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Central limit theorem f : R — R compactly supported, smooth. Consider

N
Win=> f(\)—N / fdo.
i=1
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Theorem (Johansson '98; 5 ensembles)
W; n satisfies CLT, mean (2/8 — 1) [ fdv, variance

(2/8) [[? i np V4 - ¢§?
mld //2 OO~ o gt

The measure v in the mean expression is explicit.
The variance has an alternative expression

# ki; k (/O7T f(2 cos(0)) cos(k@))2 do

CLT’s of this type go back at least to CLT of Jonsson for moments
('82), Pastur and co-workers, Bai-Silverstein, Shcherbina, .. ..
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# g k </07r f(2 cos(6)) cos(k@)dﬁ)2

If fis smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy *99, recently
Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia . ... Variance still of
order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)
What if f is not smooth? e.g. Sosoe-Wong '13 H'*<.

Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic
variance.

Formally, if f has log singularity then contributions at all scales, and kth
coefficient gives roughly contribution [ log(x)sin(kx) ~ 1/k Thus if could
expand only to k ~ N, would get logarithmic variance. Justify? More later.
Our basic object of interest: log(Pn(2)) = log(det(z/ — X)).
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Background

The Lab: circular ensembles

Un-CUE (aka Haar unitary on Uy).

Diaconis-Shahshahani '94: TrUY, ~ N(O, k) independent, very strong sense:
mixed moments of total degree < N are exactly those for independent
Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: log detUy is Gaussian of mean 0 and
variance clog N.

Hughes-Keating-Oconnell, Wieand '02: multi-d extension: log det(z;/ — Uy) is
jointly Gaussian, log correlated structure.

If it is log-correlated, what about the extrema?
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Figure 1: Realizations of log |Py(e")|, 0 < h < 27, for N = 50 and N = 1024. At microscopic scales,
the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and
macroscopic scales.

(From Arguin, Belius, Bourgade ’17)
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The Lab

Set MN(Q) = |Og |PN(e’9)\, MK/ = MaXge[0,27] MN(Q)
Conjecture (Fyodorov-Hiary-Keating '12)

M,’Q:IogN—%loglogN+ w

where W has the law of the sum of two independent Gumbels.

Still open, although much progress.

Arguin, Belius, Bourgade '17 - Identify the ’1°.

Paquette, Zeitouni ’18 - Identify the *-3/4’.

Both use in essential way CUE (aka 8 = 2), where joint distribution of

eigenvalues is
I = »?
i<j
for which Gaussianity of traces follows from Diaconis-Shashahani and

moments ofdeterminant (=exponential moments of My(z)) are Toeplitz
determinants.
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The clincher:

[Ti=x1%8>0

i<j
Chhaibi-Madaule-Najnudel 18 My, = log N — 3 loglog N + O(1)
There is also some progress toward identifying W - G. Remy ’18
The key step of CMN is a representation in terms of orthogonal polynomials.
First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV
matrices) built from a sequence of independent variables (Verblunski
coefficients), then write recursions for orthogonal polynomials in terms of
Verblunsky coefficients.

Ppii(2) \ _ (2 — ®k(2) “ () _ K (51
( o;,(2) ) T\ —akz 1 oy(z) ) Pk(2) = Z®k(27).
o = Bxe?™i%, EB2 ~ 2/pk, beta variable. o ~ g + ig,, Gaussian.
In addition, sup;/— [ log |[Mn(2)| — log [®k(2)]] is tight.
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Background

Recursions in the lab

log ®;(€") — log ®;_(€") = log(1 — ajj€’V*~1) ~ —qje/V=1(®)

Wi (0) = Wi(0) + 6 — 23 log(1 — ajeVe—1(®)),

Thus, marginal of log |4 ()| is essentially Gaussian, of variance

(2/8)log N.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Chhaibi-Najnudel 19 Py(-) converges to the GMC with parameter /2/3.

