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We need more efficient strategies to mitigate an epidemic.
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Main conclusion: If tests are reported within a day and adoption is
good (~30-307) contact tracing can reduce significantly the epidemic.



CONTACT TRACING DATA

» Information about individuals (stored on the phone of the individual):
Age, syndromes, health related-risks, results of tests, etc.

» Information about contacts (stored on the phone of the two individuals):
Time, duration, distance during the contact, barrier-measures used (mask etc.).



CONTACT TRACING: CURRENTLY

» Wikipedia: “"COVID-19 apps”

» Contact tracing as mostly implemented currently (Google & Apple, DP3T, etc.):
Upon a positive test of an individual, his/her recent, sufficiently close, and long
contacts are contacted and advised to be tested or to self-isolate.

» Current status: Test results communicated with several-day delays, and very low

adoption rate, very small rate of notifications is tested positive. Resulting in currently
negligible influence on the epidemic.
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Main conclusion: If tests are reported within a day and adoption is
good (~30-307) contact tracing can reduce significantly the epidemic.

CONTACT TRACING AND RISK ESTIMATION Yc:s.hua sgngi...

Yesterday in Science, Feretti et al, Quantifying SARS-CoV-2 transmission suggests
epidemic control with digital contact tracing
https://science.sciencemag.org/content/early/2020/03/30/science.abb6936

« Digital contact tracing has the potential to bring R, below 1, can scale where
manual tracing does not N

*  Qur focus at Mila:

* Strong privacy requirements to satisfy the Canadian government and public (need
for strong adoption for such an app to be successful)

ML methods to produce more accurate prediction of risk, not just the binary event
”’l was near someone who was tested positive”
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I ) ERECRIERIEE E|LIS against Covid-19 on April 1st




BETTER THAN CURRENT TRACING: INFERENCE OF RISK

» Risk can be estimated more accurately than listing contacts with infected
individuals. Individual should account for increased risks of their neighbours

and spread the information to their neighbours.

» What is needed from the app? Communication between individuals who
have been in contact (in an encrypted manner, only small bandwidth
needed). Exchange of simple messages (probabilities) when in contact.

» Related works:

e Covi white paper, by Bengio & MILA: 2005.08502

* VViralrace (. Bestvina): https:/github.com/ViraTrace/InfectionModel.

e CRISP: A Probabilistic Model for Infection Risk Estimation 2006.04942


https://github.com/ViraTrace/InfectionModel

OUR WORK: DEVELOPMENT OF ALGORITHMS FOR RISK INFERENCE
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i» Belief propagation on trajectories, probabilistic model that conditions the SIR :

| dynamics to the observations. (builds on Altarelli, Braunstein, Dall'Asta et al, PRL'14, ‘.’
| Braunstein, Ingrosso Sci. Rep.’16)
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Imation (builds on Lokhov, Mézard, Ohta, LZ, PRE ‘14 & PRE '15):

» Mean-field risk est

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Andrey Y. Lokhov!, Marc Mézard!?, Hiroki Ohta', and Lenka Zdeborova?
'LPTMS, Université Paris-Sud and CNRS-UMR 8626, 91405 Orsay, France,
2Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France, and
3IPhT, CEA Saclay and CNRS-URA 2306, 91191 Gif-sur-Yvette, France.
(Dated: July 3, 2014)

We study the problem of estimating the origin of an epidemic outbreak: given a contact network
and a snapshot of epidemic spread at a certain time, determine the infection source. This problem is
important in different contexts of computer or social networks. Assuming that the epidemic spread
follows the usual susceptible-infected-recovered model, we introduce an inference algorithm based
on dynamic message-passing equations and we show that it leads to significant improvement of
performance compared to existing approaches. Importantly, this algorithm remains efficient in the
case where the snapshot sees only a part of the network.

PACS numbers: 89.75.Hc, 05.20.-y, 02.50.Tt

I. INTRODUCTION more detailed information about the epidemic than just
a snapshot at a given time [10]. Note, however, that

all the present methods are limited, for instance none of

ARXIV:2009.09422

Understanding and controlling the spread of epidemics
on networks of contacts is an important task of today’s
science. It has far-reaching applications in mitigating the
results of epidemics caused by infectious diseases, com-
puter viruses, rumor spreading in social media and oth-
ers. In the present article we address the problem of

them makes an efficient use of the information about the
nodes to which the epidemic did not spread.

