Non Gaussian Log Correlated fields in RMT

Ofer Zeitouni
Based on joint works with Elliot Paquette, Nick Cook, Fanny Augeri and Raphael Butez

January 2020

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. in real case, centered independent entries on and above diagonal, variance $1 / N$ off diagonal, $2 / N$ on diagonal.

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. in real case, centered independent entries on and above diagonal, variance $1 / \mathrm{N}$ off diagonal, $2 / \mathrm{N}$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. in real case, centered independent entries on and above diagonal, variance $1 / \mathrm{N}$ off diagonal, $2 / \mathrm{N}$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Central limit theorem

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. in real case, centered independent entries on and above diagonal, variance $1 / \mathrm{N}$ off diagonal, $2 / \mathrm{N}$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Central limit theorem $f: \mathbb{R} \rightarrow \mathbb{R}$ compactly supported, smooth. Consider

$$
W_{f, N}=\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int f d \sigma
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

The measure ν in the mean expression is explicit.
The variance has an alternative expression

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta)\right)^{2} d \theta
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

The measure ν in the mean expression is explicit.
The variance has an alternative expression

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta)\right)^{2} d \theta
$$

CLT's of this type go back at least to CLT of Jonsson for moments ('82), Pastur and co-workers, Bai-Silverstein, Shcherbina,

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$ Thus if could expand only to $k \sim N$, would get logarithmic variance.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$ Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$ Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later. Our basic object of interest: $\log \left(P_{N}(z)\right)=\log \left(\operatorname{det}\left(z I-X_{N}\right)\right)$.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense: mixed moments of total degree $<N$ are exactly those for independent Gaussians.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense:
mixed moments of total degree $<N$ are exactly those for independent
Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester '97, Keating-Snaith '00: $\log \operatorname{det} U_{N}$ is Gaussian of mean 0 and variance $c \log N$.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense:
mixed moments of total degree $<N$ are exactly those for independent
Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ' 97 , Keating-Snaith ' 00 : $\log \operatorname{det} U_{N}$ is Gaussian of mean 0 and variance c $\log N$.
Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log \operatorname{det}\left(z_{i} I-U_{N}\right)$ is jointly Gaussian, log correlated structure.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense:
mixed moments of total degree $<N$ are exactly those for independent
Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ' 97 , Keating-Snaith ' 00 : $\log \operatorname{det} U_{N}$ is Gaussian of mean 0 and variance $c \log N$.
Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log \operatorname{det}\left(z_{i} I-U_{N}\right)$ is jointly Gaussian, log correlated structure.
If it is log-correlated, what about the extrema?

CUE char poly

Figure 1: Realizations of $\log \left|\mathrm{P}_{N}\left(e^{\mathrm{i} h}\right)\right|, 0 \leq h<2 \pi$, for $N=50$ and $N=1024$. At microscopic scales, the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and macroscopic scales.
(From Arguin, Belius, Bourgade '17)

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$.

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels.

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress. Arguin, Belius, Bourgade '17-Identify the ' 1 '.

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress. Arguin, Belius, Bourgade '17-Identify the '1'. Paquette, Zeitouni ' 18 - Identify the ' $-3 / 4$ '.

The Lab

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$.
Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels.
Still open, although much progress.
Arguin, Belius, Bourgade '17-Identify the ' 1 '.
Paquette, Zeitouni ' 18 - Identify the ' $-3 / 4$ '.
Both use in essential way CUE (aka $\beta=2$), where joint distribution of eigenvalues is

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{2}
$$

for which Gaussianity of traces follows from Diaconis-Shashahani and moments ofdeterminant (=exponential moments of $M_{N}(z)$) are Toeplitz determinants.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel '18 $M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients),

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$
\binom{\Phi_{k+1}(z)}{\Phi_{k+1}^{*}(z)}=\left(\begin{array}{ll}
z & -\bar{\alpha}_{k}^{*} \\
-\alpha_{k} z & 1
\end{array}\right)\binom{\Phi_{k}(z)}{\Phi_{k}^{*}(z)}, \Phi_{k}^{*}(z)=z^{k} \overline{\Phi_{k}\left(\bar{z}^{-1}\right)} .
$$

