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Background

Asymptotically Gaussian fields in random matrix
theory

XN - random Wigner matrix, e.g. GUE/GOE. in real case, centered independent entries on and

above diagonal, variance 1/N off diagonal, 2/N on diagonal.

Empirical measure LN = N−1∑N
i=1 δλi converges weakly (in probability) to the

semicircle law σ of density
1

2π

√
4− x2.

Central limit theorem f : R→ R compactly supported, smooth. Consider

Wf ,N =
N∑

i=1

f (λi )− N
∫

fdσ.
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Background

CLT

Theorem (Johansson ’98; β ensembles)

Wf ,N satisfies CLT, mean (2/β − 1)
∫

fdν, variance

(2/β)

4π2

∫∫ 2

−2
f (t)f ′(s)

√
4− s2

(t − s)
√

4− t2
dsdt .

The measure ν in the mean expression is explicit.
The variance has an alternative expression

1
2π2

∞∑
k=1

k
(∫ π

0
f (2 cos(θ)) cos(kθ)

)2

dθ

CLT’s of this type go back at least to CLT of Jonsson for moments
(’82), Pastur and co-workers, Bai-Silverstein, Shcherbina, . . ..
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Background

CLT

1
2π2

∞∑
k=1

k
(∫ π

0
f (2 cos(θ)) cos(kθ)dθ

)2

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy ’99, recently
Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia . . .. Variance still of
order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)
What if f is not smooth? e.g. Sosoe-Wong ’13 H1+ε.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic
variance.
Formally, if f has log singularity then contributions at all scales, and k th
coefficient gives roughly contribution

∫ ε
0 log(x) sin(kx) ∼ 1/k Thus if could

expand only to k ∼ N, would get logarithmic variance. Justify? More later.
Our basic object of interest: log(PN(z)) = log(det(zI − XN)).
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Background

The Lab: circular ensembles

UN -CUE (aka Haar unitary on UN ).

Diaconis-Shahshahani ’94: TrUk
N ∼ N(0, k) independent, very strong sense:

mixed moments of total degree < N are exactly those for independent
Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ’97, Keating-Snaith ’00: log detUN is Gaussian of mean 0 and
variance c log N.
Hughes-Keating-Oconnell, Wieand ’02: multi-d extension: log det(zi I − UN) is
jointly Gaussian, log correlated structure.
If it is log-correlated, what about the extrema?
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Background

CUE char poly

Figure 1: Realizations of log |PN (eih)|, 0 ≤ h < 2π, for N = 50 and N = 1024. At microscopic scales,
the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and
macroscopic scales.

This was conjectured by Fyodorov & Keating, see Section 2.4 in [36]. In fact, a more precise expression
for the measure of high points was instrumental for their prediction of the subleading order in Conjecture
1.1, following the ideas of [39]. The theorem can be used to obtain the limit of the free energy

1

logN
log

(
N

2π

∫ 2π

0

|PN (h)|βdh

)
(1.5)

of the random field log |PN (eih)|. In particular, it is proposed in Section 2.2 of [36] that the free energy
exhibits freezing, i.e. that above a critical temperature βc, the free energy (1.5) divided by the inverse
temperature β becomes constant in the limit. The following, which is essentially an immediate consequence
of Theorem 1.3, proves the conjecture.

Corollary 1.4. For β ≥ 0,

lim
N→∞

1

logN
log

(
N

2π

∫ 2π

0

|PN (h)|βdh

)
=

{
1 + β2

4 if β < 2,

β if β ≥ 2,
in probability . (1.6)

The work [36] contains other interesting conjectures on statistics of characteristic polynomials. One of them,
a transition for the second moment of the partition function, was proved in [22].