In this paper we introduce a new algorithm for the es-
timation of the origin of an SIR epidemic from the knowl-
edge of the network and the snapshot of some nodes at
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.118701
https://www.nature.com/articles/srep27538
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.012801
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.012811

STRUCTURE OF THE PROBLEM

» Individual i at time tis in a state x| € {S, [, R}; the whole trajectory x,.

» Prior P({Xl-}iil) is given by a spreading model, its parameters and an initial
condition.

» Observations: individual i reports results of tests of symptoms at time t.

» Goal: Compute the probability P,fx(t) = P(x! = A),A € {S,I,R} over all
trajectories compatible with the observations. .

Prior (spreading model) & observations => risk estimation



“PRIOR”™ FOR INFERENCE: SUSCEPTIBLE-INFECTED-RECOVERED (SIR) AGENT-BASED MODEL

» Population of N individuals

» Spreading of a virus

. ‘o "oc

» Susceptible individuals (S) mmp»  Can be infected

Gl

O
|
» Infected individuals (I) ) Can infect others w I

o |

» Removed individuals (R) == Cannot spread or be infectedw

=T w.p. 1=T]_. . (1=210) +1 _
! 0i(1),xi=I ) X: =] w. .1— :

D 1 = xit =1- lr+1 ’ & xit =R - xit+1 =R
A =35 w. p- HjE()i(t),)C]?=I(1 o Alj(t)) Xl = R W. p . ,ul

Parameters:

* 4,/(1) attack rate = probability that it susceptible i meets infected j, j infects i. Depends on the duration and distance of contact,
the barrier measures etc

e 1. Recovery rate = probability of person i becoming removed in one time-step. Depends on the individual (age, health, etc)



BAYESIAN INFERENCE

» Individual i at time tis in a state x| € {S, I, R}; the whole trajectory x,.

» Prior: P(1X; }N D= l_N[ lp(xitzo)ﬁp(xﬂ 6xl.t_1,xl?_1)]
i=1 t=1

» Including the observations:

P11 10) = — @ P({x, }Np]'[p(@ X))
1 N
PUxIL10) = 5= T e o[ Tped1os )
i=1 =1

» Goal: Compute the probability Pj‘(t) = P(x! = A),A € {S,I,R} as the marginal
on the posterior.



GRAPHICAL MODEL

P )Y, 10) = —
/(0)

T
lp(xitzo)l?(@ X)) HP(X; | axit_la Xit_l)]
i=1 =1

; J

» Transformation avoiding short loops:
k

» Belief Propagation iterative update for probabilities of trajectories
(each trajectory at most 2 change points):

+1 _
m;’ (X X)) = F PO, (X X)) Y reoi)

» This is conjectured to give the exact marginals on large random tree-like graphs
with independent evolution of contacts and observations.

ALTARELLI, BRAUNSTEIN, DALLASTA ET AL, PRL14, BRAUNSTEIN, INGROSSO SCI. REP.'16, ARXIV200909422



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.118701
https://www.nature.com/articles/srep27538

OUR WORK: DEVELOPMENT OF ALGORITHMS FOR RISK INFERENCE

» Belief propagation on trajectories, probabilistic model that conditions the SIR

dynamics to the observations. (builds on Altarelli, Braunstein, Dall’Asta et al, PRL'14,
Braunstein, Ingrosso Sci. Rep.'16)

> Mean-field risk estimation (builds on Lokhov, Mézard, Ohta, LZ, PRE ‘14 & PRE '15):
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“PRIOR”™ FOR INFERENCE: SUSCEPTIBLE-INFECTED-RECOVERED (SIR) AGENT-BASED MODEL

» Population of N individuals

[
» Spreading of a virus o o 0 ‘ oo

"
o

» Removed individuals (R) == Cannot spread or be infected

» Susceptible individuals (S) s Can be infected u |
| |
» Infected individuals (I) ) = :

