How much can the eigenvalues of a random Hermitian
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Large random matrices

Play a role in various disciplines and fields

e Engineering (wireless communication, compressed sensing), statistics
(sample covariance matrices), theoretical physics (Anderson
localization, lattice gauge theory, 2d quantum gravity),...

e Connections within mathematics: random graphs, differential
equations, integrable systems, number theory, enumeration of graphs,

Main question today:

What do the eigenvalues of a large random matrix look like? ]

We will focus on Hermitian matrices.
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The GUE and its eigenvalues

An important prototype model in random matrix theory is the Gaussian
Unitary Ensemble (GUE):

H=(Hij)lie1 H =H,

(H;,;)fvzl i.i.d. N(0,1/(4N)) (Hij)i<j i..d. Nc(0,1/(4N)).
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The GUE and its eigenvalues

An important prototype model in random matrix theory is the Gaussian
Unitary Ensemble (GUE):

H=(Hj=1 H'=H,

(Hi)N, iid. N(0,1/(4N))  (Hij)i<j i.i.d. Ng(0,1/(4N)).

Fact

The density of the law of the eigenvalues (M1, ..., A\ny) € RN of a GUE(N)
matrix is given by

1

N
L H |>"'_)‘f|2He72N/\JZ

1<i<j<N j=1
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Wigner's theorem

One of the most classical results in random matrix theory is Wigner's
theorem.

Theorem (E. Wigner 1950s)

For bounded continuous f : R — R and \q,

...y A\ the eigenvalues of a
GUE(N) matrix,

N 1
1 P 2
NJEZI f(\) — /_1 f(x);\/ 1 — x2dx.

4/16



Wigner's theorem

One of the most classical results in random matrix theory is Wigner's
theorem.

Theorem (E. Wigner 1950s)

For bounded continuous f : R — R and A1, ...., Ay the eigenvalues of a
GUE(N) matrix,

1

N P 1 2
N D () — /1 f(x);\/l — x2dx.
j=1 -

Interpretation: for large N, eigenvalues accumulate on [—1, 1] and
are distributed according to the semicircle law 21/1 — x2dx.
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Wigner's theorem
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Figure: Histogram for eigenvalues of a 50x50 GUE matrix
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Figure: Histogram for eigenvalues of a 6000x6000 GUE matrix
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Classical locations/quantiles

Wigner's theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

6/16



Classical locations/quantiles

Wigner's theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

Forj=1,...,N, define x; € [-1,1] by

. .
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Classical locations/quantiles

Wigner's theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

For j=1,...,N, define x; € [-1,1] by

.
' g\/1 — x2dx =
-1

J
e

Theorem (Gustavsson 2005)

For any fixed € > 0, j € (eN,(1 —€)N) and \1 < A\p < ... < Ay the
ordered eigenvalues of a GUE(N) matrix,

2\/5 1—,‘<JJ2 ()\j—lﬁ:j)i)N(O,l)

N
Vl9og N

as N — oo.
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Rigidity
Gustavsson'’s theorem says the jth eigenvalue J; is close to the jth quantile
kj — with a typical distance of order y/log N/N.
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P (Hj e(eN,(1—eN): |\ —ry| > N—1+5) < e M.

* Rigidity says e.g. that sup; N|\; — x| is very unlikely to be larger
than N° for any § > 0.
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Rigidity

Gustavsson'’s theorem says the jth eigenvalue J; is close to the jth quantile
kj — with a typical distance of order y/log N/N.

A natural question is how big is max; |\j — k;|?

Theorem (Erdés—Schlein—Yau 2009, Bourgade—Erdés—Yau 2014,
Benaych-Georges—Knowles 2016, ...)

For any fixed €,6 > 0, there exists a ¢ > 0:

P (Hj e(eN,(1—eN): |\ —ry| > N—1+5) < e M.

* Rigidity says e.g. that sup; N|\; — x| is very unlikely to be larger
than N° for any § > 0.

e In fact, some results replace N9 by (log N)A for some fixed A.
e Can one do better?
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Optimal (bulk) rigidity

Theorem (Claeys, Fahs, Lambert, W 2019)
For any e > 0

. N
NI|_r>nOOIE” (1 —e< 2|ogNj:n11,??(,N 1-— /QJ?|)\J- —-Kj| <1 +e) =
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Theorem (Claeys, Fahs, Lambert, W 2019)

For any e > 0
: N 2
wm g VLNl < 1re) =1

e Compared to previous results, replaces N° (or (log N)*) by log N and
provides precise asymptotics.

o Heuristically: if in Gustavsson s theorem one could replace

— kj) by i.i.d. standard Gaussians, one would

2{W

get this result from cIaSS|ca| extreme value statistics results (max of
N i.i.d. standard Gaussians ~ /2log N).
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Optimal (bulk) rigidity

Theorem (Claeys, Fahs, Lambert, W 2019)

For any e > 0
: N 2
wm g VLNl < 1re) =1

e Compared to previous results, replaces N° (or (log N)*) by log N and
provides precise asymptotics.

