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Active Matter

Overdamped particles with self-propulsion - 

self-propulsion along 

reset direction with rate

noise

Depending on details can lead to  
a host of different 

phases and phase diagrams



Active Matter - Example of Phase Diagram (Scalar)

Dense 
Scalar -  
Interactions  
do not align

Cates and Tailleur, 
Annu. Rev. Condens. Matter Phys. (2015)  
Solon, et al., New. J. Phys. (2018), Tjhung et. al. (2019)

Dilute

Density pair correlationDensity snapshot

Common 
to all active  
system



This Talk: Effects of Quenched Disorder

Recap equilibrium:

?

other?

correlations still short ranged

(Lorentzian squared)

Y. Imry and S.-k. Ma, PRL (1975)
A. Aharony, Y. Imry, and S.-k. Ma, PRL (1976)
U. Glaus, PRB (1986)

lower critical dimension

dilute? fate of long range order?

short-range correlations

CONSERVING FIELD!



Show very different for active system:

Steady-state currentStructure factor

√

comments:
• True for potential disorder including torque inducing disorder

• True for any dilute active system

Fate of MIPS

lower critical dimension



Outline:

• One speck of disorder 

• Dilute systems 

• Interacting systems 

• One-dimensional case 



• One speck of disorder 



One Speck of Disorder
generally an asymmetric potential in active bath

Breaking of time reversal symmetry 
= 

Current of active particle 



Speck of disorder in an active fluid

Particles hitting 
concave side

(Pushing into the wall)

Particles hitting 
convex side

(Sliding along the wall)

Suggests that an active fluid also applies a nonzero net force  
on the potential

body



An active fluid applies a nonzero net force  
on an asymmetric body.

Body applies a nonzero net force  
on the particles.

Force on particles generate flows

Note - Force and current depend on potential/shape 


Can show:

For a general potential (also with pairwise interactions)

current density

PRL 2016
with Nikolai,Solon,Kardar,Tailleur,Voituriez

Same picture different words



Speck of disorder influence on density: (dilute system)

In far field disorder speck acts like a pump in diffusive medium

�F

J(r)

long-range density and current fields

(non-local distribution function)

� · J = �De��2� � � · [µF�(r)] = 0

Steady-state equation 

Point force (≒ dipole)

- force acting on speck

J(r) =
µ

2�

�
F

r2
� 2(r · F)r

r4

�Diffusive current (2d)

Density (2d)



Y. Baek, A. P. Solon, X. Xu, N. Nikola, and Y. Kafri, PRL (2018)
O. Granek, Y. Baek, Y. Kafri, and A. P. Solon, J. Stat. Mech. (2020)

Density fluctuation 
due to pumping

long-range density modulations 
(non-local function of potential) 

 
Can derive exact form even with pairwise interactions

Speck in any dimension



• Dilute Active System with  
Potential Disorder



Particles on quenched disorder

- short range correlated and bounded 



Each speck is a current source (modulating density)



Use result for single speck

Take dipole field to be randomly distributed (dilute system) 
sloppy have to take distributions….

disorder average

Get
In dilute limit system is  

generically scale invariant!



clean disordered

note, structures frozen

in space



• Interacting systems

Approach  
- simplest linear field theory  
- check when self-consistent



Field theoretic treatment

Linear theory with random forcing

linear -

uncorrelated in space

time dependent noiserandom forcing from disorder 
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Use to study density and currents
For single particle,

B. Derrida, J. Stat. Phys. (1983) 
D. S. Fisher, PRA (1984)

J.-P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, Annals of Physics (1990)



To understand  powerlaw use a Helmholtz decomposition

does not enter density fluctuations

Density

Leading order behavior same as heuristic picture

small 



Find that effect potential obeys:

Effective potential self-affine with deep wells. 

