
Active Matter

Drive at the microscopic level Strongly out of equilibrium Fundamentally new physics

Swimming bacteria

attractive interactions
[van der Linden, PRL 2019]

Bird Flocks
[COBBS Lab, Rome]

Crawling cells
[Poujade, PNAS 2007]

• Biological relevance

• Active Soft Materials

• Explore new dynamical phenomenology

• Build generic framework for Active Matter

A whole spectrum of questions ranging from applied maths to experimental physics
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• Cécile Cottin-Bizonne: Active matter in real life

• Clément Erignoux: Exact coarse-grained descriptions of (some) active systems

• Liesbeth Janssen: Glasses, from passive to active

• Yariv Kafri: Random inhomogeneous active systems

• Martin Evans: Exact results on active lattice gases

• Mike Cates: Time-reversal symmetry in active field theories

• Vincent Calvez: How applied maths meet spreading organisms
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First-order fluctuation-induced phase transition to collective motion

D. Martin, G. Spera, H. Chaté, C. Nardini, A. Solon, J. Tailleur, F. van Wijland

Laboratoire MSC
CNRS - Université Paris Diderot

Random Inhomogeneous Systems
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Collective motion

Birds Fish Sheep

Myxobacteria
[Peruani et al., PRL 2012]

Quincke rollers
[Bricard et al., Nature 2013]

Vibrated disks
[Deseigne et al., PRL 2010]

Minimal ingredients: Self-propulsion + Alignment



The Vicsek model [Vicsek et al. PRL 75, 1226 (1995)]

• N self-propelled particles in 2D continuous space

• Local alignment rule

with metric rules iV j iff |ri − rj | < r0
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Flocking transition

Inhomogeneous

Disordered Fluctuating
flocking state

noise or density

• Non-equilibrium transition to long-range order in d = 2 [Toner-Tu, PRL (1995)]

• First-order transition [Grégoire, Chaté, PRL (2004)] (after a long debate)
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The two scenarios for the transition to collective motion

1st order transition

• Metric Vicsek model

analytical (MF) & numerical results

• Active Ising Model

numerical results

Continuous transition

• “Topological” Vicsek model

Voronoi neighbours

k-nearest neighbours

numerical & analytical (MF) results

• Some metric model

Scaling limits

• Active Ising Model

mean-field computations

1 Characterize the “1st-order transition”

2 Discuss the underlying mechanism

3 Show/argue that “1st-order scenario” is generic
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Active Ising model [Solon, Tailleur, PRL 2013]

1 2 3 4 5 . . . L

v v

Biased hoppingSpin-flip

i

W−
iW+

i

• Density ρi = n+
i + n−i Magnetisation mi = n+

i − n
−
i

• Local alignment W±i = exp(±βmi
ρi

)

Fully connected Ising models on each site

• Self-propulsion Hoping along êx biased by the spins

(Symmetric diffusion along d− 1 other directions)
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Phase diagram in 2d (ρ, T ≡ β−1)

m

Quench ordered •
Quench disordered •
Closed Box •
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1st take-home Message

• Flocking transition Liquid-gas transition in canonical ensemble

• Symmetry of the liquid phase ρc =∞

T

ρ0

G L+G L

Tc, ρc
Equilibirum
Liquid-gas

Tc, ρc =∞

Active

Liquid-gas
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Can we understand (analytically) the nature of the transition ?



Phenomenological hydrodynamic description in 1d

• Density ρi =
∑
i(n

+
i + n−i ) and magnetisation mi =

∑
i(n

+
i − n

−
i )

• Mean-field approximation 〈f(ρi,mi)〉 ' f(〈ρi〉, 〈mi〉) + gradient expansion

ρ̇(x, t) =

D∂xxρ− v∂xm

ṁ(x, t) =

D∂xxm− v∂xρ+2ρ sinh(β
m

ρ
)− 2m cosh(β

m

ρ
)

• Random hopping Diffusion

• Self-propulsion advective terms •

• Alignment Mean-field theory with local intensive magnetisation m̂(x) =
m(x)
ρ(x)
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The transition as β is varied
• Expansion for small m

ρ
with α ≡ 1− β and Γ ≡ 2β(1−β/3)

ρ2

ρ̇(x, t) = D∆ρ− v∂xm

ṁ(x, t) = D∆m− v∂xρ− αm− Γm3 α

0

Hom. dis.Hom. ord.

