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Large random matrices

Play a role in various disciplines and fields

• Engineering (wireless communication, compressed sensing), statistics
(sample covariance matrices), theoretical physics (Anderson
localization, lattice gauge theory, 2d quantum gravity),...

• Connections within mathematics: random graphs, differential
equations, integrable systems, number theory, enumeration of graphs,
...

Main question today:

What do the eigenvalues of a large random matrix look like?

We will focus on Hermitian matrices.
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The GUE and its eigenvalues

An important prototype model in random matrix theory is the Gaussian
Unitary Ensemble (GUE):

H = (Hi ,j)
N
i ,j=1 H∗ = H,

(Hi ,i )
N
i=1 i .i .d . N (0, 1/(4N)) (Hi ,j)i<j i .i .d . NC(0, 1/(4N)).

Fact

The density of the law of the eigenvalues (λ1, ..., λN) ∈ RN of a GUE(N)
matrix is given by

1

ZN

∏
1≤i<j≤N

|λi − λj |2
N∏
j=1

e−2Nλ2
j
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Wigner’s theorem

One of the most classical results in random matrix theory is Wigner’s
theorem.

Theorem (E. Wigner 1950s)

For bounded continuous f : R→ R and λ1, ...., λN the eigenvalues of a
GUE(N) matrix,

1

N

N∑
j=1

f (λj)
P−→
∫ 1

−1
f (x)

2

π

√
1− x2dx .

Interpretation: for large N, eigenvalues accumulate on [−1, 1] and
are distributed according to the semicircle law 2

π

√
1− x2dx.
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Wigner’s theorem

Figure: Histogram for eigenvalues of a 50×50 GUE matrix

Figure: Histogram for eigenvalues of a 6000×6000 GUE matrix
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Classical locations/quantiles

Wigner’s theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

For j = 1, ...,N, define κj ∈ [−1, 1] by∫ κj

−1

2

π

√
1− x2dx =

j

N
.

Theorem (Gustavsson 2005)

For any fixed ε > 0, j ∈ (εN, (1− ε)N) and λ1 < λ2 < ... < λN the
ordered eigenvalues of a GUE(N) matrix,

2
√

2
√

1− κ2
j

N√
logN

(λj − κj)
d→ N (0, 1)

as N →∞.

6/16



Classical locations/quantiles

Wigner’s theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

For j = 1, ...,N, define κj ∈ [−1, 1] by∫ κj

−1

2

π

√
1− x2dx =

j

N
.

Theorem (Gustavsson 2005)

For any fixed ε > 0, j ∈ (εN, (1− ε)N) and λ1 < λ2 < ... < λN the
ordered eigenvalues of a GUE(N) matrix,

2
√

2
√

1− κ2
j

N√
logN

(λj − κj)
d→ N (0, 1)

as N →∞.

6/16



Classical locations/quantiles

Wigner’s theorem suggests that eigenvalues might be located close to
quantiles of the semi-circle distribution.

For j = 1, ...,N, define κj ∈ [−1, 1] by∫ κj

−1

2

π

√
1− x2dx =

j

N
.

Theorem (Gustavsson 2005)

For any fixed ε > 0, j ∈ (εN, (1− ε)N) and λ1 < λ2 < ... < λN the
ordered eigenvalues of a GUE(N) matrix,

2
√

2
√

1− κ2
j

N√
logN

(λj − κj)
d→ N (0, 1)

as N →∞.

6/16



Rigidity

Gustavsson’s theorem says the jth eigenvalue λj is close to the jth quantile
κj – with a typical distance of order

√
logN/N.

A natural question is how big is maxj |λj − κj |?

Theorem (Erdős–Schlein–Yau 2009, Bourgade–Erdős–Yau 2014,
Benaych-Georges–Knowles 2016,...)

For any fixed ε, δ > 0, there exists a c > 0:

P
(
∃j ∈ (εN, (1− ε)N) : |λj − κj | ≥ N−1+δ

)
≤ e−N

c
.

• Rigidity says e.g. that supj N|λj − κj | is very unlikely to be larger

than Nδ for any δ > 0.

• In fact, some results replace Nδ by (logN)A for some fixed A.

• Can one do better?
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Optimal (bulk) rigidity

Theorem (Claeys, Fahs, Lambert, W 2019)

For any ε > 0

lim
N→∞

P
(

1− ε ≤ 2
N

logN
max

j=1,...,N

√
1− κ2

j |λj − κj | ≤ 1 + ε

)
= 1.

• Compared to previous results, replaces Nδ (or (logN)A) by logN and
provides precise asymptotics.

• Heuristically: if in Gustavsson’s theorem one could replace

2
√

2 N√
log N

√
1− κ2

j (λj − κj) by i.i.d. standard Gaussians, one would

get this result from classical extreme value statistics results (max of
N i.i.d. standard Gaussians ∼

√
2 logN).

• Unfortunately, proof much more involved than this.
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From eigenvalue fluctuations to the counting function
Instead of (λj − κj)Nj=1, it is more convenient to analyze the eigenvalue
counting function

hN(x) =
√

2π

 N∑
j=1

1{λj ≤ x} − N

∫ x

−1

2

π

√
1− t2dt

 .