1.1 Relations to Previous Works. This paper is part of the current research effort to develop a theory
of extreme value statistics of log-correlated fields. There have been many rigorous works on the subject
in recent years, and we give here a non-exhaustive list. In the physics literature, most predictions on the
extreme value statistics of log-correlated fields can be found in [21]. In mathematics, the leading order of
the two-dimensional Gaussian Free Field, was determined in [12]. In a series of impressive work, the form of
the subleading correction as well as convergence of the fluctuations have been obtained [11, 16, 19, 32]. The
approach (with the exception of [11]) follows closely the one used for branching random walks. This started
with the seminal work of Bramson [15] for branching Brownian motion and was later extended to general
branching random walks [2,3,7,17,18]. Log-correlated models are closely related to Gaussian Multiplicative
chaos, see [48] for a review. In particular, convergence of the maximum of a related model of log-correlated
Gaussian field was proved in [46]. We also refer to [52] for connections between the characteristic polyno-
mial of unitary matrices and Gaussian Multiplicative chaos. From the perspective of spin glasses, Corollary
1.4 suggests that the model exihibits a one-step replica symmetry breaking. This was proved for Gaussian
log-correlated fields in [5,6,13,28]. A general theorem for the convergence of the maximum of log-correlated
Gaussian fields was proved in [31]. A unifying point of view including non-Gaussian log-correlated fields and
their hierarchical structure is developed in [45]. Important non-Gaussian examples include cover times of
the two-dimensional random walk on the torus whose leading order was determined in [27] and subleading

3

(From Arguin, Belius, Bourgade ’17)
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Background

The Lab

Set MN(θ) = log |PN(eiθ)|,M∗N = maxθ∈[0,2π] MN(θ).

Conjecture (Fyodorov-Hiary-Keating ’12)

M∗N = log N − 3
4

log log N + W

where W has the law of the sum of two independent Gumbels.
Still open, although much progress.
Arguin, Belius, Bourgade ’17 - Identify the ’1’.
Paquette, Zeitouni ’18 - Identify the ’-3/4’.
Both use in essential way CUE (aka β = 2), where joint distribution of
eigenvalues is ∏

i<j

|λi − λj |2

for which Gaussianity of traces follows from Diaconis-Shashahani and
moments ofdeterminant (=exponential moments of MN(z)) are Toeplitz
determinants.
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Background

M∗N = logN − 3
4 log logN + W

The clincher: ∏
i<j

|λi − λj |β , β > 0

Chhaibi-Madaule-Najnudel ’18 M∗N = log N − 3
4 log log N + O(1)

There is also some progress toward identifying W - G. Remy ’18
The key step of CMN is a representation in terms of orthogonal polynomials.
First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV
matrices) built from a sequence of independent variables (Verblunski
coefficients), then write recursions for orthogonal polynomials in terms of
Verblunsky coefficients.(

Φk+1(z)
Φ∗k+1(z)

)
=

(
z −ᾱ∗k
−αk z 1

)(
Φk (z)
Φ∗k (z)

)
,Φ∗k (z) = zk Φk (z̄−1).

αk = Bk e2πiθk , EB2
k ∼ 2/βk , beta variable. αk ∼ gk + ig′k , Gaussian.

In addition, sup|z|=1 | log |MN(z)| − log |Φ∗k (z)|| is tight.
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Background

Recursions in the lab

log Φ∗k (eiθ)− log Φ∗k−1(eiθ) = log(1− αjeiΨk−1 ) ∼ −αjeiΨk−1(θ)

Ψk (θ) = Ψk (θ) + θ − 2= log(1− αjeiΨk−1(θ)).

Thus, marginal of log |Φ∗N(eiθ)| is essentially Gaussian, of variance
(2/β) log N.
Log correlated, but joint law is not Gaussian.
Use a branching structure.
Chhaibi-Najnudel ’19 PN(·) converges to the GMC with parameter

√
2/β.

β = 2: Nikula, Saksman, Webb ’18, Webb ’15

Work in progress: Paquette-Z (’20?) Convergence in law of max log |Φ∗N(eiθ)|
to Gumbel shifted by (unknown) r.v..
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Background

Other animals in the Lab
πN - random permutation with eigenvalues λi , determined by cycle structure.

MN(θ) = log PN(θ) =
N∑
`=1

C` log |1− e2πiθ`| (1)

where C` = number of cycles of length `, essentially Poisson. Almost
independent additive structure. But there are arithmetic issues.
Set ‖θ‖T = distance from 0 on T .
Hambly, Keevash, Oconnell, Stark ’00: If lim inf nγ‖nθ‖T > 0 for some γ > 0
then |MN(θ)|/

√
log N converges to Gaussian.