• α > 0 Homogeneous disordered system (ρ(x) = ρ0,m(x) = 0) linearly stable

• α < 0 Homogeneous ordered solution ρ(x) = ρ0, m(x) =
√
α/Γ(ρ0) linearly stable

• Mean-field treatment predicts a continuous transition /
• Bands solution do not exist [Caussin et al.PRL 2014]

• What is missing? Density-dependency of α(ρ) [Gregoire et al., J. Phys. A 2009]

• α′(ρ0) 6= 0 homogeneous ordered solution linearly unstable at α = 0− Bands

α

0

Hom. dis.Hom. ord. Bands

• The dependence of the ‘critical temperature’ α with ρ0 leads to a liquid-gas scenario
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ṁ(x, t) = D∆m− v∂xρ− αm− Γm3 α

0

Hom. dis.Hom. ord.

• α > 0 Homogeneous disordered system (ρ(x) = ρ0,m(x) = 0) linearly stable

• α < 0 Homogeneous ordered solution ρ(x) = ρ0, m(x) =
√
α/Γ(ρ0) linearly stable

• Mean-field treatment predicts a continuous transition /
• Bands solution do not exist [Caussin et al.PRL 2014]

• What is missing? Density-dependency of α(ρ) [Gregoire et al., J. Phys. A 2009]

• α′(ρ0) 6= 0 homogeneous ordered solution linearly unstable at α = 0− Bands

α

0

Hom. dis.

Hom. ord. Bands

• The dependence of the ‘critical temperature’ α with ρ0 leads to a liquid-gas scenario



The transition as β is varied
• Expansion for small m

ρ
with α ≡ 1− β and Γ ≡ 2β(1−β/3)

ρ2

ρ̇(x, t) = D∆ρ− v∂xm
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Refined Mean-Field Model (RMFM)
• AIM: MF is WRONG (phase diagram, order of transition, no inhomogeneous profile)

ρ̇ = D∆ρ−v∂xm

ṁ = D∆m−v∂xρ+2m(β − 1)− α
m3

ρ2

• Finite density fluctuations βc = 1 + r/ρ

• Numerical simulations

Spinodals

Coexistence

G

L+G

L

m(x)
ρ(x)

• Same phenomenology as microscopic model

• Q1: Can we indeed show that fluctuations make α(ρ)

• Q2: How generic is this?
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Quasi-linear renormalization

• We add noise on the mean-field hydrodynamics of AIM

∂tρ = D∂xxρ− v∂xm (1)

∂tm = D∂xxm− v∂xρ−F(ρ,m) +
√

2σρ η (2)

• Landau term F(ρ,m) = αm+ γm
3

ρ2

• ρ0(x, t) ≡ 〈ρ(x, t)〉 and m0(x, t) ≡ 〈m(x, t)〉

• Small σ limit, small perturbations δρ ≡ ρ− ρ0 and δm ≡ m−m0 s.t. 〈δρ〉 = 〈δm〉 = 0

• To first order beyond mean-field, 〈Eqs. (1− 2)〉 yield :

∂tρ0 = D∂xxρ0 − v∂xm0

∂tm0 = D∂xxm0 − v∂xρ0−F(ρ0,m0)−
∂2F
∂m2

〈δm2〉
2
−
∂2F
∂ρ2

〈δρ2〉
2
−

∂2F
∂m∂ρ

〈δmδρ〉

• Need to compute 〈δρ2〉, 〈δm2〉, 〈δρδm〉 as functions of ρ0 and m0, to leading order in σ.
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• Using a Gaussian approximation on the dynamics of δρ and δm:

∂tδρ = D∂2
xδρ− v∂xδm (3)

∂tδm = D∂2
xδm−v∂xδρ−

∂F
∂ρ

(ρ0,m0)δρ−
∂F
∂m

(ρ0,m0)δm+
√

2σρ0η (4)

• This is a linear system for δρ, δm which can be solved in Fourier space. Then

〈δm2〉 =

∫
dq

2π
〈δmqδm−q〉

〈δρ2〉 =

∫
dq

2π
〈δρqδρ−q〉

〈δρδm〉 =

∫
dq

2π
〈δρqδm−q〉

• Renormalized Landau term:

F̃(ρ0,m0) = F(ρ0,m0) +
∂2F
∂m2

〈δm2〉
2

+
∂2F
∂ρ2

〈δρ2〉
2

+
∂2F
∂m∂ρ

〈δmδρ〉 ' α̃m0 + γ̃m3
0/ρ

2
0

• Horrible expressions, but, in the disordered phase

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
. (5)

• Fluctuations make α̃ depend on density !



• Using a Gaussian approximation on the dynamics of δρ and δm:

∂tδρ = D∂2
xδρ− v∂xδm (3)

∂tδm = D∂2
xδm−v∂xδρ−

∂F
∂ρ

(ρ0,m0)δρ−
∂F
∂m

(ρ0,m0)δm+
√

2σρ0η (4)

• This is a linear system for δρ, δm which can be solved in Fourier space. Then

〈δm2〉 =

∫
dq

2π
〈δmqδm−q〉

〈δρ2〉 =

∫
dq

2π
〈δρqδρ−q〉

〈δρδm〉 =

∫
dq

2π
〈δρqδm−q〉

• Renormalized Landau term:

F̃(ρ0,m0) = F(ρ0,m0) +
∂2F
∂m2

〈δm2〉
2

+
∂2F
∂ρ2

〈δρ2〉
2

+
∂2F
∂m∂ρ

〈δmδρ〉 ' α̃m0 + γ̃m3
0/ρ

2
0

• Horrible expressions, but, in the disordered phase

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
. (5)

• Fluctuations make α̃ depend on density !



• Using a Gaussian approximation on the dynamics of δρ and δm:

∂tδρ = D∂2
xδρ− v∂xδm (3)

∂tδm = D∂2
xδm−v∂xδρ−

∂F
∂ρ

(ρ0,m0)δρ−
∂F
∂m

(ρ0,m0)δm+
√

2σρ0η (4)

• This is a linear system for δρ, δm which can be solved in Fourier space. Then

〈δm2〉 =

∫
dq

2π
〈δmqδm−q〉

〈δρ2〉 =

∫
dq

2π
〈δρqδρ−q〉

〈δρδm〉 =

∫
dq

2π
〈δρqδm−q〉

• Renormalized Landau term:

F̃(ρ0,m0) = F(ρ0,m0) +
∂2F
∂m2

〈δm2〉
2

+
∂2F
∂ρ2

〈δρ2〉
2

+
∂2F
∂m∂ρ

〈δmδρ〉 ' α̃m0 + γ̃m3
0/ρ

2
0

• Horrible expressions, but, in the disordered phase

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
. (5)

• Fluctuations make α̃ depend on density !



• Using a Gaussian approximation on the dynamics of δρ and δm:

∂tδρ = D∂2
xδρ− v∂xδm (3)

∂tδm = D∂2
xδm−v∂xδρ−

∂F
∂ρ

(ρ0,m0)δρ−
∂F
∂m

(ρ0,m0)δm+
√

2σρ0η (4)

• This is a linear system for δρ, δm which can be solved in Fourier space. Then

〈δm2〉 =

∫
dq

2π
〈δmqδm−q〉

〈δρ2〉 =

∫
dq

2π
〈δρqδρ−q〉

〈δρδm〉 =

∫
dq

2π
〈δρqδm−q〉

• Renormalized Landau term:

F̃(ρ0,m0) = F(ρ0,m0) +
∂2F
∂m2

〈δm2〉
2

+
∂2F
∂ρ2

〈δρ2〉
2

+
∂2F
∂m∂ρ

〈δmδρ〉 ' α̃m0 + γ̃m3
0/ρ

2
0

• Horrible expressions, but, in the disordered phase

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
. (5)

• Fluctuations make α̃ depend on density !