(a)

(b)

(c)
v/α 31=



 Next check when linear theory is self-consistent

3

Remarkably, the simplified model agrees well with the
numerical simulations shown in Fig. 1. The agreement
first suggests that correlations due to realizations of the
noise are negligible. Moreover, it substantiates the idea
that the random potential leads, through a ratchet ef-
fect, to a random forcing pushing the active particles.
Building on this physical picture we argue below, using
more sophisticated methods, that in two dimensions this
structure factor takes a more complicated form on very
large length scale. Moreover, in higher dimensions we
argue that the structure factor takes the functional form
of Eq. (2) if the strength of the random forcing is weak,
while for strong forcing we expect a di↵erent form.

Field-theoretic treatment. Our starting point for the
field theoretical treatment is that the random potential
induces a driving which is described on large length scales
by a random forcing. While much work has been done on
single particles in the presence of random forcing [42, 43],
here we accounts for many interacting particles. Moti-
vated by the numerical simulations we first assume that
the system is overall homogeneous with small fluctua-
tions. Namely, we consider a linear field theory. This
assumption will be checked at the end of the calculations
using a Ginzburg like criteria. To linear order, the equa-
tion of motion for the conserved field �(r, t) is written as
(see for example, [36, 44])

@

@t
�(r, t) = �r · j(r, t) , (3)

j(r, t) = �rµ[�] + f(r) + ⌘(r, t) , (4)

with a current j(r, t), ⌘(r, t) a Gaussian white noise with
zero mean and h⌘i(r, t)⌘j(r0, t0)i = 2D�ij�(r�r

0)�(t�t0).
We have set the mobility to be one and the term f(r)
accounts for the random forcing induced by the ratchet
e↵ect with fi(r) = 0 and fi(r)fj(r0) = �2�ij�(r � r

0).
Guided by the symmetry of the system, to linear order
in fluctuations we have

µ[�(r, t)] = u�(r, t) +Kr
2�(r, t) . (5)

Using this, it is straightforward to obtain the structure
factor S(q) ⌘ h�(q)�(�q)i,

S(q) =
�2

q2(u+Kq2)2
+

D

(u+Kq2)
. (6)

Note that the small q behavior of the structure factor re-
produces the functional form obtain by the phenomeno-
logical model. In fact, comparing Eqs. (2) and (6) shows
that �/u, in the dilute regime, is proportional to the in-
verse e↵ective temperature through �/u / �e↵�. The
subleading corrections account for interactions between
the particles and the fluctuations due to the noise.

To understand these results further we decompose the
delta-correlated random forcing term in the equations
of motion using a Helmholtz-Hodge decomposition as
f(r) = �rU(r)+⇠(r). Here U(r) is an e↵ective potential

and ⇠(r) satisfies r · ⇠(r) = 0. To reproduce the delta
correlations of f(r) while satisfying the constraints on

the decomposed field [43], we set U(q)U(q0) = �2

q2 �
d
q,�q0 ,

⇠i(q)⇠j(q0) = �2
⇣
�ij �

qiq
0
j

q2

⌘
�dq,�q0 , and U(q)⇠(q0) = 0.

Inserting the decomposition into Eqs. (3) and (4) shows
that the density fluctuation of active particles in disor-
der behaves like passive particles in the e↵ective potential
U(r) satisfying the statistics of a Gaussian surface. The
Gaussian surface develops deep wells that lead both the
clustering and long-range correlations. This behavior is
to be contrasted with the classical Lorentzian square be-
havior in equilibrium system [7]
Ginzburg criterion The linearization used in the field-

theoretic description is only valid when the density fluc-
tuations are small compared to the mean density. To
check when this is the case, we evaluate h�⇢2(`)i ⌧ ⇢2b
with �⇢(`) the magnitude of the density fluctuations in
a volume `d, and ⇢b ⌘ min(⇢0, ⇢M � ⇢0) with ⇢0 the
particle density and ⇢M the maximal density. Using
h�⇢2(`)i = 2 [S(a)� S(`)], with a a short-distance cut-
o↵, we find for large `

h�⇢2(`)i

⇢2b
=

8
>>><

>>>:

�2 ln(`/a)

⇡u2⇢2b
for d = 2

�2a2�d

(d� 2)Sdu2⇢2b
for d > 2 .