Multi-d versions: Dong-Zeidler ’14, Bahier ’18.
Field is still log-correlated.

Theorem (Cook-Z ’17)

M∗N/ log N → x0 ∼ 0.65

Max asymptotics not determined simply by tail of (1), which would give x0 = 1.
In fact, expect Gaussian fluctuations of M∗N due to fluctuations in total number
of cycles, so any hope for restoring log-cor story is by conditioning on it.
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Background

Random permutation char poly

(From Cook, Zeitouni ’17)
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Background

Towards the wild: GβE

We take XN ∼ GβE, ie joint distribution of eigenvalues on RN∏
i<j

|λi − λj |βe−β
N
4
∑
λ2

i

CLT for smooth test functions OK, for general smooth potential (Johansson
’98 - loop equations; Guionnet-Borot ’13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty ’17 Lambert-Ledoux-Webb ’18
What about log det(zI − XN)?
β = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette ’18, first order, general potential).
Also, connection to GMC for β = 2: Berestycki-Webb-Wong ’18 (L2 phase)
For general β: even CLT of log-det not clear!
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Background

log-det trajectory
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Background

Empirical facts

Skewed?
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Background

Reason for skewness in simulations
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Background

CLT for log determinant GβE

The case z = 0 is special.

Theorem (Tao-Vu ’11)

(MN(0)− N
∫

log |z − x |σ(dx)− aβ log N)/
√

log N converges (for
Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody ’19: extends w/out matching 4 moments.

By replacement principle, the key step in the TV proof is the result for
GβE, β = 1,2. Their proof extends to general β > 0, and is based on
recursions.
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Background

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman ’05)

XN from GβE is unitarily equivalent to the following 3-diagonal Jacobi matrix

1√
N

XN =
1√
N


b1 a1 0 · · · 0
a1 b2 a2 0 · · ·
0 a2 b3 a3 0
· · · · · · · · · · · · · · ·
0 0 0 aN−1 bN


where bi ∼ N(0,

√
2/β), ai ∼ χiβ/

√
β.

Here ai ∼ χiβ/
√
β means a2

i has chi-square distribution with iβ degrees of
freedom, ie χiβ ∼

√
i +
√

1/2βG + O(1/i).
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Background

Recursions
Let ϕk (·) denote the characteristic polynomial of the top k -by-k block of
XN .

From the 3-diagonal representation,

ϕk (z
√

N) = (z
√

N − bk )ϕk (z
√

N)− a2
k−1ϕk−1(z

√
N), ϕ−1 = 0, ϕ0 = 1.

A natural normalization involves the logarithmic effective potential
U(z) = z2/4− 1/2−

∫
log |z − x |σ(dx), which equals 0 inside the spectrum

and increases outside.
We set

Ψk (z) = φk (z
√

N)
e−kβU(z

√
N/k)+ck

√
k !

and then

Ψk (z) = (z
√

N − bk )∆k Ψk−1(z)− a2
k−1∆k ∆k−1Ψk−2(z).

Here, ∆k = 1/
√

kα(tk ), tk = z
√

N/k , and α(t) = 1 for t < 2 and
α(t) =

√
t2/4− 1 + t/2 for t ≥ 2.
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Background

Recursions

Set k0 so that tk0 = 2 (if z = 0 then k0 = 1). In matrix form, for k ≥ k0,(
Ψk+1(z)
Ψk (z)

)
∼
(
ωk −1 + 1/2k
1 0

)(
Ψk (z)
Ψk−1(z)

)
+

(
ak/
√

k gk/
√

k
0 0

)(
Ψk (z)
Ψk−1(z)

)
where ωk = z

√
n/k , and bk ,gk are iid Gaussian of variance 2/β.

