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Random directed graphs

Consider the simplest model of a random directed graph, D(n, p),
on vertices labelled by 1, 2, . . . , n, in which each of the n(n − 1)
possible directed edges is present independently with probability p,
and absent otherwise.

In this talk, I will concentrate on the strongly connected
components. This is the collection of maximal subgraphs which are
such that for any pair {u, v} of vertices in the same subgraph
there is a directed path from u to v and a directed path from v to
u. If, for a particular u, there is no such v , we consider the
singleton {u} to be a strongly connected component, so that the
strongly connected components partition the vertex set, but not
(in general) the edge set.



A digraph and its strongly connected components
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The undirected case

The undirected case is the usual Erdős–Rényi random graph
G (n, p), in which each of the ( n

2 ) possible undirected edges is
present independently with probability p. This model undergoes a
phase transition as follows.

Suppose that p = c/n + o(n−1) as n→∞, for some c ≥ 0. Then

I if c < 1, the components are all oP(n) in size;

I if c > 1, there is a unique component of size ΘP(n) (the
giant), and all others are oP(n) in size.

If p = 1/n + λn−4/3 + o(n−4/3) for some fixed λ ∈ R, the largest
component is ΘP(n2/3), and there is a whole sequence of
components on the same order. λ parametrises the critical window.



Phase transition

The digraph D(n, p) undergoes the “same” phase transition.

Theorem (Karp 1990,  Luczak 1990).
Suppose that p = c/n + o(n−1) as n→∞, for c ≥ 0. Then

I if c < 1, all strongly connected components are oP(n) in size;

I if c > 1, there is a unique strongly connected component of
size ΘP(n) (the giant), and all others are oP(n) in size.



Phase transition

Theorem ( Luczak and Seierstad, 2009).
Let p = 1/n + εn/n

4/3, where εn � n1/3.

I If εn →∞, then the largest strongly connected component of
D(n, p) has size (4 + oP(1))ε2nn

1/3 and the second largest has
size OP(n1/3/εn);

I if εn → −∞ then the largest strongly connected component
has size OP(n1/3/|εn|).

We will concentrate on the critical window, where εn → λ for some
λ ∈ R as n→∞. This result suggests that we should get critical
components of size ΘP(n1/3). (See also [Coulson, 2019] who
shows that the size of the largest strongly connected component is
tight when rescaled by n−1/3.)

We prove a scaling limit: on rescaling the ordered sequence of
components by n−1/3, we obtain a continuum limit object.



Some terminology
Since we are going to rescale, we need a continuum notion of a
directed graph (or, in fact, a directed multigraph).

I A directed multigraph is a triple (V ,E , r) where V and E are
finite sets and r = (r1, r2) is a function from E to V × V .
The tail of the directed edge e is r1(e) and its head is r2(e).

I The case where V = {v}, E = {e} and r1(e) = r2(e) = v is
called a loop.



Some terminology

I We call a metric directed multigraph (MDM) a 4-tuple
(V ,E , r , `) such that (V ,E , r) is a directed multigraph and
` : E → (0,∞) is a function which assigns each edge a length.

I We will also allow the degenerate case of a loop of zero length,
which we denote by L, and which will play a special role.

The notion of strong connectivity clearly carries over
straightforwardly to these settings.



Main result

Let C1(n),C2(n), . . . be the strongly connected components of
D(n, p). We think of this as a sequence of MDMs by thinking of a
maximal path of length k of degree 2 vertices as a single edge of
length k between the end-points (in the case of a loop, we leave a
single vertex).



Main result
Let C1(n),C2(n), . . . be the strongly connected components of
D(n, p). We think of this as a sequence of MDMs by thinking of a
maximal path of length k of degree 2 vertices as a single edge of
length k between the end-points (in the case of a loop, we leave a
single vertex). Complete the list with an infinite sequence of copies
of L.

For an MDM X = (V ,E , r , `) and a real number a > 0, write aX
as a shorthand for (V ,E , r , a`).

