IMAGINARY CHAOS

Janne Junnila (EPFL)
Paris, January 28th 2020

joint work with

Eero Saksman and Christian Webb;
Juhan Aru, Guillaume Bavarez and Antoine Jego



1. Introduction
2. Moments

3. XOR-Ising model

4, Regularity, densities and monofractality



Introduction



Log-correlated Gaussian fields

Let us fix a bounded simply connected domain D C RY.

Heuristic definition
A Gaussian field X: D — R is called log-correlated if

EX(x)X(y) = C(x, y) := log

+g(x,y)
|x — yl

where g is regular.

Such fields cannot be defined pointwise and must instead be
understood as distributions (generalized functions). This means that
for all ¢, € C*(R?) we have

EX@X(W) = [ oy ()Cx ) dxdy.



Log-correlated Gaussian fields

« We will always assume at least that
- ge LY(DxD)NC(D x D)
+ gis bounded from above
« These properties are enough to ensure that X exists.
(Assuming that the kernel C is positive definite.)



Example: The 2D GFF

Definition
The 0-boundary GFF I" in the domain D is a Gaussian field with the
covariance

EI(x)I(y) = Gp (x, )

where Gp, is the Green’s function of the Dirichlet Laplacian in D.

« universality:
+ appears in the scaling limit of various height function models,
random matrices, QFT, ...
+ arecent characterisation: the only random field with conformally
invariant law and domain Markov property (+some moment
condition) [BPR19]



Example: The GFF in the unit square
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Figure 1: An approximation of the GFF in the unit square.



Gaussian Multiplicative Chaos

« Invarious applications one is interested in measures formally of the
form e"*®) dx where y is a parameter.

« To rigorously define them one has to approximate X with regular
fields X,, and normalize properly when taking the limit as n — oo.

Theorem/Definition ([Kah85; RV10; Sha16; Ber17])

2
For any given y € (0, V2d) the functions p,,(x) = eV Xn (- TT EX, (x)*

converge to a random measure y. We say that y = pY is a GMC measure
associated to X.



Existence of GMC when y € (0, Vd)

A simple [*-computation
Forany f € C°(D) we have

El, (I = J OO f (B EIOTEN I TELOY 4y

— [ s sersmeno axay
<R | e ogmdxdyzj dxdy
D?

D2 |x-y|)’

- If u,(f) is a martingale this immediately shows convergence.

« Otherwise one can do a similar computation to show that the
sequence is Cauchy in I* ().



Complex values of y
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Figure 2: The subcritical regime A for y in the complex plane.

« Infact, y — p¥(f) is an analytic function on A [JSW19].
- The circle corresponds to the I*-phase - in particular it contains
the whole subcritical part of the imaginary axis.



Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])
Let 3 € (0, Vd). Then the random functions

= £iBX, )+ EEX, ()
n

converge in probability in H™%>7¢(R?) to a random distribution Y.
« Applications: XOR-Ising model [JSW18], two-valued sets of the GFF

[SSV19] and certain random fields constructed using the Brownian
loop soup [CGPR19].



Moments



Theorem ([JSW18])
There exists C > 0 such that for any f € C°(D) and N > 1 we have

2
Elu(HIPY < CNIfISNTY.

Corollary

——
The mixed moments Eu( f)*u(f) determine the distribution of u( f).

Theorem ([JSW18])
Let f € C°(D) be non-negative and non-zero, then there exists C > 0
such that ,

Elu(f)IN > CNNTN,



Bounding moments - the naive way

- E|u(1)[*N is (formally) given by

N
J' E Heiﬁx(xjnémx(xj)ze—iﬁx(yj)+§mx(yj)2 i =
- 19V

j=1

2
jDzN & Tisyan CO32) " Drsaan (Cl20+C0 yk))dx - dxydy, ... dyy,

where C(x, y) is the covariance kernel of X.

« In the case C(x, y) = log —— | thIS is simply the partition function
of Coulomb gas with N posmve and N negative charges. Estimating
this was done in [GP77] by using an electrostatic inequality due to
Onsager [Ons39].

« In the general case C(x, y) = log ﬁ + g(x, y) with g bounded
one could simply estimate each C(x, y) in the sums by
log Flyl + || glloo, but this would incur an error of order O(N?).
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General Onsager inequalities

Theorem ([JSW18; JSW19])
Assume that either of the following conditions hold:

- g € HZ*(D x D) for some ¢, or
- d=2and g € C*(D x D),

Then around any z € D there exists a neighbourhood U ¢ Dand C > 0

such that forany z,,...,zy € Uand q,,...,qy € {~1,1} we have
1 1
= Z q;9xC(zj> z¢) < = Zlog — +CN.
1<j<k<N 2 j=1 7 Mg |zj ~ %l

13



The rest of the argument
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Figure 3: Dependencies between the variables in the integral.