B = 2: Nikula, Saksman, Webb 18, Webb '15

Work in progress: Paquette-Z ('20?) Convergence in law of max log |}, (e)|
to Gumbel shifted by (unknown) r.v..
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Background

Other animals in the Lab

mn - random permutation with eigenvalues )\;, determined by cycle structure.
N
My (60) = log Pn(6) =) _ Cylog |1 — €| (1)
=1

where C, = number of cycles of length ¢, essentially Poisson. Almost
independent additive structure. But there are arithmetic issues.

Set ||0||r = distance from 0 on T.

Hambly, Keevash, Oconnell, Stark '00: If lim inf n7||né||7 > 0 for some v > 0
then |Mn(0)|/+/log N converges to Gaussian.

Multi-d versions: Dong-Zeidler 14, Bahier ’18.

Field is still log-correlated.

Theorem (Cook-Z '17)
M,/ log N = xo ~ 0.65

Max asymptotics not determined simply by tail of (1), which would give xo = 1.
In fact, expect Gaussian fluctuations of My, due to fluctuations in total number
of cycles, so any hope for restoring log-cor story is by conditioning on it.



Random permutation char poly

(8) N =10",1=(0,1)

(c) N=10% I=(0.1,0.11) (p) N=10°, I =(0,0.6)

T, computed from the
). The cycle structures
taurant process. The

FIGURE 1. Simulations of the field Xy on subintervals I C
cycle structures for the permutations Py using the formula
are random partitions of [V] generated using the Chinese r
respective partitions are:
(A): {56,22,9,9,4},
(B/C): {6310,1914,909, 668, 79,47, 33,19, 1
(D): {892060223, 78087020, 19479718,9152317, G%OGM 352623, 114502, 104059,
8193, 1641, 3. 3.2,2,1,1}.
In (D) there are noticeable dips in the field near the rationals 0, 1/2, and 1/3.

(From Cook, Zeitouni '17)
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Towards the wild: GSE

We take Xy ~ GJE, ie joint distribution of eigenvalues on RV

ITIn - PHEPNE PO

i<j

CLT for smooth test functions OK, for general smooth potential (Johansson
‘98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty *17 Lambert-Ledoux-Webb ’'18

What about log det(z/ — Xy)?

B = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette 18, first order, general potential).

Also, connection to GMC for 3 = 2: Berestycki-Webb-Wong '18 (L? phase)
For general g: even CLT of log-det not clear!
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log-det trajectory
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Empirical facts
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Background

Reason for skewness in simulations

InglU-Uzl U uniforme, 10000 réalisations
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CLT for log determinant GSE

The case z = 0 is special.
Theorem (Tao-Vu ’11)
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The case z = 0 is special.
Theorem (Tao-Vu ’11)

(Mn(0) — N [log|z — x|o(dx) — aglog N)/+/log N converges (for
Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody ’19: extends w/out matching 4 moments.
By replacement principle, the key step in the TV proof is the result for

GgE, s = 1,2. Their proof extends to general 5 > 0, and is based on
recursions.



Background

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)
Xn from GBE is unitarily equivalent to the following 3-diagonal Jacobi matrix
b4 a 0 000 0
1 1 a b a 0
—Xy=—=1| 0 a a 0
WU S O
0 0 0 an—1 by

where b; ~ N(0,\/2/B), aj ~ xiz//B-

Here a; ~ xis/+/B means a,2 has chi-square distribution with i3 degrees of

freedom, ie x;s ~ Vi++/1/26G + O(1/i).
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Recursions

Let ¢« (-) denote the characteristic polynomial of the top k-by-k block of
Xn.From the 3-diagonal representation,

er(zVN) = (zVN = b)pk(2VN) — & _yox—1(2VN), o_1 = 0,0 = 1.

A natural normalization involves the logarithmic effective potential

U(z) = z2/4 —1/2 — [log |z — x|o(dx), which equals 0 inside the spectrum
and increases outside.

We set

e—kBU(zv/N/K)+ck

Vk!