Theorem (G. and Stephenson, 2019+).
Suppose that p = 1/n + λn−4/3 + o(n−4/3). Then there exists a
sequence (Ci , i ≥ 1) of random strongly connected MDMs such
that, for each i ≥ 1, Ci is either 3-regular or a loop, and such that

(
Ci (n)

n1/3
, i ≥ 1

)
d→ (Ci , i ≥ 1) as n→∞.



The sense of the convergence
For two MDMs X = (V ,E , r , `) and X ′ = (V ′,E ′, r ′, `′), let
Isom(X ,X ′) be the set of graph isomorphisms from X to X ′ i.e.
pairs of bijections f : V → V ′ and g : E → E ′ such that, for all
e ∈ E , r ′(g(e)) = (f (r1(e)), f (r2(e))).



The sense of the convergence

For two MDMs X = (V ,E , r , `) and X ′ = (V ′,E ′, r ′, `′), let
Isom(X ,X ′) be the set of graph isomorphisms from X to X ′ i.e.
pairs of bijections f : V → V ′ and g : E → E ′ such that, for all
e ∈ E , r ′(g(e)) = (f (r1(e)), f (r2(e))).

Then set

d(X ,X ′) = inf
(f ,g)∈Isom(X ,X ′)

∑

e∈E
|`(e)− `′(g(e))|.

Note that if Isom(X ,X ′) is empty we set d(X ,X ′) =∞.

For sequences X = (X1,X2, . . .) and X′ = (X ′1,X
′
2, . . .) of MDMs,

let

dist(X,X′) =
∞∑

i=1

d(Xi ,X
′
i ).



Main result (precise version)
Let C1(n),C2(n), . . . be the strongly connected components of
D(n, p). We think of this as a sequence of MDMs by thinking of a
maximal path of length k of degree 2 vertices as a single edge of
length k between the end-points (in the case of a loop, we leave a
single vertex). Complete the list with an infinite sequence of copies
of L.

Theorem (G. and Stephenson, 2019+) Suppose that
p = 1/n + λn−4/3 + o(n−4/3). Then there exists a sequence
(Ci , i ≥ 1) of random strongly connected MDMs such that, for
each i ≥ 1, Ci is either 3-regular or a loop, and such that

(
Ci (n)

n1/3
, i ≥ 1

)
d→ (Ci , i ≥ 1)

as n→∞ with respect to dist.

In particular, the limit object has finite total length.



Algorithms

There are several linear-time algorithms for finding the strongly
connected components of a digraph. We will use a variant of
Tarjan’s algorithm.

Let D be an arbitrary digraph with vertices [n]. First, we extract
from D a directed forest which spans the vertices.
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Depth-first exploration
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Keep a stack of vertices seen but not yet explored.



Depth-first exploration
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Reveal the unseen out-neigbours (if any) and move to the
lowest-labelled. Keep a stack of vertices seen but not yet explored.



Depth-first exploration
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If there are no unseen out-neighbours, move to the vertex on top
of the stack.
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If the stack becomes empty, pick the lowest-labelled vertex which
has not yet been visited.
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Depth-first exploration
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Let FD be the directed forest on [n] picked out by the depth-first
exploration.



Depth-first forest

Note that this procedure gives an ordering (vi )0≤i≤n−1 of the
vertices [n], and that the edges of FD are all increasing for this
ordering. (We will think of it as providing a planar ordering of the
forest.)



Depth-first forest
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Depth-first forest

v0

v1

v2

v3

v4

v5 v13 v14

v6

v7

v8

v9

v10
v11

v12

v15

v16

Red edges: increasing for the planar ordering, edges of the directed
spanning forest.
Orange edges: increasing for the planar ordering, but not edges of
the forest: “surplus edges”.
Blue edges: decreasing for the planar ordering, “back edges”.