$\alpha_{k}=B_{k} e^{2 \pi i \theta_{k}}, E B_{k}^{2} \sim 2 / \beta k$, beta variable. $\alpha_{k} \sim g_{k}+i g_{k}^{\prime}$, Gaussian.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$
\binom{\Phi_{k+1}(z)}{\Phi_{k+1}^{*}(z)}=\left(\begin{array}{ll}
z & -\bar{\alpha}_{k}^{*} \\
-\alpha_{k} z & 1
\end{array}\right)\binom{\Phi_{k}(z)}{\Phi_{k}^{*}(z)}, \Phi_{k}^{*}(z)=z^{k} \overline{\Phi_{k}\left(\bar{z}^{-1}\right)} .
$$

$\alpha_{k}=B_{k} e^{2 \pi i \theta_{k}}, E B_{k}^{2} \sim 2 / \beta k$, beta variable. $\alpha_{k} \sim g_{k}+i g_{k}^{\prime}$, Gaussian.
In addition, $\sup _{|z|=1}|\log | M_{N}(z)|-\log | \Phi_{k}^{*}(z)| |$ is tight.

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) .
\end{gathered}
$$

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian.

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian. Use a branching structure.

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian.
Use a branching structure.
Chhaibi-Najnudel '19 $P_{N}(\cdot)$ converges to the GMC with parameter $\sqrt{2 / \beta}$.
$\beta=2$: Nikula, Saksman, Webb '18, Webb '15

Recursions in the lab

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian.
Use a branching structure.
Chhaibi-Najnudel '19 $P_{N}(\cdot)$ converges to the GMC with parameter $\sqrt{2 / \beta}$.
$\beta=2$: Nikula, Saksman, Webb '18, Webb '15
Work in progress: Paquette-Z ('20?) Convergence in law of max $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ to Gumbel shifted by (unknown) r.v..

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.
Set $\|\theta\|_{T}=$ distance from 0 on T.
Hambly, Keevash, Oconnell, Stark '00: If lim inf $n^{\gamma}\|n \theta\|_{T}>0$ for some $\gamma>0$ then $\left|M_{N}(\theta)\right| / \sqrt{\log N}$ converges to Gaussian.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.
Set $\|\theta\|_{T}=$ distance from 0 on T.
Hambly, Keevash, Oconnell, Stark '00: If lim inf $n^{\gamma}\|n \theta\|_{T}>0$ for some $\gamma>0$ then $\left|M_{N}(\theta)\right| / \sqrt{\log N}$ converges to Gaussian. Multi-d versions: Dong-Zeidler '14, Bahier '18.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.
Set $\|\theta\|_{T}=$ distance from 0 on T.
Hambly, Keevash, Oconnell, Stark '00: If lim inf $n^{\gamma}\|n \theta\|_{T}>0$ for some $\gamma>0$
then $\left|M_{N}(\theta)\right| / \sqrt{\log N}$ converges to Gaussian.
Multi-d versions: Dong-Zeidler '14, Bahier '18.
Field is still log-correlated.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.
Set $\|\theta\|_{T}=$ distance from 0 on T.
Hambly, Keevash, Oconnell, Stark '00: If lim inf $n^{\gamma}\|n \theta\|_{T}>0$ for some $\gamma>0$
then $\left|M_{N}(\theta)\right| / \sqrt{\log N}$ converges to Gaussian.
Multi-d versions: Dong-Zeidler '14, Bahier '18.
Field is still log-correlated.
Theorem (Cook-Z '17)
$M_{N}^{*} / \log N \rightarrow x_{0} \sim 0.65$
Max asymptotics not determined simply by tail of (1), which would give $x_{0}=1$.

Other animals in the Lab

π_{N} - random permutation with eigenvalues λ_{i}, determined by cycle structure.

$$
\begin{equation*}
M_{N}(\theta)=\log P_{N}(\theta)=\sum_{\ell=1}^{N} C_{\ell} \log \left|1-e^{2 \pi i \theta \ell}\right| \tag{1}
\end{equation*}
$$

where $C_{\ell}=$ number of cycles of length ℓ, essentially Poisson. Almost independent additive structure. But there are arithmetic issues.
Set $\|\theta\|_{T}=$ distance from 0 on T.
Hambly, Keevash, Oconnell, Stark '00: If lim inf $n^{\gamma}\|n \theta\|_{T}>0$ for some $\gamma>0$
then $\left|M_{N}(\theta)\right| / \sqrt{\log N}$ converges to Gaussian.
Multi-d versions: Dong-Zeidler '14, Bahier '18.
Field is still log-correlated.
Theorem (Cook-Z '17)
$M_{N}^{*} / \log N \rightarrow x_{0} \sim 0.65$
Max asymptotics not determined simply by tail of (1), which would give $x_{0}=1$. In fact, expect Gaussian fluctuations of M_{N}^{*} due to fluctuations in total number of cycles, so any hope for restoring log-cor story is by conditioning on it.

