength γ

$$
\mathrm{i} \frac{\mathrm{~d} \psi_{n}(t)}{\mathrm{d} t}=\psi_{n+1}(t)+\psi_{n-1}(t)-\mathrm{i} \gamma \delta_{n 0} \psi_{n}(t) \quad \text { with } \quad \psi_{n}(0)=\delta_{n a}
$$

- Non-unitary evolution
- Survival probability

$$
\Pi(t)=\sum_{n}\left|\psi_{n}(t)\right|^{2}=1-2 \gamma \int_{0}^{t}\left|\psi_{0}\left(t^{\prime}\right)\right|^{2} \mathrm{~d} t^{\prime}
$$

Non-trivial asymptotic survival (i.e., escape) probability

$$
\Pi_{\infty}=1-2 \gamma \int_{0}^{\infty}\left|\psi_{0}(t)\right|^{2} \mathrm{~d} t>0
$$

- Purely quantum effect

$$
\text { In classical case (2D Brownian particle): } \quad \Pi(t) \approx \frac{2 \pi a^{2}}{\ln t}
$$

- Explicit expression as a function of initial distance a
(Green's function techniques)

$$
\Pi_{\infty}=1-\frac{4 \gamma}{\pi}\left[\int_{0}^{\pi / 2} \frac{\sin \theta \mathrm{~d} \theta}{(\gamma+2 \sin \theta)^{2}}+\int_{0}^{\infty} \frac{\sinh \theta \mathrm{d} \theta}{\gamma^{2}+4 \sinh ^{2} \theta} \mathrm{e}^{-2 a \theta}\right]
$$

Features of asymptotic survival (i.e., escape) probability

- Monotonic behavior for $a=0$

$$
\Pi_{\infty} \approx \frac{1}{2 \gamma^{2}}
$$

- Non-monotonic behavior for $a>0$

Paradoxical transparency $\quad(\gamma \rightarrow \infty)$

$$
\Pi_{\infty} \approx 1-\frac{16 a^{2}}{\left(4 a^{2}-1\right) \pi \gamma}
$$

A finite concentration of traps

$$
\begin{aligned}
& \mathrm{i} \frac{\mathrm{~d} \psi_{n}(t)}{\mathrm{d} t}=\psi_{n+1}(t)+\psi_{n-1}(t)-\mathrm{i} \gamma \varepsilon_{n} \psi_{n}(t) \\
& \varepsilon_{n}=\left\{\begin{array}{lll}
1 & (\operatorname{trap}) & \text { with prob. } \\
0 & (\text { no trap }) & \text { with prob. } \\
0 & 1-c
\end{array}\right.
\end{aligned}
$$

Decay of mean survival probability $\Pi(t)$?
Parris, Edwards \& Parris (1989)
KLM (2014)

Approach à la Lifshitz

- Cluster of $N+1$ sites without traps

- Stationary problem

$$
\begin{aligned}
& \psi_{n}(t)=\left(A \mathrm{e}^{\mathrm{i} n q}+B \mathrm{e}^{-\mathrm{i} n q}\right) \mathrm{e}^{-\mathrm{i} E t} \\
& E=2 \cos q \quad(E \text { and } q \text { complex })
\end{aligned}
$$

- Boundary conditions: $\quad \psi_{-1}=Y_{L} \psi_{0}, \quad \psi_{N+1}=Y_{R} \psi_{N}$
- Lowest mode of large cluster

$$
q_{1}=\frac{\pi}{N}\left(1+\frac{\alpha}{N}+\cdots\right) \quad \alpha=\frac{1}{Y_{L}-1}+\frac{1}{Y_{R}-1}
$$

- Decay rate

$$
\lambda=-2 \operatorname{Im} E_{1} \approx \frac{4 \pi^{2}}{N^{3}} \operatorname{Im} \alpha
$$

scales as $1 / N^{3}$ and fluctuates (i.e., depends on b.c.)

How is $\operatorname{Im} \alpha$ distributed?

Clue from transfer-matrix approach to $1 D$ disordered systems:
Consider Riccati variables $Y_{n}=\frac{\psi_{n}}{\psi_{n+1}}$ at band edge ($E=2$)

- Obey random recursion $\quad Y_{n}=\frac{1}{2+\mathrm{i} \gamma \varepsilon_{n}-Y_{n-1}}$
- Have invariant distribution whose support is complex fractal

- Boundary parameters Y_{L} and Y_{R} are independent and drawn from the above law

To conclude

- Large cluster $(N \gg 1)$ has probability $(1-c)^{N}$ and optimal rate $\frac{8 \pi^{2}}{N^{3}} \frac{f(\gamma)}{\gamma}$ $f(\gamma)=2 \gamma \min \operatorname{Im} \alpha$

Minimum taken over fractal invariant set

- Average survival probability on clusters of size N

$$
\Pi(t) \sim \sum_{N} \exp \left(-\frac{8 \pi^{2}}{N^{3}} \frac{f(\gamma)}{\gamma} t-|\ln (1-c)| N\right)
$$

- Saddle point (optimal cluster size)

$$
N \approx\left(24 \pi^{2} \frac{f(\gamma)}{\gamma} \frac{t}{\ln (1-c)}\right)^{1 / 4}
$$

- Stretched exponential decay à la Lifshitz

$$
\Pi(t) \sim \exp \left[-\frac{4}{3}\left(24 \pi^{2} \frac{f(\gamma)}{\gamma}|\ln (1-c)|^{3} t\right)^{1 / 4}\right]
$$