Strongly connected components
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Strongly connected components

v0

v1

v2

v3

v4

v5 v13 v14

v6

v7

v8

v9

v10
v11

v12

v15

v16



Observations

I Any non-singleton strongly connected component must
contain at least one forward edge and one back edge.

I Each strongly connected component is contained within a
single tree of the directed forest, since there are no forward
edges between different trees.

I One such tree can contain multiple strongly connected
components.

I Given the directed spanning forest,
I surplus edges may go from vj to any vertex on the stack at the

time vj is explored;
I back edges may go from vj to vi for any i < j .



Finding the strongly connected components

To find the strongly connected components, we first note that not
all back edges matter.

A particularly important role is played by ancestral back edges,
namely those pointing to an ancestor in FD . Consider a single tree
in the directed forest and let us first assume (for simplicity) that
there are no surplus edges.



Finding the strongly connected components

If there are only non-ancestral back edges, there are no non-trivial
strongly connected components coming from the tree.
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Finding the strongly connected components

On the other hand, as soon as there is one ancestral back edge, we
have a non-trivial strongly connected component.
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Finding the strongly connected components

Once an ancestral back edge is present, other non-ancestral back
edges can “piggy-back” off it.
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Finding the strongly connected components

What about surplus edges? Surplus edges go from a vertex to a
younger sibling of one its ancestors. This can only help to create a
directed cycle if there happens to be a back edge starting in the
subtree rooted at that vertex and pointing into a strongly
connected part.
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Finding the strongly connected components

Using these ideas, we perform a second exploration of the tree,
using the depth-first ordering coming from the first exploration.
We now keep track of an active set of vertices and create a list of
back edges that matter.



Finding the strongly connected components
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Step 0: active set A0 = ∅.
Output strongly connected component on {v1, v2, v3, v4}.
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Finding the strongly connected components
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Step 1: active set A1 = {v0}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 2: active set A2 = {v0, v1}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 3: active set A3 = {v0, v1, v2}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 4: active set A3 = {v0, v1, v2, v3}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components

v0

v1

v2

v4

v3

v7

v8

v9 v10

v5

v6

v11

Step 5: active set A5 = {v0, v1, v2, v3}.
Output strongly connected component on {v4}.



Finding the strongly connected components
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Step 6: active set A6 = {v0, v1, v2, v3}.
Output strongly connected component on {v5}.



Finding the strongly connected components
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Step 7: active set A7 = {v0}.
Output strongly connected component on {v1, v2, v3, v6}.



Finding the strongly connected components
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Step 8: active set A8 = {v0, v7}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 9: active set A9 = {v0, v7, v8}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 10: active set A10 = {v0, v7, v8, v9}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Step 11: active set A11 = {v0, v7, v8, v9, v10}.

Output strongly connected component on {v1, v2, v3, v4}.



Finding the strongly connected components
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Output strongly connected components on {v11} and
{v0, v7, v8, v9, v10}.



Observation

Assuming there are no surplus edges, the only back edges which
count are those which go from the current vertex at some step i to
the current active set Ai .

(If there are surplus edges, we just need to take them into account
in the definition of the active set and do something similar.)



Distributional properties

I The distribution of the directed forest is exactly the same as it
would be if we did the same exploration on the undirected
Erdős–Rényi random graph. This is a well-understood object.

I The possible surplus or back edges are present independently,
each with probability p.



Scaling limit of the directed forest
[Aldous, 1997; Addario-Berry, Broutin and G., 2012]

Let (F1(n),F2(n), . . .) be the trees in the directed forest. Then we
have the joint convergence in distribution

1

n2/3
(|F1(n)|, |F2(n)|, . . .) d→ (σ1, σ2, . . .),

1

n1/3
(F1(n),F2(n), . . .)

d→ (F1,F2, . . .),

where (σ1, σ2, . . .) are the ranked lengths of the excursions above 0
of (2Bλt , t ≥ 0) where

Bλt := Bt + λt − t2/2− inf
s≤t

(Bs + λs − s2/2), t ≥ 0,

and F1,F2, . . . are the R-trees encoded by those excursions.