Random permutation char poly

(A) $N=100, I=(0,1)$
(B) $N=10^{4}, I=(0,1)$

(C) $N=10^{4}, I=(0.1,0.11)$
(D) $N=10^{9}, I=(0,0.6)$

Figure 1. Simulations of the field X_{N} on subintervals $I \subset \mathbb{T}$, computed from the cycle structures for the permutations P_{N} using the formula (2.2)). The cycle structures are random partitions of $[N]$ generated using the Chinese restaurant process. The respective partitions are:
(A): $\{56,22,9,9,4\}$,
(B/C): $\{6310,1914,909,668,79,47,33,19,12,5,3,1\}$,
(D): $\{892060223,78087020,19479718,9152317,630684,352623,114502,104059$, $8973,8193,1641,33,5,3,2,2,1,1\}$.
In (D) there are noticeable dips in the field near the rationals $0,1 / 2$, and $1 / 3$.
(From Cook, Zeitouni '17)

Towards the wild: $\mathbf{G} \beta \mathbf{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17 Lambert-Ledoux-Webb '18

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17 Lambert-Ledoux-Webb '18
What about $\log \operatorname{det}\left(z I-X_{N}\right)$?

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17 Lambert-Ledoux-Webb '18
What about $\log \operatorname{det}\left(z I-X_{N}\right)$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17 Lambert-Ledoux-Webb '18
What about $\log \operatorname{det}\left(z I-X_{N}\right)$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).
Also, connection to GMC for $\beta=2$: Berestycki-Webb-Wong '18 (L^{2} phase)

Towards the wild: $\mathbf{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N}

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17 Lambert-Ledoux-Webb '18
What about $\log \operatorname{det}\left(z I-X_{N}\right)$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).
Also, connection to GMC for $\beta=2$: Berestycki-Webb-Wong '18 (L^{2} phase) For general β : even CLT of log-det not clear!

log-det trajectory

Beta=2, Matrice de taille $\mathbf{n = 1 0 0 0}$ Pas de temps= $\mathbf{0 . 0 0 1}$

Empirical facts

Empirical facts

Skewed?

Reason for skewness in simulations

CLT for log determinant $\mathrm{G} \beta \mathrm{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-N \int \log |z-x| \sigma(d x)-a_{\beta} \log N\right) / \sqrt{\log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments.

CLT for log determinant $\mathrm{G} \beta \mathrm{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-N \int \log |z-x| \sigma(d x)-a_{\beta} \log N\right) / \sqrt{\log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $\mathrm{G} \beta \mathrm{E}, \beta=1,2$.

CLT for log determinant $\mathbf{G} \beta \mathrm{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-N \int \log |z-x| \sigma(d x)-a_{\beta} \log N\right) / \sqrt{\log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $\mathrm{G} \beta \mathrm{E}, \beta=1,2$. Their proof extends to general $\beta>0$, and is based on recursions.

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)

X_{N} from $G \beta E$ is unitarily equivalent to the following 3-diagonal Jacobi matrix

$$
\frac{1}{\sqrt{N}} X_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{lllll}
b_{1} & a_{1} & 0 & \ldots & 0 \\
a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & a_{2} & b_{3} & a_{3} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & a_{N-1} & b_{N}
\end{array}\right)
$$

where $b_{i} \sim N(0, \sqrt{2 / \beta}), a_{i} \sim \chi_{i \beta} / \sqrt{\beta}$.
Here $a_{i} \sim \chi_{i \beta} / \sqrt{\beta}$ means a_{i}^{2} has chi-square distribution with $i \beta$ degrees of freedom, ie $\chi_{i \beta} \sim \sqrt{i}+\sqrt{1 / 2 \beta} G+O(1 / i)$.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}. From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}.From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

A natural normalization involves the logarithmic effective potential $U(z)=z^{2} / 4-1 / 2-\int \log |z-x| \sigma(d x)$, which equals 0 inside the spectrum and increases outside.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}.From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