In the Tao-Vu z = 0 case, ωk = 0, and except for perturbation, we have a pure
rotation.
Tao-Vu show that Ψk−1(z)2 + Ψk−1(z)2 (essentially) forms a martingale with
quadratic variation process of increment ∼ 1/k . This gives the CLT.
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Background

Recursions - general z

The following is joint work with Fanny Augeri and Raphael Butez, in
progress. We have a CLT for log-characteristic polynomial, and work
on the log-correlated structure.

There are several regimes to consider. Fix ε > 0, recall that k0 = z2N/4k .

k < εk0: one easily checks that Ψk (z) ∼ 1.

k ∈ [εk0, k0]: write

Xk = Ψk/Ψk−1 = 1 + δk , Xk = Ak + Bk/Xk−1

for appropriate Ak ,Bk . In this regime, δk ∼ 0 and one obtains a recursion

δk ∼ uk + vkδk−1

where uk ∼ bk/
√

kα2
k + 1/2kα2

k − gk/
√

kα4
k ,

vk = (1− 1/2k + gk/
√

k)/α2
k , which one solves.

k > k0: Oscillatory regime, most interesting.
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Background

Recursions - general z - the scalar regime

δk ∼ uk + vkδk−1

uk ∼ bk/
√

kα2
k + 1/2kα2

k − gk/
√

kα4
k , vk = (1− 1/2k + gk/

√
k)/α2

k .

No significant contribution for k ∈ [εk0, (1− ε)k0]. Solve:

δk =
k∑

j=2

uj

k∏
`=j+1

v`

is a martingale, and small. We need to compute
∑
δk , and δk are correlated!.

Turns out contribution occurs only for k < k0 − k1/3
0 , and then get a CLT with

blocks of length (k0/i)1/3 to the left of k0 contributing order 1/i to the
variance. Also, correlation between different z ’s computable.
In fact, such analysis was just posted (January 24, arXiv:2001.09042) by
Lambert-Paquette (hyperbolic regime).
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Background

Recursions - general z - the oscilatory regime

Xk =

(
Ψk+1

Ψk

)
, k > k0.

We have
Xk+1 = (Ak + Wk )Xk ,

where,

Ak =

(
zk −1 + 1

2k
1 0

)
, Wk =

(
bk√

k
gk√

k
0 0

)
,

zk = z
√

n
k = 2− l

k0
and bk ∼ N (0, 2/β) and gk ∼ N (0, 2/β).

Eigenvalues of Ak for k > k0 are complex of (essentially) unit norm. Change
basis to eigenvector basis, get

X̂k = Qk

k−1∏
i=k0

Q−1
i+1Qi

(
Ri + Ŵi

)
Q−1

k0
X̂k0 ,

where Ri are rotation matrices of angle θk ∼
√

k/k0 − 1.
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Background

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length `i = (k0/i)1/3, linearize in
each block, and get contribution to variance of order 1/i .

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!
Solution: along block we have

∏
Ri = I, but the vector (1,0)T is not mapped

to ρi (1,0) due to the noise. So instead, stop (at random time) where

`j+1∏
i=`j

Q−1
i+1Qi

(
Ri + Ŵi

)
(0,1)T ∼ ρi (0,1)T .

We have `j+1 − `j ∼ (k0/j)1/3, and variance computation as in sketch.
Complication when blocks get too small - cannot ensure the approximation;
But variance is small there, so can combine blocks!
Computing correlation between different zs is complicated in the regime
|z − z ′| < N−2/3 because of block structure.
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)
(0,1)T ∼ ρi (0,1)T .

We have `j+1 − `j ∼ (k0/j)1/3, and variance computation as in sketch.
Complication when blocks get too small - cannot ensure the approximation;
But variance is small there, so can combine blocks!
Computing correlation between different zs is complicated in the regime
|z − z ′| < N−2/3 because of block structure.

Ofer Zeitouni Log Correlated IRS2020 23 / 23



Background

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length `i = (k0/i)1/3, linearize in
each block, and get contribution to variance of order 1/i .
Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!
Solution: along block we have

∏
Ri = I, but the vector (1,0)T is not mapped

to ρi (1,0) due to the noise. So instead, stop (at random time) where

`j+1∏
i=`j

Q−1
i+1Qi

(
Ri + Ŵi
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