Vi (2) = k(zVN)

and then
\Uk(Z) = (Z\/N — bk)Ak\Uk_1 (Z) — 3‘12(71AkAk_1\Uk_2(Z).

Here, Ay = 1/vVka(t), tk = zy/N/k, and o(t) = 1 for t < 2 and
a(ty=+/t?/4 —1+t/2fort > 2.
Log Correlated IRS2020  18/23
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Set kp so that f, = 2 (if z = 0 then ky = 1). In matrix form, for k > ko,

(Wk+1(z)>
Vi(2)
(53 ) (W)~ (5 ) (W)

where wx = z+/n/k, and by, gk are iid Gaussian of variance 2/4.

In the Tao-Vu z = 0 case, wyx = 0, and except for perturbation, we have a pure
rotation.

Tao-Vu show that W,_(2)? + Wx_1(2)? (essentially) forms a martingale with
quadratic variation process of increment ~ 1/k. This gives the CLT.
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Recursions - general z

The following is joint work with Fanny Augeri and Raphael Butez, in

progress. We have a CLT for log-characteristic polynomial, and work
on the log-correlated structure.
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Recursions - general z

There are several regimes to consider. Fix ¢ > 0, recall that ko = z2N/4k.
@ Kk < eky: one easily checks that Wy (z) ~ 1.

@ Kk € [eko, ko]: write
Xe =V /Wiy =140k, Xg = Ax+ Br/Xk—1
for appropriate Ak, Bx. In this regime, dx ~ 0 and one obtains a recursion
Ok ~ Uy + VkOk_1
where ui ~ b /\/kas +1/2kas — gi/+/kof,

vk = (1 — 1/2k + gk /Vk) /a2, which one solves.

@ k > ky: Oscillatory regime, most interesting.
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Recursions - general z - the scalar regime

Ok ~ Uk + VikOk—_1

g ~ b/ [kof +1/2kal — gy /\[kad, vic = (1 — 1/2k + gk /VK) /o2
No significant contribution for k € [eko, (1 — €)ko]. Solve:

is a martingale, and small. We need to compute > dx, and dx are correlated!.
Turns out contribution occurs only for k < kg — kg/S, and then get a CLT with
blocks of length (ko /i)!/2 to the left of ky contributing order 1/i to the
variance. Also, correlation between different z’s computable.

In fact, such analysis was just posted (January 24, arXiv:2001.09042) by
Lambert-Paquette (hyperbolic regime).
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Recursions - general z - the oscilatory regime

X, — ( "’“k]:‘ ),k>k0.

We have
Xir1 = (Ax + Wie) Xk,

1
Ak:(21k —13-2k>7wk:<

Zx=z\/f=2- % and by ~ N(0,2/8) and gx ~ N(0,2/8).

where,

ol
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Background

Recursions - general z - the oscilatory regime

X, — ( "’\ﬁ:‘ ),k>k0.

We have
Xi+1 = (Ax + W) X,

b, Tk
S A = 2
Ak:(1k 02k>7Wk:<\6E \6E )
z = zﬁ: 2 — 4 and b ~ N(0,2/) and g ~ N(0,2/8).

Eigenvalues of A, for k > ky are complex of (essentially) unit norm. Change
basis to eigenvector basis, get

where,

kaok]'[ Q QiR+ W) Q' X,
i= kg

where R; are rotation matrices of angle 6 ~ \/k/ko — 1.
Log Correlated IRS2020  22/23
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Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!

Solution: along block we have [ R; = /, but the vector (1,0)7 is not mapped
to p;(1,0) due to the noise. So instead, stop (at random time) where

€i+1
H Q. Qi(Ri+ W) (0,1)T ~ pi(0,1)".

i=t;

We have ¢, 1 — ¢; ~ (ko/j)'/3, and variance computation as in sketch.
Complication when blocks get too small - cannot ensure the approximation;
But variance is small there, so can combine blocks!

Computing correlation between different zs is complicated in the regime

|z — 2’| < N~2/3 because of block structure.
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