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We need more efficient strategies to mitigate an epidemic. 



Main conclusion: If tests are reported within a day and adoption is 
good (~30-50%) contact tracing can reduce significantly the epidemic. 



CONTACT TRACING DATA

‣ Information about individuals (stored on the phone of the individual):                    
Age, syndromes, health related-risks, results of tests, etc.  


‣ Information about contacts (stored on the phone of the two individuals):               
Time, duration, distance during the contact, barrier-measures used (mask etc.).



CONTACT TRACING: CURRENTLY

▸ Wikipedia: “COVID-19 apps”


▸ Contact tracing as mostly implemented currently (Google & Apple, DP3T, etc.):                                              
Upon a positive test of an individual, his/her recent, sufficiently close, and long 
contacts are contacted and advised to be tested or to self-isolate.


▸ Current status: Test results communicated with several-day delays, and very low 
adoption rate, very small rate of notifications is tested positive. Resulting in currently 
negligible influence on the epidemic. 



Main conclusion: If tests are reported within a day and adoption is 
good (~30-50%) contact tracing can reduce significantly the epidemic. 



BETTER THAN CURRENT TRACING:  INFERENCE OF RISK
▸ Risk can be estimated more accurately than listing contacts with infected 

individuals. Individual should account for increased risks of their neighbours 
and spread the information to their neighbours.


▸ What is needed from the app? Communication between individuals who 
have been in contact (in an encrypted manner, only small bandwidth 
needed). Exchange of simple messages (probabilities) when in contact.


▸ Related works:


• Covi white paper, by Bengio & MILA: 2005.08502  


• ViraTrace (I. Bestvina): https://github.com/ViraTrace/InfectionModel. 


• CRISP: A Probabilistic Model for Infection Risk Estimation 2006.04942

https://github.com/ViraTrace/InfectionModel


OUR WORK: DEVELOPMENT OF ALGORITHMS FOR RISK INFERENCE

▸ Belief propagation on trajectories, probabilistic model that conditions the SIR 
dynamics to the observations. (builds on Altarelli, Braunstein, Dall’Asta et al, PRL’14,  
Braunstein, Ingrosso Sci. Rep.’16)


▸ Mean-field risk estimation (builds on Lokhov, Mézard, Ohta, LZ, PRE ’14 & PRE ’15):                            
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STRUCTURE OF THE PROBLEM
▸ Individual i at time t is in a state ; the whole trajectory .


▸ Prior  is given by a spreading model, its parameters and an initial 
condition.


▸ Observations: individual i reports results of tests of symptoms at time t.                


xt
i ∈ {S, I, R} xi

P({xi}N
i=1)

▸ Goal: Compute the probability  over all 
trajectories compatible with the observations. .                


Pi
A(t) = P(xt

i = A), A ∈ {S, I, R}

Prior (spreading model) & observations => risk estimation 



▸ Population of N individuals
▸ Spreading of a virus

▸ Infected individuals (I) Can infect others


▸ Removed individuals  (R) Cannot spread or be infected 

▸ Susceptible individuals (S) Can be infected

“PRIOR” FOR INFERENCE: SUSCEPTIBLE-INFECTED-RECOVERED (SIR) AGENT-BASED MODEL 

Parameters:

•  attack rate = probability that if susceptible i meets infected j, j infects i. Depends on the duration and distance of contact, 

the barrier measures etc


• : Recovery rate = probability of person i becoming removed in one time-step. Depends on the individual (age, health, etc)   


λij(t)

μi

xt
i = R → xt+1

i = Rxt
i = I → {xt+1

i = I w . p . 1 − μi

xt+1
i = R w . p . μi

xt
i = S →

xt+1
i = I w . p . 1 − ∏j∈∂i(t),xt

j=I (1 − λij(t))

xt+1
i = S w . p . ∏j∈∂i(t),xt

j=I (1 − λij(t))



BAYESIAN INFERENCE 

▸ Individual i at time t is in a state ; the whole trajectory .


▸ Prior: 


▸ Including the observations:            


xt
i ∈ {S, I, R} xi

▸ Goal: Compute the probability  as the marginal 
on the posterior.                