o Heuristically: if in Gustavsson s theorem one could replace

— kj) by i.i.d. standard Gaussians, one would

2{W

get this result from cIaSS|ca| extreme value statistics results (max of
N i.i.d. standard Gaussians ~ /2log N).
e Unfortunately, proof much more involved than this.
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From eigenvalue fluctuations to the counting function
Instead of (A; — &)}, it is more convenient to analyze the eigenvalue
counting function

N X
hN(X) = \/57‘(‘ Z 1{)\J < X} = N/ 2\/ 1 — t2dt
=1 LT
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counting function

N X
hN(X) = \/§7T Z 1{)\J < X} = N/ 2\/ 1 — t2dt
=1 LT

The connection is

)\.
22N, /1 — K2(\j — K)) = 2f2/v/ V1 dt
ij
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- 2\/§N/ V1= 2dt — \2xj
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From eigenvalue fluctuations to the counting function

Instead of (\; — nj)j’\’zl, it is more convenient to analyze the eigenvalue
counting function

N X
hN(X):\@ﬂ' Zl{)\f SX}—N/ E\/].—tzdt
=1 LT

The connection is

Y
2V2N /1 — K3 (Xj — K)) = 2\/§N/ V1 dt
(e
A;
- 2\f2N/ V1= 2dt — \2xj
-1

= —hn(N).

Turns out to be sufficient to understand max,¢[_1 1) hn(x) and
mine[-1,1] hn(X).

9/16



What kind of beast is the counting function?
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What kind of beast is the counting function?
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Figure: Realizations of GUE counting functions for N = 10, 50, 6000
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Facts about the counting function

Theorem (Johansson 1998, ...)
For any f € C°(R), as N — oo,

/ An()F (x)dx % N(0,0%)

with

1—xy+v1—x2y/1-y2
0% = /( IRCUOL: Y Y

dxdy.
[x —y|
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Facts about the counting function

Theorem (Johansson 1998, ...)
For any f € C°(R), as N — oo,

/ hn(x)F(x)dx S N(0,02)

with

— V1= x24/1 — y2
oA = / f(x)f(y)log 1=y +VIl=x i dxdy.
(-1,1)2 Ix =yl

Interpretation: as N — oo, hy converges to a Gaussian process with

covariance
1—xy+vV1—x2y/1—y?
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Facts about the counting function

Theorem (Johansson 1998, ...)
For any f € C°(R), as N — oo,

/ h(x)F(x)dx 5 N(0, 52)
with

1- VI—x2/1— 2
o2 :/ f(x)f(y)log alda x i dxdy.
(~1,1)2 Ix =y

Interpretation: as N — oo, hy converges to a Gaussian process with

covariance
1—xy+vV1—x2y/1—y?
Ix =yl '

C(x,x) = oo — what kind of Gaussian process has infinite variance?

C(x,y) = log
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Log-correlated fields
Random generalized functions X on Q C R? with

EX()X(g) = /Q F()g() (g x — yI " + G(x.») oy

where G is continuous, are called logarithmically correlated fields.
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Log-correlated fields
Random generalized functions X on Q C R? with

EX()X(g) = /Q F()g() (g x — yI " + G(x.») oy J

where G is continuous, are called logarithmically correlated fields.

Play a role in many models.

e In stat mech, describe fluctuations of the height function in the dimer
model (see Chelkak's talk tomorrow), growth models, ...

e In number theory, describes behavior of log |((5 + iw T + ix)|, where
w ~Unif[0,1] and T — 0.

e Describe fluctuations of correctors in 2d stochastic homogenization.

e Important in SLE, construction of Liouville field theory, and random
conformal welding (Duplantier-Sheffield; David, Kupiainen, Rhodes,
Vargas;...)

e See the other talks of today ...

12/16
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Extreme value theory of log-correlated fields

Some aspects of extreme value theory of log-correlated fields developed.

e Let X be a Gaussian log-correlated field on R and ¢ € C°(RY)
satisfying ¢(x) > 0 and [pq ¢(x)dx = 1.

e For e >0, let X.(x) = [z efdga(%)x()/)d}’-

Fact
For any bounded open set O C RY, as e — 0

maxyeo Xe(X) P /2d
loge1

Much more is in fact known about extrema of log-correlated fields: see
e.g. work of Zeitouni and co-authors.

Hope: perhaps hy is kind of like X, for a suitable e = ¢(/N), and maybe
similar ideas could work.

13/16



Exponential moment estimates
With strong enough results, one can indeed treat hy like it were X..
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Exponential moment estimates
With strong enough results, one can indeed treat hy like it were X..

Examples of required estimates (through asymptotic analysis of
Riemann-Hilbert problems)

Proposition (Charlier 2018)
For fixed x € (—1,1) and v € [-v/2,V/2]

32

Ee?™() — (14 o(1)F(1)NF (1 — x2) %

9

for a suitable F(v), and for fixed x,y € (—1,1) with x # y and
QAS [_\67 ﬂ]'

2
() +hn(y) v VIR ST 2\ 2
Ee —(1—1—0(1))(1 xy + V1 —x%4/1 y) .

