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Prelude

Quantum walks have become popular lately...

e In quantum computing (mostly in discrete time)

The natural advanced tool for building quantum algorithms
The Turing machine of the quantum world

Review by S. E. Venegas-Andraca (2012)

e In Physics (mostly in continuous time)

The simplest of all quantum-mechanical dynamical systems
Related to experiments manipulating coherent quantum states

e.g. cold-atom systems or photonic devices



The simplest of all quantum walks

A tight-binding particle hopping on a 1D lattice (in continuous time)
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= Wut1 (1) + W1 (1)

Many properties have been investigated in many situations

I. Elementary properties (Form of the wavefunction)
II. One-body effects (Effect of absorption)

III. Many-body effects (Bound-state dynamics)

This talk will roughly follow the above setup



I. Form of the wavefunction

Assume the particle is launched from the origin
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Ballistic spreading

e Ballistic growth of moments
<n2> — 212, <n4> — 61* + 277

e Marginal recurrence (dimension of trajectory = space dimension = 1)

! Int
To(t) = )| dr’ ~ —
b(1) = [ o) ~ 3

e Dispersion relation ®(g) =2cosq, v(g) =dw(g)/dg= —2sing

Maximum of v(g) yields spreading velocity V =2

* Allowed region (|n| < 2t)
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A measurable consequence: Bifractality

Dynamical IPRs (inverse participation ratios)

L(t)=) [y (1)~ 170 |

k—1 fork<?2 =
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w(k) {% for k > 2 7

e Normal scaling (k < 2) due to allowed region

e Anomalous scaling (k > 2) due to ballistic peaks

Int
e Usual IPR (k=2) has logarithmic correction: I(t) ~ P



Bifractality persists in the presence of weak diagonal disorder

: dy, (1)
dr

= W1 (t) + W1 (2) + V()

e Very same bifractal scaling for asymptotic IPRs (1 > &y~ 1/ w2)
Ik<0°) N W2’c(k)

Due to anomalous band-edge scaling (Halperin, Derrida-Gardner)

e Scaling law in crossover regime

I(t) ~ "W F (w?t)

S. de Toro Arias and JML (1998)



II. Effect of absorption
Warming up: a single trap at the origin
KON T
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e Trap modelled as optical potential of strength 'y

dy, (1)
dr

e Non-unitary evolution

i

= Y1 (1) + Y1 (1) = V80 Win(r) - with  yia(0) = S

e Survival probability
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Non-trivial asymptotic survival (i.e., escape) probability

I, :1—2y/ yo(£)[*dt >0
0

e Purely quantum effect

21a?

Int

In classical case (2D Brownian particle): TI(t) ~

e Explicit expression as a function of 1nitial distance a

(Green’s function techniques)
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Features of asymptotic survival (1.e., escape) probability

e Monotonic behavior for a =0

e Non-monotonic behavior for a > 0

Paradoxical transparency (Y — o)

164>
(4a? — 1)y

1

0.8 r

Q Q2

§ W~ O




A finite concentration of traps

dy, (1)
dt

e _ I (trap) with prob. ¢
" 10 (notrap) withprob. 1—c

— Wn—i—l(t) +\|fn—1(t) —iYEn\Ifn(l)
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Decay of mean survival probability T1(t) ?

Parris, Edwards & Parris (1989)
KLM (2014)



Approach a la Lifshitz

e Cluster of N + 1 sites without traps

1 0 1 N  N+1
e Stationary problem

W, (Z) _ (A einq _I_Be—inq)e—iEt
E =2cosq (FE and g complex)
e Boundary conditions: WV_1 = Y7y, Yni1 = YRUN

e Lowest mode of large cluster

—E@+9+m) o=t
R VA Y -1 Ye—1

e Decay rate
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scales as 1 /N3 and fluctuates (i.e., depends on b.c.)



How 1s Im o distributed ?

Clue from transfer-matrix approach to 1D disordered systems:

Consider Riccati variables Y, = hd at band edge (£ =2)
Win+1
: 1
e Obey random recursion Y, = ,
2+ 1€, — )
e Have invariant distribution whose support is complex fractal
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e Boundary parameters Y; and Yz are independent and drawn from the above law



To conclude

. N . 8m° f(v)
e Large cluster (N > 1) has probability (1 —c¢)" and optimal rate —-~——=

N>y
f(y) =2y min Im o

Minimum taken over fractal invariant set

e Average survival probability on clusters of size N

~Yew <—8l]%t—|1n(1—c>uv)

e Saddle point (optimal cluster size)

N 2 fY) 1 /4
M= (24" Y 1n<1—c>)

e Stretched exponential decay a la Lifshitz

1/4
H(t)fvexp[ 3(24n2f(y)\ln(l—c)]3t> ]



A glimpse into the higher-dimensional situation

e Classical diffusing particles

Lifshitz (1964), Balagurov & Vaks (1974), Donsker and Varadhan (1975)

Q2 , 1/(d+2)
—(d+2) <Wj2d|ln(1 —¢)| td> ]

In (d+2), 2 is dimension of Brownian trajectory

[1(¢) ~ exp

Dependence on parameters explicit and simple

e Quantum walkers

Parris, Edwards & Parris (1989), KLM (2014)

Q3 1/(d+3)
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In (d+3), 3 is not dimension of ballistic trajectory

Optimization on b.c. yields non-trivial A



III. Bound state dynamics

e Two 1dentical (fermionic or bosonic) particles at sites ny =n and np) =n-+m

e Bound by confining potential W,,
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e Basis of plane-wave solutions
Winm (1) = !(@neom =)y
e Internal wavefunction ¢, is dispersive

O)q)m = 208 % (q)m—l + (l)m—H) + Wm(l)m

ny+nn
2

Depends on momentum q conjugate to neom =

No separation of center-of-mass dynamics...



Hard-wall potential

[0 for |m| <L
" | 4o for |m| > L

e Relative co-ordinate takes 2L+ 1 values: m = —L,... L
e Dispersion relation ®(p,q) = 4cos pcos g

e Quantization of internal momentum p depends on statistics

Bosons (0,, even, black)
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Fermions (¢, odd, red)
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In the time domain

Each dispersive branch yields a ballistic peak

k+1)m kT
Vk(B) = 2c0s Q, Vk(F) = 2c0s
L+1 L+1
Example: L =4, 2 fermions launched from sites 0 and 1
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Power-law potential
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e The lowest bands are the most dispersive 5 ' =
ol
a=1, g=04 —13—
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e Spreading (maximal) velocities V'’ and V q/Tt

correspond to lowest band 1n each sector

e Scaling in weak-potential regime (g — 0)

y(B) o (B g2/(3+0) () &2 — P g2/ (3+0)

9 Y

Amplitudes C B) and V) universal (depend only on o)



To sum up...

e Quantum walks are among the simplest of all quantum dynamical systems
e Many situations can be studied, often by analytical means

e Quite a few surprising quantum features without classical analogues

I. Form of the wavefunction

Ballistic peaks. Bifractality
II. Effect of absorption

Paradoxical transparency as Y — oo

Fluctuating N° scaling of decay rate. Non-trivial Lifshitz law
ITI. Bound-state dynamics

No separation of center-of-mass dynamics

Many internal ballistic peaks besides two extremal ones
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