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Prelude

Quantum walks have become popular lately...

• In quantum computing (mostly in discrete time)

The natural advanced tool for building quantum algorithms

The Turing machine of the quantum world

Review by S. E. Venegas-Andraca (2012)

• In Physics (mostly in continuous time)

The simplest of all quantum-mechanical dynamical systems

Related to experiments manipulating coherent quantum states

e.g. cold-atom systems or photonic devices



The simplest of all quantum walks

A tight-binding particle hopping on a 1D lattice (in continuous time)

i
dψn(t)

dt
= ψn+1(t)+ψn−1(t)

Many properties have been investigated in many situations

I. Elementary properties (Form of the wavefunction)

II. One-body effects (Effect of absorption)

III. Many-body effects (Bound-state dynamics)

This talk will roughly follow the above setup



I. Form of the wavefunction

Assume the particle is launched from the origin

i
dψn(t)

dt
= ψn+1(t)+ψn−1(t) with ψn(0) = δn0

Then

ψn(t) =
∫

dq

2π
einq−2it cosq = i−nJn(2t) (Bessel functions)
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Ballistic spreading

• Ballistic growth of moments
〈

n2
〉

= 2t2,
〈

n4
〉

= 6t4 +2t2

• Marginal recurrence (dimension of trajectory = space dimension = 1)

T0(t) =
∫ t

0

∣

∣ψ0(t
′)
∣

∣

2
dt ′ ≈ ln t

2π

• Dispersion relation ω(q) = 2cosq, v(q) = dω(q)/dq =−2sinq

Maximum of v(q) yields spreading velocity V = 2

⋆ Allowed region (|n|< 2t)

|ψn(t)|2 →
1

π
√

4t2 −n2

⋆ Ballistic peaks (n ≈±Vt ≈ 2t)

|n|= 2t + zt1/3

ψn(t)≈ i−nt−1/3Ai(z) (Airy function)



A measurable consequence: Bifractality

Dynamical IPRs (inverse participation ratios)

Ik(t) = ∑
n

|ψn(t)|2k ∼ t−τ(k)

τ(k) =

{

k−1 for k < 2
2k−1

3
for k > 2
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• Normal scaling (k < 2) due to allowed region

• Anomalous scaling (k > 2) due to ballistic peaks

• Usual IPR (k = 2) has logarithmic correction: I2(t)≈
ln t

2π2t



Bifractality persists in the presence of weak diagonal disorder

i
dψn(t)

dt
= ψn+1(t)+ψn−1(t)+Vnψn(t)

〈Vn〉= 0, 〈VmVm〉= w2δmn (w ≪ 1)

• Very same bifractal scaling for asymptotic IPRs (t ≫ ξ0 ∼ 1/w2)

Ik(∞)∼ w2τ(k)

Due to anomalous band-edge scaling (Halperin, Derrida-Gardner)

• Scaling law in crossover regime

Ik(t)≈ t−τ(k)Fk(w
2t)

S. de Toro Arias and JML (1998)



II. Effect of absorption

Warming up: a single trap at the origin

0 a

• Trap modelled as optical potential of strength γ

i
dψn(t)

dt
= ψn+1(t)+ψn−1(t)− iγδn0 ψn(t) with ψn(0) = δna

• Non-unitary evolution

• Survival probability

Π(t) = ∑
n

|ψn(t)|2 = 1−2γ

∫ t

0

∣

∣ψ0(t
′)
∣

∣

2
dt ′



Non-trivial asymptotic survival (i.e., escape) probability

Π∞ = 1−2γ

∫ ∞

0
|ψ0(t)|2 dt > 0

• Purely quantum effect

In classical case (2D Brownian particle): Π(t)≈ 2πa2

ln t

• Explicit expression as a function of initial distance a

(Green’s function techniques)

Π∞ = 1− 4γ

π

[∫ π/2

0

sinθ dθ

(γ+2sinθ)2
+

∫ ∞

0

sinhθ dθ

γ2 +4sinh2 θ
e−2aθ

]



Features of asymptotic survival (i.e., escape) probability
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• Monotonic behavior for a = 0

Π∞ ≈ 1

2γ2

• Non-monotonic behavior for a > 0

Paradoxical transparency (γ → ∞)

Π∞ ≈ 1− 16a2

(4a2 −1)πγ



A finite concentration of traps

i
dψn(t)

dt
= ψn+1(t)+ψn−1(t)− iγεn ψn(t)

εn =

{

1 (trap) with prob. c

0 (no trap) with prob. 1− c

Decay of mean survival probability Π(t) ?