A natural normalization involves the logarithmic effective potential $U(z)=z^{2} / 4-1 / 2-\int \log |z-x| \sigma(d x)$, which equals 0 inside the spectrum and increases outside.
We set

$$
\Psi_{k}(z)=\phi_{k}(z \sqrt{N}) \frac{e^{-k \beta U(z \sqrt{N / k})+c k}}{\sqrt{k!}}
$$

and then

$$
\Psi_{k}(z)=\left(z \sqrt{N}-b_{k}\right) \Delta_{k} \Psi_{k-1}(z)-a_{k-1}^{2} \Delta_{k} \Delta_{k-1} \Psi_{k-2}(z)
$$

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}.From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

A natural normalization involves the logarithmic effective potential $U(z)=z^{2} / 4-1 / 2-\int \log |z-x| \sigma(d x)$, which equals 0 inside the spectrum and increases outside.
We set

$$
\Psi_{k}(z)=\phi_{k}(z \sqrt{N}) \frac{e^{-k \beta U(z \sqrt{N / k})+c k}}{\sqrt{k!}}
$$

and then

$$
\Psi_{k}(z)=\left(z \sqrt{N}-b_{k}\right) \Delta_{k} \Psi_{k-1}(z)-a_{k-1}^{2} \Delta_{k} \Delta_{k-1} \Psi_{k-2}(z)
$$

Here, $\Delta_{k}=1 / \sqrt{k} \alpha\left(t_{k}\right), t_{k}=z \sqrt{N / k}$, and $\alpha(t)=1$ for $t<2$ and $\alpha(t)=\sqrt{t^{2} / 4-1}+t / 2$ for $t \geq 2$.

Recursions

Set k_{0} so that $t_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
a_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are iid Gaussian of variance $2 / \beta$.

Recursions

Set k_{0} so that $t_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
a_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are iid Gaussian of variance $2 / \beta$. In the Tao-Vu $z=0$ case, $\omega_{k}=0$, and except for perturbation, we have a pure rotation.

Recursions

Set k_{0} so that $t_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
a_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are iid Gaussian of variance $2 / \beta$. In the Tao-Vu $z=0$ case, $\omega_{k}=0$, and except for perturbation, we have a pure rotation.
Tao-Vu show that $\Psi_{k-1}(z)^{2}+\Psi_{k-1}(z)^{2}$ (essentially) forms a martingale with quadratic variation process of increment $\sim 1 / k$. This gives the CLT.

Recursions - general z

The following is joint work with Fanny Augeri and Raphael Butez, in progress. We have a CLT for log-characteristic polynomial, and work on the log-correlated structure.

Recursions - general z

There are several regimes to consider. Fix $\epsilon>0$, recall that $k_{0}=z^{2} N / 4 k$.

- $k<\epsilon k_{0}$: one easily checks that $\Psi_{k}(z) \sim 1$.
- $k \in\left[\epsilon k_{0}, k_{0}\right]$: write

$$
X_{k}=\Psi_{k} / \Psi_{k-1}=1+\delta_{k}, \quad X_{k}=A_{k}+B_{k} / X_{k-1}
$$

for appropriate A_{k}, B_{k}.

Recursions - general z

There are several regimes to consider. Fix $\epsilon>0$, recall that $k_{0}=z^{2} N / 4 k$.

- $k<\epsilon k_{0}$: one easily checks that $\Psi_{k}(z) \sim 1$.
- $k \in\left[\epsilon k_{0}, k_{0}\right]$: write

$$
X_{k}=\Psi_{k} / \Psi_{k-1}=1+\delta_{k}, \quad X_{k}=A_{k}+B_{k} / X_{k-1}
$$

for appropriate A_{k}, B_{k}. In this regime, $\delta_{k} \sim 0$ and one obtains a recursion

$$
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1}
$$

where $u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}$,
$v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2}$, which one solves.

- $k>k_{0}$: Oscillatory regime, most interesting.

Recursions - general z - the scalar regime

$$
\begin{array}{r}
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1} \\
u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}, v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2} .
\end{array}
$$

Recursions - general z - the scalar regime

$$
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1}
$$

$u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}, v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2}$.
No significant contribution for $k \in\left[\epsilon k_{0},(1-\epsilon) k_{0}\right]$.

Recursions - general z - the scalar regime

$$
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1}
$$

$u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}, v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2}$.
No significant contribution for $k \in\left[\epsilon k_{0},(1-\epsilon) k_{0}\right]$. Solve:

$$
\delta_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

is a martingale, and small. We need to compute $\sum \delta_{k}$, and δ_{k} are correlated!.