« After applying Onsager the dependencies between the variables can
be reduced to a set of 2-cycles with attached trees.
« The upper bound is now obtained by computing a uniform bound
over all the graphs with a given number of components (integrate
variables one by one starting from the leaves) and multiplying by
the number of such graphs. 14



Proof of the Onsager inequality for nice fields

2
. N
* Let A; be centered Gaussians. From IE( ijl quj) > 0 we get by
expanding and rearranging the inequality

N 1 N
- ) qqEAA; < > Y EA%
1<j<ksN j=1

» We want to choose A; so that EA; Ay = C(z;, z¢), but IEAJZ. are
small.
+ Assume that X has an approximation X, with the following
properties:
+ X,(x) isa martingaleasr — 0
- EX,(x)* = log%
< (X, (x) = X, (x)L(X,(y) - X,(p)) forallu < rand v < s if
r+s<|x-yl
* By choosing A; = er (z), where r; = % ming, ; |z; — |, we see

that EA; Ay = C(2;, z;) and the claim follows.
15



Generalizing to other fields

Theorem ([JSW19])

Assume that in the covariance C(x, y) = log — Ix Pt g(x, y) the
function g lies in HZt¥(D x D). Then around any point x, € D there
exists a neighbourhood in which X can be decomposed as a sum of
independent fields, X = L + R, where L is a nice log-correlated field (in

particular it has the properties in the previous slide) and R is a regular
field with Holder continuous realisations.



XOR-Ising model




Ising model

 a model of ferromagnetism
consisting of spins
o(f) € {-1, 1} for all faces f
of a square lattice (foruso =1
on the boundary)

* Gibbs distribution:
]P[O'] (0 eﬁ zfl”fz o(f)o(f2)

+ phase transition at
B = B. =log(1 + V2)/2.
+ We denote o5(x) = o(f) for

Figure 4: Critical Ising model x € f and a given lattice
length § > 0.




XOR-Ising model

« The XOR-Ising spin field is defined by S5(x) = 05(x)75(x), where o
and 7 are two independent Ising spin fields.

Figure 5: Ising, Ising, XOR-Ising



XOR-Ising and the real part of imaginary chaos

Theorem ([JSw18])
Forany f € C°(D) we have

2
o4 J F(x)Ss(x) dx — C? J flx )( 'j"’ ((x)”) cos(272I(x)) dx
where cos(27Y2T'(x)) denotes the real part of the imaginary chaos
distribution g with parameter = 1/vV2and ¢: D — Hisa
conformal bijection.



On the proof

« method of moments = integrals of n-point correlations
Theorem ([CHI15])

For any distinct x4, ..., x,, we have

lim 8 "BE[os(x,) ... 05(x,)]

=C" ﬁ ( |(Pl(xj)|

) n/2
=1 2]‘/’(’%’) pef{—1,1}" 1<k<msn

Hibm
2

(P(xk) B q)(xm)
(xx) — o(x,,)

« Adirect computation shows that the moments match formally.
« To justify dominated convergence, we prove an Onsager-type
inequality for the Ising model:

n
88 Eas(x;) ... o5(x,) < C" min |x; — x.|)"Y/8
5(x1) ... 05(x,) E( - |x; — xi.]) .



Regularity, densities and
monofractality




Besov spaces

d
The spaces B‘f,,q (R%)

- Banach spaces of distributions parametrised by smoothness
parameter s € R and two size parameters p,q € [1, 00].
+ Contain both Sobolev and Holder spaces:
- BS,(R?) = H'(RY) (s € R)
* Biooo(RY) = C*(RY) (s € (0,00) \ IN).

- We say that f € B, (D) if and only if y f € By (R?) for all
y € CX(D).

21



Regularity of u

Theorem ([JSw18])
We have for all p,q € [1, 00] that

2

cs<-£ s peBs (D)
2

+s>-E = u¢B (D)

+ uis almost surely not a complex measure

+ One can get finiteness of Besov norms by computing moments.

+ To show that y is not a complex measure it suffices to show that
u(e PXsy) — 0o as 8 — 0 for some y € CX(D).

22



Smooth and bounded densities

Theorem ([ABJ)20])

Assume that X is a GFF in some bounded domain D and let f € L*(D)
be a non-zero function. Then the random variable y( f) has a smooth
and bounded density in C.

« Arough first idea towards a proof: Look at
j B2 A+ E T2 g, () dx and try to show that if one
conditions for instance on A, A,, then with a high probability the
continuous map (A;, A,) — u(f) sweeps a reasonable area in the
complex plane for [A,],]|A,| < 1, say.

« Central difficulty with this approach: How to rule out the rest of the
chaos eP2uss A pu(O+E 32, 0, () being close to 0?

23



Smooth and bounded densities

+ In the case of real chaos on say the unit interval [0, 1] one

heuristically has something like
P[([0, 1]) < ¢] < PLu([0, %1) < 8,#([%, 1]) < ] = Plu([0,1]) < 2¢]*.

Reasoning along these lines can indeed be made precise and yields

the existence of all negative moments for ([0, 1]).

« The crucial property here was non-negativity, which of course fails

for imaginary chaos.

+ In the end our proof goes through Malliavin calculus.

24



Monofractality

Theorem ([ABJ)20])
Almost surely for all z € D we have

liminf 2B QG _ 5 _ g2y
r—0 logr

« We refine this in two different ways:

+ Alaw of iterated logarithm -type result: For fixed x we have

|p(Q(x, 1))

lim su =@
PSP T log log )P )
- Existence of exceptional (fast) points:
. |(Q(x, 1))
sup lim sup — ¢ =c,(P)

xeD 10 122 logr|F4

25



Thanks!
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