Can infect others

Parameters:

* 1;/(1) attack rate = probability that if susceptible i meets infected j, j infects i. Depends on the duration and distance of contact,
the barrier measures etc

e 11.: Recovery rate = probability of person i becoming removed in one time-step. Depends on the individual (age, health, etc)

» What is the probability of person i to be in state S,l or R attime t? P(z), Pi(r), PL(1)


https://www.overleaf.com/read/tfhcpbvhmcwq

DYNAMICAL MESSAGE PASSING (DMP)
» Given an initial conditions {Pg(()),PI’O(O),PIfé(O)}ﬁ.\;1 + parameters {//ti(t),/ll-j(t)}ﬁ.\;l

» Lokhov, Mézard, Ohta, LZ, PRE ‘14 & PRE ‘15 gave dynamical message passing

algorithm to give {Pg(t), PIi(t), P;e(t)}é\; that are (conjectured to be) asymptotically

exact on tree-like graphsas N — oo

No observations (test results + symptoms) included!!!


https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.012801
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.012811

MEAN-FIELD MESSAGE PASSING (SIMPLIFICATION & SMALL A LIMIT OF DMP)

» time evolution equations for Pi(1), P;(1), and Pj(7)

Parameters:
Pg(t +1) = Pg(t) 1 _ Z Pf(t)/lij(t) /ll](t) : Probability that if susceptible i meets infected j, j infects i:
P »depends on the individuals: barrier measures etc
. . . »depends on time: duration and distance of contact
Pi(t+ 1) = Pi(t) + u,Pi(t)
—_— e ;.: Recovery probability of person i:
Pli(t + 1) = PIi(t) + Pg(t) Z P{(t)/lij(t) — //tl-PIi(t) »depends on the individual (age, health, etc)
jeai(t)\ . 01(%): Sum over ALL the individuals i was in contact with at time t:

> Tracked with App

» Given an initial conditions {P(0), P;(0), P,(0)} + parameters map { Pi(1), Pj(1), Pi(1)}

' Include the observations (test results + symptoms)
L




FEED-BACK LOOP: USE TEST RESULTS

MF equations

i i i i i i » An infected person has been infectious for
{PS(O)’ P](O), PR(O)} {PS(t)’ PI(t)’ PR(t)} the time T P;(l") — lfort—r <t <t

Pi(t . T), Pi(t . T), Pi (t . T)} » A recovered person cannot change state:
S Il R

‘ Use Information to update probabilities at t-At Pp(t') = lfort’ > 1
> A susceptible individual has not yet been

(Pi(t — 7), Pi(t — 7), Pi(1 — 7)) el { P((1), P;(1), Pp(1)) infected:Pi(1) = lfort’ <1

MF equations Get better estimates of the

probabilities at time t

mmP Repeat the process at every time step = Final Inference



RESULTS



EXPERIMENTS ON CONTROL OF EPIDEMIC, TESTING HIGHEST-RISK NODES

seed=1 : number of infected

—— random

2500 - 'r' \ — contact tracing
. . ': ‘\ - mean field
Uncontrolled epidemic 5000 - i \\
Randomly test & isolate. \
\
Trace & test & isolate. 1500 -
MF-trace & test & isolate
1000 -
500 -
o -

0 100 200 300
t
Random geometric contact graph in 2D, scale 1.1, daily on average 7.4 contacts. Population size= 10000,
A=0.02, 141=0.03. Initially 20 infected + 10 time steps of uncontrolled evolution,
Tests: symptomatic = 507 of all infected, and 21 from ranking.



EXPERIMENTS ON CONTROL OF EPIDEMIC, TESTING HIGHEST-RISK NODES

1500 obs.
300000
Randomly test & isolate. m— CT
Trace & test & isolate. 250000 '::
MF-trace & test & isolate.
BP-trace & test & isolate. © 200000
a
=
« 150000
@
£
100000
MF & BP are scalable and Z
mitigate the epidemic more £ 0000
efficiently than classical tracing.
0
0 20 40 60 80
Days

Parameters: N=500 000 individuals, contact network is random geometric graph with 6 contacts a day. Epidemic spread from SIR model with A = 0.03, 1 = 0.02,

200 patients zero. Uncontrolled epidemic for first 10 days, then every day we test 307 infected 3 days after their infection, and 1500 tests according to the ranking given by
the risk estimation algorithm. Positive individuals are isolated.