Parris, Edwards & Parris (1989)

KLM (2014)



Approach à la Lifshitz

• Cluster of N +1 sites without traps

−1 0 N N+11

• Stationary problem

ψn(t) =
(

Aeinq +Be−inq
)

e−iEt

E = 2cosq (E and q complex)

• Boundary conditions: ψ−1 = YLψ0, ψN+1 = YRψN

• Lowest mode of large cluster

q1 =
π

N

(

1+
α

N
+ · · ·

)

α =
1

YL −1
+

1

YR −1

• Decay rate

λ =−2 Im E1 ≈
4π2

N3
Im α

scales as 1/N3 and fluctuates (i.e., depends on b.c.)



How is Im α distributed ?

Clue from transfer-matrix approach to 1D disordered systems:

Consider Riccati variables Yn =
ψn

ψn+1
at band edge (E = 2)

• Obey random recursion Yn =
1

2+ iγεn −Yn−1

• Have invariant distribution whose support is complex fractal
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• Boundary parameters YL and YR are independent and drawn from the above law



To conclude

• Large cluster (N ≫ 1) has probability (1− c)N and optimal rate
8π2

N3

f (γ)

γ

f (γ) = 2γ min Im α

Minimum taken over fractal invariant set

• Average survival probability on clusters of size N

Π(t)∼ ∑
N

exp

(

−8π2

N3

f (γ)

γ
t −|ln(1− c)|N

)

• Saddle point (optimal cluster size)

N ≈
(

24π2 f (γ)

γ

t

ln(1− c)

)1/4

• Stretched exponential decay à la Lifshitz

Π(t)∼ exp

[

−4

3

(

24π2 f (γ)

γ
|ln(1− c)|3 t

)1/4
]



A glimpse into the higher-dimensional situation

• Classical diffusing particles

Lifshitz (1964), Balagurov & Vaks (1974), Donsker and Varadhan (1975)

Π(t)∼ exp

[

−(d +2)

(

Ω2

4dd
j2d |ln(1− c)|2 td

)1/(d+2)
]

In (d +2), 2 is dimension of Brownian trajectory

Dependence on parameters explicit and simple

• Quantum walkers

Parris, Edwards & Parris (1989), KLM (2014)

Π(t)∼ exp

[

−(d +3)

(

Ω3

27dd
Ad |ln(1− c)|3 td

)1/(d+3)
]

In (d +3), 3 is not dimension of ballistic trajectory

Optimization on b.c. yields non-trivial A



III. Bound state dynamics

• Two identical (fermionic or bosonic) particles at sites n1 = n and n2 = n+m

• Bound by confining potential Wm

n n1 2

i
dψn,m(t)

dt
= ψn,m−1(t)+ψn+1,m−1(t)+ψn−1,m+1(t)+ψn,m+1(t)+Wmψn,m(t)

• Basis of plane-wave solutions

ψn,m(t) = ei(qncom−ωt)φm

• Internal wavefunction φm is dispersive

ωφm = 2cos
q

2
(φm−1 +φm+1)+Wmφm

Depends on momentum q conjugate to ncom =
n1 +n2

2

No separation of center-of-mass dynamics...



Hard-wall potential

Wm =

{

0 for |m| ≤ L

+∞ for |m|> L

• Relative co-ordinate takes 2L+1 values: m =−L, . . . ,L

• Dispersion relation ω(p,q) = 4cos pcos
q

2

• Quantization of internal momentum p depends on statistics

Bosons (φm even, black)

p
(B)
k =

(k+ 1
2
)π

L+1
(k = 0, . . . ,L)

Fermions (φm odd, red)

p
(F)
k =

kπ

L+1
(k = 1, . . . ,L)
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In the time domain

Each dispersive branch yields a ballistic peak

V
(B)
k = 2cos

(k+ 1
2
)π

L+1
, V

(F)
k = 2cos

kπ

L+1

Example: L = 4, 2 fermions launched from sites 0 and 1
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Power-law potential

Wm = g |m|α

• The lowest bands are the most dispersive

α = 1, g = 0.4
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• Spreading (maximal) velocities V (B) and V (F)

correspond to lowest band in each sector

• Scaling in weak-potential regime (g → 0)

V (B) ≈ 2−C(B)g2/(3+α), V (F) ≈ 2−C(F)g2/(3+α)

Amplitudes C(B) and C(F) universal (depend only on α )



To sum up...

• Quantum walks are among the simplest of all quantum dynamical systems

• Many situations can be studied, often by analytical means

• Quite a few surprising quantum features without classical analogues

I. Form of the wavefunction

Ballistic peaks. Bifractality

II. Effect of absorption

Paradoxical transparency as γ → ∞

Fluctuating N3 scaling of decay rate. Non-trivial Lifshitz law

III. Bound-state dynamics

No separation of center-of-mass dynamics

Many internal ballistic peaks besides two extremal ones
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