Recursions - general z - the scalar regime

$$
\begin{array}{r}
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1} \\
u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}, v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2}
\end{array}
$$

No significant contribution for $k \in\left[\epsilon k_{0},(1-\epsilon) k_{0}\right]$. Solve:

$$
\delta_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

is a martingale, and small. We need to compute $\sum_{k} \delta_{k}$, and δ_{k} are correlated!. Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z's computable.

Recursions - general z - the scalar regime

$$
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1}
$$

$u_{k} \sim b_{k} / \sqrt{k \alpha_{k}^{2}}+1 / 2 k \alpha_{k}^{2}-g_{k} / \sqrt{k \alpha_{k}^{4}}, v_{k}=\left(1-1 / 2 k+g_{k} / \sqrt{k}\right) / \alpha_{k}^{2}$.
No significant contribution for $k \in\left[\epsilon k_{0},(1-\epsilon) k_{0}\right]$. Solve:

$$
\delta_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

is a martingale, and small. We need to compute $\sum \delta_{k}$, and δ_{k} are correlated!. Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z's computable. In fact, such analysis was just posted (January 24, arXiv:2001.09042) by Lambert-Paquette (hyperbolic regime).

Recursions - general z - the oscilatory regime

$$
X_{k}=\binom{\Psi_{k+1}}{\Psi_{k}}, k>k_{0}
$$

We have

$$
X_{k+1}=\left(A_{k}+W_{k}\right) X_{k},
$$

where,

$$
A_{k}=\left(\begin{array}{cc}
z_{k} & -1+\frac{1}{2 k} \\
1 & 0
\end{array}\right), W_{k}=\left(\begin{array}{cc}
\frac{b_{k}}{\sqrt{k}} & \frac{g_{k}}{\sqrt{k}} \\
0 & 0
\end{array}\right)
$$

$z_{k}=z \sqrt{\frac{n}{k}}=2-\frac{1}{k_{0}}$ and $b_{k} \sim \mathcal{N}(0,2 / \beta)$ and $g_{k} \sim \mathcal{N}(0,2 / \beta)$.

Recursions - general z - the oscilatory regime

$$
X_{k}=\binom{\Psi_{k+1}}{\Psi_{k}}, k>k_{0}
$$

We have

$$
X_{k+1}=\left(A_{k}+W_{k}\right) X_{k},
$$

where,

$$
A_{k}=\left(\begin{array}{cc}
z_{k} & -1+\frac{1}{2 k} \\
1 & 0
\end{array}\right), W_{k}=\left(\begin{array}{cc}
\frac{b_{k}}{\sqrt{k}} & \frac{g_{k}}{\sqrt{k}} \\
0 & 0
\end{array}\right)
$$

$z_{k}=z \sqrt{\frac{n}{\hbar}}=2-\frac{1}{k_{0}}$ and $b_{k} \sim \mathcal{N}(0,2 / \beta)$ and $g_{k} \sim \mathcal{N}(0,2 / \beta)$.
Eigenvalues of A_{k} for $k>k_{0}$ are complex of (essentially) unit norm. Change basis to eigenvector basis, get

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}
$$

where R_{i} are rotation matrices of angle $\theta_{k} \sim \sqrt{k / k_{0-1}}$.

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=l}^{\ell_{i+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(0,1)^{T} \sim \rho_{i}(0,1)^{T}
$$

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{i}}^{\ell_{j+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(0,1)^{T} \sim \rho_{i}(0,1)^{T}
$$

We have $\ell_{j+1}-\ell_{j} \sim\left(k_{0} / j\right)^{1 / 3}$, and variance computation as in sketch.

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{j}}^{\ell_{j+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(0,1)^{T} \sim \rho_{i}(0,1)^{T}
$$

We have $\ell_{j+1}-\ell_{j} \sim\left(k_{0} / j\right)^{1 / 3}$, and variance computation as in sketch.
Complication when blocks get too small - cannot ensure the approximation;
But variance is small there, so can combine blocks!

Recursions - general z - the oscilatory regime

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{j}}^{\ell_{j+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(0,1)^{T} \sim \rho_{i}(0,1)^{T} .
$$

We have $\ell_{j+1}-\ell_{j} \sim\left(k_{0} / j\right)^{1 / 3}$, and variance computation as in sketch.
Complication when blocks get too small - cannot ensure the approximation;
But variance is small there, so can combine blocks!
Computing correlation between different $z s$ is complicated in the regime $\left|z-z^{\prime}\right|<N^{-2 / 3}$ because of block structure.