A glimpse into the higher-dimensional situation

- Classical diffusing particles

Lifshitz (1964), Balagurov \& Vaks (1974), Donsker and Varadhan (1975)

$$
\Pi(t) \sim \exp \left[-(d+2)\left(\frac{\Omega^{2}}{4 d^{d}} j^{2 d}|\ln (1-c)|^{2} t^{d}\right)^{1 /(d+2)}\right]
$$

In $(d+2), 2$ is dimension of Brownian trajectory
Dependence on parameters explicit and simple

- Quantum walkers

Parris, Edwards \& Parris (1989), KLM (2014)

$$
\Pi(t) \sim \exp \left[-(d+3)\left(\frac{\Omega^{3}}{27 d^{d}} A^{d}|\ln (1-c)|^{3} t^{d}\right)^{1 /(d+3)}\right]
$$

In $(d+3), 3$ is not dimension of ballistic trajectory
Optimization on b.c. yields non-trivial A

III. Bound state dynamics

- Two identical (fermionic or bosonic) particles at sites $n_{1}=n$ and $n_{2}=n+m$
- Bound by confining potential W_{m}

$$
\mathrm{i} \frac{\mathrm{~d} \psi_{n, m}(t)}{\mathrm{d} t}=\psi_{n, m-1}(t)+\psi_{n+1, m-1}(t)+\psi_{n-1, m+1}(t)+\psi_{n, m+1}(t)+W_{m} \psi_{n, m}(t)
$$

- Basis of plane-wave solutions

$$
\psi_{n, m}(t)=\mathrm{e}^{\mathrm{i}\left(q n_{\mathrm{com}}-\omega t\right)} \phi_{m}
$$

- Internal wavefunction ϕ_{m} is dispersive

$$
\omega \phi_{m}=2 \cos \frac{q}{2}\left(\phi_{m-1}+\phi_{m+1}\right)+W_{m} \phi_{m}
$$

Depends on momentum q conjugate to $n_{\mathrm{com}}=\frac{n_{1}+n_{2}}{2}$
No separation of center-of-mass dynamics...

Hard-wall potential

$$
W_{m}= \begin{cases}0 & \text { for }|m| \leq L \\ +\infty & \text { for }|m|>L\end{cases}
$$

- Relative co-ordinate takes $2 L+1$ values: $m=-L, \ldots, L$
- Dispersion relation $\omega(p, q)=4 \cos p \cos \frac{q}{2}$
- Quantization of internal momentum p depends on statistics

Bosons (ϕ_{m} even, black)

$$
p_{k}^{(\mathrm{B})}=\frac{\left(k+\frac{1}{2}\right) \pi}{L+1} \quad(k=0, \ldots, L)
$$

Fermions (ϕ_{m} odd, red)

$$
p_{k}^{(\mathrm{F})}=\frac{k \pi}{L+1} \quad(k=1, \ldots, L)
$$

$$
L=6
$$

In the time domain

Each dispersive branch yields a ballistic peak

$$
V_{k}^{(\mathrm{B})}=2 \cos \frac{\left(k+\frac{1}{2}\right) \pi}{L+1}, \quad V_{k}^{(\mathrm{F})}=2 \cos \frac{k \pi}{L+1}
$$

Example: $L=4,2$ fermions launched from sites 0 and 1

Power-law potential

$$
W_{m}=g|m|^{\alpha}
$$

- The lowest bands are the most dispersive

$$
\alpha=1, g=0.4
$$

- Spreading (maximal) velocities $V^{(\mathrm{B})}$ and $V^{(\mathrm{F})}$
 correspond to lowest band in each sector
- Scaling in weak-potential regime $(g \rightarrow 0)$

$$
V^{(\mathrm{B})} \approx 2-C^{(\mathrm{B})} g^{2 /(3+\alpha)}, \quad V^{(\mathrm{F})} \approx 2-C^{(\mathrm{F})} g^{2 /(3+\alpha)}
$$

Amplitudes $C^{(\mathrm{B})}$ and $C^{(\mathrm{F})}$ universal (depend only on α)

To sum up...

- Quantum walks are among the simplest of all quantum dynamical systems
- Many situations can be studied, often by analytical means
- Quite a few surprising quantum features without classical analogues
I. Form of the wavefunction

Ballistic peaks. Bifractality
II. Effect of absorption

Paradoxical transparency as $\gamma \rightarrow \infty$
Fluctuating N^{3} scaling of decay rate. Non-trivial Lifshitz law
III. Bound-state dynamics

No separation of center-of-mass dynamics
Many internal ballistic peaks besides two extremal ones

References

- P.L. Krapivsky and J.M. Luck, Dynamics of a quantum particle in low-dimensional disordered systems with extended states, J. Stat. Mech. P02031 (2011) [arXiv:1101.2101].
- P.L. Krapivsky, J.M. Luck and K. Mallick, Survival of classical and quantum particles in the presence of traps, J. Stat. Phys. 154, 1430-1460 (2014) [arXiv:1311.6298].
- P.L. Krapivsky, J.M. Luck and K. Mallick, Interacting quantum walkers: Two-body bosonic and fermionic bound states, J. Phys. A 48, 475301 (2015) [arXiv:1507.01363].
- P.L. Krapivsky, J.M. Luck and K. Mallick, Quantum centipedes: collective dynamics of interacting quantum walkers, J. Phys. A 49, 335303 (2016) [arXiv:1603.04601].
- P.L. Krapivsky, J.M. Luck and K. Mallick, Quantum return probability of a system of N non-interacting lattice fermions, J. Stat. Mech. 023104 (2018) [arXiv:1710.08178].