Surplus edges
[Addario-Berry, Broutin and G., 2012]

Consider the depth-first exploration. The process (2Bλt , t ≥ 0)
describes the rescaled distance of the current vertex from the root
of the subtree being explored. The size of the stack is
asymptotically 1/2 the height of the current vertex.

Surplus edges can go from the current vertex to any of the vertices
on the stack, and occur independently with probability p ∼ 1/n.

In the limit, the surplus edges thus arise as a Poisson point process
of intensity Bλt dt on R+, and cause the identification of the vertex
currently being explored with a uniform vertex along the path to
the root. In particular, there are O(1) surplus edges in each tree.



Back edges

Since a single large tree in the forest is of size Θ(n2/3), there are
Θ(n4/3) possible back edges, each of which is present with
probability 1/n. So large trees typically contain Θ(n1/3) back
edges, which clearly will not be controllable as n→∞.
Fortunately, we can ignore most of them!

Ancestral back edges can go from the current vertex to any
ancestor, and so in the limit arise according to a Poisson point
process, this time of intensity 2Bλt dt on R+.

The full process of back edges which matter is more complicated
to describe: one can define the continuum analogue of the active
set at each time, which in general consists of a connected subtree.
The intensity of back edges is then proportional to the length of
the active set. Importantly, this process gives rise to only finitely
many back edges in any tree of the directed forest.



Surplus edges don’t contribute
In order for a surplus edge to matter, there needs to be a back
edge from the subtree rooted at the head of the surplus edge into
the active component.

This turns out to have negligible probability in the limit, essentially
because the subtree is typically very small. So we may safely ignore
the surplus edges.



The scaling limit of the strongly connected components
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For each of the trees Fi consider the subtree Ti spanned by the
root and the back edges that matter. This is a much simpler
object than Fi , consisting of finitely many (directed) line-segments
and the pairs of points to be identified.



The scaling limit of the strongly connected components
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Figure 4: A representation of Mf obtained from the identifications given in Figure 3, and the
resulting strongly connected components.

4 The scaling limit

4.1 Excursions of Brownian motion with parabolic drift

Let (W (t), t > 0) be a standard Brownian motion. For � 2 R and t > 0, let W �(t) = W (t)+�t�t2/2
and let W �(t) = inf

06s6t
W �(s). Let B�(t) = W �(t) � W �(t), and let �� be the set of excursions of

B�. For an excursion � 2 ��, let |�| denote its length.

Proposition 4.1. (i) For ↵ 2 {2, 3}, we have E
hP

�2�� |�|↵
i

< 1.

(ii)
P

�2�� |�|3/2 = 1 a.s.

The ↵ = 2 case of (i) is Lemma 25 of Aldous [3], which we extend here to ↵ = 3. (Our method
also works for all ↵ > 3/2 but we omit the details for the sake of brevity.) We first need a standard
result on moments of hitting times of Brownian motion with constant drift.

Lemma 4.2. For µ > 0 and b > 0, let T (b, µ) = inf{t > 0 : W (t) � µt = �b}. Then we have

E[T (b, µ)] =
b

µ
and E

h�
T (b, µ)

�2i
=

b(1 + bµ)

µ3
.

12

It is then easy to extract the strongly connected components.



The scaling limit of the strongly connected components

The back edges we use a.s. all identify leaves with points of degree
2. Because the underlying trees Fi are binary a.s., the resulting
strongly connected components are 3-regular a.s. (i.e. the vertices
either have 2 in-edges and 1 out-edge or 1 in-edge and 2
out-edges.)

Finally, the fact that the total length of the limit object is finite is
proved using properties of Bλ.



Thank you!

C. Goldschmidt and R. Stephenson, The scaling limit of a critical
random directed graph, arXiv:1905.05397 [math.PR]