The connection is

2
√

2N
√

1− κ2
j (λj − κj) ≈ 2

√
2N

∫ λj

κj

√
1− t2dt

= 2
√

2N

∫ λj

−1

√
1− t2dt −

√
2πj

= −hN(λj).

Turns out to be sufficient to understand maxx∈[−1,1] hN(x) and
minx∈[−1,1] hN(x).
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What kind of beast is the counting function?

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

Figure: Realizations of GUE counting functions for N = 10, 50, 6000
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Facts about the counting function

Theorem (Johansson 1998, ...)

For any f ∈ C∞c (R), as N →∞,∫
hN(x)f (x)dx

d→ N (0, σ2
f )

with

σ2
f =

∫
(−1,1)2

f (x)f (y) log
1− xy +

√
1− x2

√
1− y2

|x − y |
dxdy .

Interpretation: as N →∞, hN converges to a Gaussian process with
covariance

C (x , y) = log
1− xy +

√
1− x2

√
1− y2

|x − y |
.

C (x , x) =∞ – what kind of Gaussian process has infinite variance?
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Log-correlated fields
Random generalized functions X on Ω ⊂ Rd with

EX (f )X (g) =

∫
Ω×Ω

f (x)g(y)
(
log |x − y |−1 + G (x , y)

)
dxdy ,

where G is continuous, are called logarithmically correlated fields.

Play a role in many models.

• In stat mech, describe fluctuations of the height function in the dimer
model (see Chelkak’s talk tomorrow), growth models, ...

• In number theory, describes behavior of log |ζ( 1
2 + iωT + ix)|, where

ω ∼Unif[0, 1] and T →∞.

• Describe fluctuations of correctors in 2d stochastic homogenization.

• Important in SLE, construction of Liouville field theory, and random
conformal welding (Duplantier-Sheffield; David, Kupiainen, Rhodes,
Vargas;...)

• See the other talks of today ...
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Extreme value theory of log-correlated fields

Some aspects of extreme value theory of log-correlated fields developed.

• Let X be a Gaussian log-correlated field on Rd and ϕ ∈ C∞c (Rd)
satisfying ϕ(x) ≥ 0 and

∫
Rd ϕ(x)dx = 1.

• For ε > 0, let Xε(x) =
∫
Rd ε
−dϕ

( y−x
ε

)
X (y)dy .

Fact

For any bounded open set O ⊂ Rd , as ε→ 0

maxx∈O Xε(x)

log ε−1

P−→
√

2d .

Much more is in fact known about extrema of log-correlated fields: see
e.g. work of Zeitouni and co-authors.

Hope: perhaps hN is kind of like Xε for a suitable ε = ε(N), and maybe
similar ideas could work.
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similar ideas could work.
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Exponential moment estimates
With strong enough results, one can indeed treat hN like it were Xε.

Examples of required estimates (through asymptotic analysis of
Riemann-Hilbert problems)

Proposition (Charlier 2018)

For fixed x ∈ (−1, 1) and γ ∈ [−
√

2,
√

2]

EeγhN(x) = (1 + o(1))F (γ)N
γ2

2 (1− x2)
3γ2

4 ,

for a suitable F (γ), and for fixed x , y ∈ (−1, 1) with x 6= y and
γ ∈ [−

√
2,
√

2],

EeγhN(x)+γhN(y)

EeγhN(x)EeγhN(y)
= (1 + o(1))

(
1− xy +

√
1− x2

√
1− y2

|x − y |

)γ2/2

.

Actually need more complicated things: asymptotics for |x − y | → 0,
x → ±1 at a suitable rate and some more complicated quantities.
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Proof of an upper bound
One part of the proof of our main theorem is the following fact:

Proposition

For any ε, δ > 0

lim
N→∞

P
(

max
x∈(−1+ε,1−ε)

hN(x) ≥ (
√

2 + δ) logN

)
= 0.

Proof.

• For x ∈ (κj , κj+1), hN(κj)−
√

2π ≤ hN(x) ≤ hN(κj+1) +
√

2π
(enough to study max over κj).

• By Markov and exponential moment estimates, for any α > 0

P .
∑

j :κj∈(−1+ε,1−ε)

e−(
√

2+δ)α log NEeαhN(κj ) = O(N1−(
√

2+δ)α+α2

2 ).

• Choosing α =
√

2 yields the claim.
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Some comments about the lower bound

Proposition

For any ε, δ > 0

lim
N→∞

P
(

max
x∈(−1+ε,1−ε)

hN(x) ≤ (
√

2− δ) logN

)
= 0.

• The lower bound is more involved.
• Our approach involves proving that eγhN (x)

EeγhN (x) dx converges in law to a
Gaussian multiplicative chaos measure µγ (relies on exp. mom.
estimates).

• Multiplicative chaos measure µγ can also be constructed from
underlying Gaussian log-correlated field (Kahane; Barral-Mandelbrot;
Bacry-Muzy; Rhodes-Vargas; Duplantier-Sheffield; Berestycki;...).

• In the Gaussian setting, can prove e.g. that for γ ∈ (−
√

2,
√

2),
µγ(A) > 0 almost surely for any (non-empty) open
A ⊂ (−1 + ε, 1− ε).

• This can be leveraged to prove the lower bound.
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