Pi
A(t) = P(xt

i = A), A ∈ {S, I, R}

P({xi}N
i=1) =

N

∏
i=1

[p(xt=0
i )

T

∏
t=1

p(xt
i |∂xt−1

i , xt−1
i )]

P({xi}N
i=1 |𝒪) =

1
Z(𝒪)

P({xi}N
i=1)

N

∏
i=1

p(𝒪i |xi)

P({xi}N
i=1 |𝒪) =

1
Z(𝒪)

N

∏
i=1

[p(xt=0
i )p(𝒪i |xi)

T

∏
t=1

p(xt
i |∂xt−1
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GRAPHICAL MODEL

▸ Transformation avoiding short loops: 


P({xi}N
i=1 |𝒪) =

1
Z(𝒪)

N

∏
i=1

[p(xt=0
i )p(𝒪i |xi)

T

∏
t=1

p(xt
i |∂xt−1

i , xt−1
i )]

▸ Belief Propagation iterative update for probabilities of trajectories 
(each trajectory at most 2 change points):


mn+1
i→j (xi, xj) = ℱBP({mn

k→i(xk, xi)}k∈∂i)

ALTARELLI, BRAUNSTEIN, DALL’ASTA ET AL, PRL’14, BRAUNSTEIN, INGROSSO SCI. REP.’16, ARXIV:2009.09422

▸ This is conjectured to give the exact marginals on large random tree-like graphs 
with independent evolution of contacts and observations. 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.118701
https://www.nature.com/articles/srep27538
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▸ Population of N individuals

▸ Spreading of a virus

▸ Infected individuals (I) Can infect others


▸ Removed individuals  (R) Cannot spread or be infected 

▸ What is the probability of person i to be in state  S,I or R at time t?         ,         ,   Pi
S(t) Pi

I(t) Pi
R(t)

▸ Susceptible individuals (S) Can be infected

“PRIOR” FOR INFERENCE: SUSCEPTIBLE-INFECTED-RECOVERED (SIR) AGENT-BASED MODEL 

Parameters:

•  attack rate = probability that if susceptible i meets infected j, j infects i. Depends on the duration and distance of contact, 

the barrier measures etc


• : Recovery rate = probability of person i becoming removed in one time-step. Depends on the individual (age, health, etc)   


λij(t)

μi

 

https://www.overleaf.com/read/tfhcpbvhmcwq


▸ Given an initial conditions  + parameters      {Pi
S(0), Pi

I(0), Pi
R(0)}N

i=1 {μi(t), λij(t)}N
i=1

DYNAMICAL MESSAGE PASSING (DMP) 

No observations (test results + symptoms) included!!!

▸ Lokhov, Mézard, Ohta, LZ, PRE ’14 & PRE ’15 gave dynamical message passing 
algorithm to give  that are (conjectured to be) asymptotically 
exact on tree-like graphs as 

{Pi
S(t), Pi

I(t), Pi
R(t)}N

i=1
N → ∞

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.012801
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.012811


▸ time evolution equations for        ,        , and     Pi
S(t) Pi

I(t) Pi
R(t)

Pi
S(t + 1) = Pi

S(t) 1 − ∑
j∈∂i(t)

Pj
I(t)λij(t)

Pi
R(t + 1) = Pi

R(t) + μiPi
I(t)

Pi
I(t + 1) = Pi

I(t) + Pi
S(t) ∑

j∈∂i(t)

Pj
I(t)λij(t) − μiPi

I(t)

Parameters:


•   : Probability that if susceptible i meets infected j, j infects i:

‣depends on the individuals: barrier measures etc

‣depends on time: duration and distance of contact


•  : Recovery probability of person i:


‣depends on the individual (age, health, etc)   


• : Sum over ALL the individuals i was in contact with at time t:

‣Tracked with App

λij(t)

μi

∂i(t)

▸ Given an initial conditions                                  + parameters   {Pi
S(0), Pi

I(0), Pi
R(0)} {Pi

S(t), Pi
I(t), Pi

R(t)}

Include the observations (test results + symptoms)