(7)

This implies that for d > 2, the linearization is valid
if � ⌧ u⇢b

p
(d� 2)Sdad�2, namely, whenever the dis-

order is weak enough. For strong enough disorder we
expect a di↵erent behavior for S(q). For d = 2, the crite-
rion is valid only for length scales satisfying ` ⌧ `⇤ with
`⇤ ⌘ a exp(⇡u2⇢2b/�

2). Note that this length scale is ex-
ponential in the square of the ratio between the e↵ective
temperature and the disorder strength (encoded in �/u,
which as argued below is proportional to �e↵�). This
suggests a very large length scale. In fact, within nu-
merical simulations on active particles we have not been
able to observe cases with ` � `⇤. This is likely due to
a combination of two things. For high or low densities,
since the density is constraint, we expect u to be very
large. Furthermore, the disorder strength is a non-trivial
function of the density in the system. As expected and
shown in the SI, it is bounded as a function of the vari-
ance of the potential and cannot take arbitrarily large
values. Finally, by decreasing the e↵ective temperature
the ratchet e↵ect is weakened and with it the value of �.
All these, as stated above, conspire to make numerics in
the ` � `⇤ regime very di�cult.
Lower critical dimensions. With the above results

we can check self-consistently for the stability of the
uniform weak disordered phase against phase separa-
tion. To do this we note that within the linearized the-
ory the Helmholtz-Hodge decomposition implies that the
density-fluctuations of �(r) are completely determined

Find (    - uv cutoff)

- scale of box we are looking in

eventually fails

always ok for weak



Implies

• In 2d beyond a length scale      the behavior is expected 
to break down (in numerics never see this) 

• In d>2 for weak disorder theory self consistent. For strong 
disorder this suggests a new phase.



Equation of motion

Currents

Circulation of current



So far - 

• Circulating currents 

• Generic disorder induced long range correlations  

• Effective potential self-affine Gaussian surface 

With potential surface can check when phase separation 
stable against disorder



Lower critical dimension

Use standard Imry-Ma argument with

Obtain - no MIPS below



Movie - disorder growing in time



(a)

(b)

(c)
v/α 31=

Agrees rather well (in 2d)



Comment:

Recent work (Toner, Guttenberg, Tu PRL 2018) showed  
that the Vicsek model with disorder has quasi-long range  
order in d=2 and long range in d>2 - less sensitive to  
disorder when compared to equilibrium 

In our case, a discrete symmetry is more sensitive to  
disorder compared to the equilibrium case

See also Duan et. al.  arxiv:2010.02356



• One-dimensional systems



1D RUN-AND-TUMBLE PARTICLES

• Changing stochastically between velocities       with rate

• Fokker-Planck equation for the probability densities

• With no disorder, constant speed and tumbling rate on long-time scales — diffuse 
with an effective diffusion coefficient

first non-interacting



non-local `effective potential’

asymmetric potential - integral does not vanish 
looks on large length scales like a tilt

Steady-state distribution known -  
Can show exactly that random forcing energy landscape
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Effects of potential disorder?
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Dynamics


Using mean-first passage time 

At the exponential level equivalent to Sinai diffusion
Review: JP Bouchaud, A Comtet, A Georges, P Le Doussal 
Annals of Physics 201 (2), 285-341



Many interacting (hard core)  
- strong disorder behavior

No disorder - finite clusters in one-dimension

Using analogy to random forcing -  
Fermion on random forcing landscape

Clusters size 
scaling set by 
first passage!

ME Cates and J Tailleur. Annual Review of Condensed Matter Physics, 6(1):219–244, 2015. 
R. Soto and R. Golestanian. Phys. Rev. E 89, 012706, 2014.




Cluster size distribution and mean cluster size

system size

in one dimension disorder enhances clustering !



Summary - 

• Disorder induces circulating currents  

• Disorder induces generic long range correlations  

• Holds for any dilute active system  

• Lower critical dimension for MIPS is 