Eevn()Eevn(y) — ‘X — y!
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Exponential moment estimates
With strong enough results, one can indeed treat hy like it were X..

Examples of required estimates (through asymptotic analysis of
Riemann-Hilbert problems)

Proposition (Charlier 2018)

For fixed x € (—1,1) and v € [-v/2,V/2]

372

Ee™ () — (14 o(1))F(1)NT (1 — x2)%

9

for a suitable F(v), and for fixed x,y € (—1,1) with x # y and
QAS [_\@7 ﬁ]'

EeYhn(x)+vhn(y) ) . 1—xy+vV1I—x2y/1—y2 7/2
Eevyiwn()Eevin(y) (1+0(1)) |x — y| )

Actually need more complicated things: asymptotics for |[x — y| — 0,
x — *£1 at a suitable rate and some more complicated quantities.
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Proof of an upper bound

One part of the proof of our main theorem is the following fact
Proposition

For any e, 6 > 0

lim P ( max  hy(x) > (V2 + ) log N) =0.
N—oco xE€(—14¢€,1—€)
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(enough to study max over ;).
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Proof of an upper bound

One part of the proof of our main theorem is the following fact:
Proposition

For any e, 6 > 0

lim P ( max  hy(x) > (V2 +6)log /v> = 0.
N— o0 x€(—1+¢€,1—¢€)

Proof.

o For x € (kj, K1), h(kg) — V21 < h(x) < hn(kji1) + V21
(enough to study max over ;).

e By Markov and exponential moment estimates, for any o > 0

P< Z e—(\@+6)a log Ng g () C’)(Nl_(ﬁ*‘fs)a-i-a;).

Jirj€(—14¢€,1—€)
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Proof of an upper bound

One part of the proof of our main theorem is the following fact:
Proposition

For any e, 6 > 0

lim P < max  hy(x) > (V2 +6)log /v> = 0.
N— o0 x€(—1+¢€,1—¢€)

Proof.

o For x € (kj, K1), h(kg) — V21 < h(x) < hn(kji1) + V21
(enough to study max over ;).

e By Markov and exponential moment estimates, for any o > 0
P< Z e—(\@-i-é)a log N[z grhn () — O(Nl—(\@-‘ré)a-i-%z).
Jirj€(—14¢€,1—€)

e Choosing o = /2 yields the claim.
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Some comments about the lower bound

Proposition
For any ;6 > 0

. - B _o.
NIE)nOOIF’ (XE(—T—Eél—e) hn(x) < (V2 - 8) log N) 0
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Some comments about the lower bound

Proposition
For any ;6 > 0

lim IP’( max  hy(x) < (V2 - 8)log N) =0.

N—oc0 x€(—1+¢€,1—¢)

e The lower bound is more involved.
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Some comments about the lower bound
Proposition
For any ;6 > 0

N—o0 x€(—1+¢€,1—¢)

lim ]P’( max  hy(x) < (V2 - 8)log N> =0.

e The lower bound is more involved.
e’th(x) .
ydx converges in law to a

e Our a!)proach _|n\./o|v§s proving that Earin(] X
Gaussian multiplicative chaos measure /i, (relies on exp. mom.
estimates).
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Some comments about the lower bound
Proposition
For any €,6 >0

lim ]P’( max  hy(x) < (V2 —6)log N> = 0.

N— o0 x€(—14¢€,1—€)

e The lower bound is more involved.

e Our approach involves proving that %dx converges in law to a
Gaussian multiplicative chaos measure /i, (relies on exp. mom.
estimates).

e Multiplicative chaos measure 1, can also be constructed from
underlying Gaussian log-correlated field (Kahane; Barral-Mandelbrot;
Bacry-Muzy; Rhodes-Vargas; Duplantier-Sheffield; Berestycki;...).
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underlying Gaussian log-correlated field (Kahane; Barral-Mandelbrot;
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e In the Gaussian setting, can prove e.g. that for v € (—v/2,v/2),
p(A) > 0 almost surely for any (non-empty) open
AC(-1+4+¢€1—¢).
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Some comments about the lower bound

Proposition
For any €,6 >0

lim P ( max  hy(x) < (V2 —6)log N> =0.
N—o0 x€(—14¢€,1—€)

e The lower bound is more involved.

e Our approach involves proving that %dx converges in law to a
Gaussian multiplicative chaos measure /i, (relies on exp. mom.
estimates).

e Multiplicative chaos measure 1, can also be constructed from
underlying Gaussian log-correlated field (Kahane; Barral-Mandelbrot;
Bacry-Muzy; Rhodes-Vargas; Duplantier-Sheffield; Berestycki;...).

e In the Gaussian setting, can prove e.g. that for v € (—v/2,v/2),
p(A) > 0 almost surely for any (non-empty) open
AC (—1+4¢€1—c¢).

e This can be leveraged to prove the lower bound.
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