MEAN-FIELD MESSAGE PASSING (SIMPLIFICATION & SMALL  LIMIT OF DMP)λ



Get better estimates of the 
probabilities at time t

MF equations

Repeat the process at every time step              Final Inference

‣An infected person has been infectious for 
the time τ: Pi

I(t′￼) = 1 for t − τ ≤ t′￼≤ t

‣A recovered person cannot change state: 
Pi

R(t′￼) = 1fort′￼≥ t

‣A susceptible individual has not yet been 
infected:Pi

S(t′￼) = 1fort′￼≤ t

FEED-BACK LOOP: USE TEST RESULTS

Use Information to update probabilities at t- tΔ

MF equations
{Pi

S(0), Pi
I(0), Pi

R(0)} {Pi
S(t), Pi

I(t), Pi
R(t)}

{Pi
S(t − τ), Pi

I(t − τ), Pi
R(t − τ)}

{Pi
S(t − τ), Pi

I(t − τ), Pi
R(t − τ)} {Pi

S(t), Pi
I(t), Pi

R(t)}



RESULTS



EXPERIMENTS ON CONTROL OF EPIDEMIC, TESTING HIGHEST-RISK NODES 

 
 

Random geometric contact graph in 2D, scale 1.1, daily on average 7.4 contacts. Population size= 10000, 

=0.02 , =0.03. Initially 20 infected + 10 time steps of uncontrolled evolution, 


Tests: symptomatic = 50% of all infected, and 21 from ranking.

λ μ

Uncontrolled epidemic  
Randomly test & isolate.                  
Trace & test & isolate.     
MF-trace & test & isolate



EXPERIMENTS ON CONTROL OF EPIDEMIC, TESTING HIGHEST-RISK NODES 

Randomly test & isolate.                  
Trace & test & isolate.     
MF-trace & test & isolate.

BP-trace & test & isolate.


Parameters: N=500 000 individuals, contact network is random geometric graph with 6 contacts a day. Epidemic spread from SIR model with , 
200 patients zero. Uncontrolled epidemic for first 10 days, then every day we test 50% infected 5 days after their infection, and 1500 tests according to the ranking given by 
the risk estimation algorithm. Positive individuals are isolated.  

λ = 0.05, μ = 0.02

MF & BP are scalable and 
mitigate the epidemic more 
efficiently than classical tracing. 



ROBUSTNESS EVALUATIONS

▸ Epidemic spreading model and contact network more realistic and not matching 
the prior. (OpenABM https://github.com/BDI-pathogens/OpenABM-Covid19 by Hinch et al.) 


▸ Partial usage/adoption of the tracing application. 


▸ False positive & negative tests.  


https://github.com/BDI-pathogens/OpenABM-Covid19


EXPERIMENTS ON CONTROL OF EPIDEMIC: OPEN_ABM

Parameters: N=500 000 individuals, contact network and spread from OpenABM. 50 patients zero. Uncontrolled 
epidemic for first 10 days, then every day we test 50% infected 5 days after their infection, and X tests according 
to the ranking given by the risk estimation algorithm. Positive individuals are isolated. 

Randomly test & isolate.                  
Trace & test & isolate.     
MF-trace & test & isolate.

BP-trace & test & isolate.


▸ Key point: Even though the MF/BP inference procedures do not capture most of 
the details and complexity of the Oxford OPEN_ABM model, they still work and 
provide large improvement over competing current contact tracing methods. 



EXPERIMENTS ON CONTROL OF EPIDEMIC: PARTIAL ADOPTION OF TRACING APP

▸ Point: For these parameters, the performance deteriorates at <70% adoption. 

Parameters: N=500 000 individuals, contact network and spread from OpenABM. 50 patients zero. Uncontrolled 
epidemic for first 10 days, then every day we test 50% infected 5 days after their infection, and 2500 tests according 
to the ranking given by the risk estimation algorithm. Positive individuals and their households are isolated. 

Randomly test & isolate.                  
Trace & test & isolate.     
MF-trace & test & isolate.

BP-trace & test & isolate.




EXPERIMENTS ON CONTROL OF EPIDEMIC: FALSE TESTS

▸ Point: For these parameters, even 20% false negative tests are supported. 

Parameters: N=500 000 individuals, contact network and spread from OpenABM. 50 patients zero. Uncontrolled 
epidemic for first 10 days, then every day we test 50% infected 5 days after their infection, and 5000 tests according 
to the ranking given by the risk estimation algorithm. Positive individuals and their households are isolated. 

Randomly test & isolate.                  
Trace & test & isolate.     
MF-trace & test & isolate.

BP-trace & test & isolate.




 

CONCLUSION: 

▸ Embedding in other realistic agent-based simulators. 


▸ Learn parameters of the algorithm from observed data (neural-enhanced 
risk estimation).

ONGOING WORK: 

▸ Probabilistic estimation of risks allows more efficient control of the epidemic.               
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