ROBUSTNESS EVALUATIONS

» Epidemic spreading model and contact network more realistic and not matching
the prior. (OpenABM https://github.com/BDI-pathogens/OpenABM-Covid19 by Hinch et al.)

» Partial usage/adoption of the tracing application.

» False positive & negative tests.


https://github.com/BDI-pathogens/OpenABM-Covid19

Number of infected

EXPERIMENTS ON CONTROL OF EPIDEMIC: OPEN_ABM

625 obs. 1250 obs. 2500 obs. 5000 obs.
5 5 5
10° - ' > £ 10°
Q b Q
= = =
© © ©
3 = RG - - - 3.
10 —cT | 8 o o 10
s MF = = =
— = =
101 - - l - - - - - . - l - - - 101 - l -
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Days Days Days Days

Randomly test & isolate.
Trace & test & isolate.
MF-trace & test & isolate.
BP-trace & test & isolate.

Parameters: N=300 000 individuals, contact network and spread from OpenABM. 30 patients zero. Uncontrolled
epidemic for first 10 days, then every day we test 507 infected 5 days after their infection, and X tests according
to the ranking given by the risk estimation algorithm. Positive individuals are isolated.

» Key point: Even though the MF/BP inference procedures do not capture most of
the details and complexity of the Oxford OPEN_ABM model, they still work and
provide large improvement over competing current contact tracing methodes.



Number of infected

EXPERIMENTS ON CONTROL OF EPIDEMIC: PARTIAL ADOPTION OF TRACING APP

AF 0.9

=== random === MF
1.5%105{ = tracing s BP

AF 0.8

=== random === MF
1.5%105{ = tracing e BP

AF 0.7

=== random === MF
1.5%105{ = tracing s BP

AF 0.6

=== random === MF
1.5%105{ = tracing e BP

2x10°

2x10° 2x10° 2x10°3
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<
Number of infected

[

-
Number of infected

=

<
Number of infected

[
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0 50 100 0 50 100 0 50 100 0 50 100
Days Days Days Days

Randomly test & isolate.

Trace & test & isolate. Parameters: N=500 000 individuals, contact network and spread from OpenABM. 30 patients zero. Uncontrolled
MF-trace & test & isolate epidemic for first 10 days, then every day we test 507 infected 5 days after their infection, and 2500 tests according
BP-trace & test & isolate ' to the ranking given by the risk estimation algorithm. Positive individuals and their households are isolated.

» Point: For these parameters, the performance deteriorates at <70% adoption.



EXPERIMENTS ON CONTROL OF EPIDEMIC: FALSE TESTS

FNR 0.09 FNR 0.19 FNR 0.31
-8 105‘ RG — MF_ 8 105' v RG — MF“ 8 105 | == RG — MF > - 8 105-
o] s CT e BP o] s CT e BP O s CT e BP ' O
9 Q2 9 b ks
£ | £ £ 2 £
qc_) 103_ qc_) 103_ “5 103_ ‘5 103_
O O O 5,
0 0 0 0
- - - -
- - - -
e | 2 e e
101 L . . ~— - 101 L - . . - 101 - - - . 101 L . . - -
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Days Days Days Days

Randomly test & isolate.
Trace & test & isolate.
MF-trace & test & isolate.
BP-trace & test & isolate.

Parameters: N=500 000 individuals, contact network and spread from OpenABM. 50 patients zero. Uncontrolled
epidemic for first 10 days, then every day we test 507 infected 5 days after their infection, and 5000 tests according
to the ranking given by the risk estimation algorithm. Positive individuals and their households are isolated.

» Point: For these parameters, even 20% false negative tests are supported.



CONCLUSION.

» Probabilistic estimation of risks allows more efficient control of the epidemic.

ONGOING WORK:

» Embedding in other realistic agent-based simulators.

» Learn parameters of the algorithm from observed data (neural-enhanced
risk estimation).
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