• Using a Gaussian approximation on the dynamics of δρ and δm:

∂tδρ = D∂2
xδρ− v∂xδm (3)

∂tδm = D∂2
xδm−v∂xδρ−

∂F
∂ρ

(ρ0,m0)δρ−
∂F
∂m

(ρ0,m0)δm+
√

2σρ0η (4)

• This is a linear system for δρ, δm which can be solved in Fourier space. Then

〈δm2〉 =

∫
dq

2π
〈δmqδm−q〉

〈δρ2〉 =

∫
dq

2π
〈δρqδρ−q〉

〈δρδm〉 =

∫
dq

2π
〈δρqδm−q〉

• Renormalized Landau term:

F̃(ρ0,m0) = F(ρ0,m0) +
∂2F
∂m2

〈δm2〉
2

+
∂2F
∂ρ2

〈δρ2〉
2

+
∂2F
∂m∂ρ

〈δmδρ〉 ' α̃m0 + γ̃m3
0/ρ

2
0

• Horrible expressions, but, in the disordered phase

α̃ = α+
3σγ

4ρ0v
f
(αD
v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
. (5)

• Fluctuations make α̃ depend on density !



Is this really true?
• 1d computations, Gaussian level lots of approximations

• Direct simulations of our stochastic PDEs in 2d.

−4 −2 0
α

0

1

2

〈|
1

L
x
L
y

∫
m

(r
)d

r|〉 Mean-field

Stochastic PDE

Bands

• Shift of the onset of order (α̃ > α)

• Emergence of bands

• Fluctuation-induced phase-separation scenario is generic in metric models

• Scaling limits in which α ∈ R are singular limits
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‘Topological’ models

• Physical forces have finite ranges iV j iff |ri − rj | < r0 is a natural choice

• Other systems may lead to different choices

k nearest neighbours

Voronoi neigbours

• These systems are much less sensitive to density fluctuations
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Back to topological models
• Pretty hard to construct a toplogical field theory

• Idea: particles at r align with a field m̄(r) resulting from topological construction

• Different from coarse-grained field m(r)

• E.g: k nearest neighbours.

• Position-dependent interaction range y(x) such that∫ x+y(x)

x−y(x)
dzρ(z) = k

• m̄(x) is averaged over [x− y(x), x+ y(x)]:

m̄(x) =
1

k

∫ x+y(x)

x−y(x)
dzm(z)

• Landau term: F = 2m cosh(βm̄)− 2ρ sinh(βm̄)' 2m− 2ρβm̄− ρβ3

3
m̄3 + β2mm̄2

• Mean-field hydrodynamics

∂tρ = D∂xxρ− v∂xm
∂tm = D∂xxm− v∂xρ−F(ρ,m, m̄)

• Predicts a continuous transition, in agreement with the literature
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Stability against fluctuations?

• Again complement with noise: ∂tm = [...] +
√

2ρση

• Pain & suffering Renormalized α̃(ρ) Fluctuation-induced 1st-order transition

• Test in microscopic model: topological Active Ising model

ṙi = si v0 ux +
√

2Dηi (6)

• Spins flip from si to −si at rate W (si) given by

W (si) = Γe−βsim̄i , where m̄i =
1

k

∑
j∈Ni

sj (7)

• Ni is the set of the k-nearest neighbours of particle i

• In huge enough systems 1st-order transition & bands
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Summary

• Fluctuations generically make “critical temperature” depend on density

• A density-dependent critical temperature leads to phase-separation scenario

• Holds for metric as well as topological models

• Articles on the Active Ising model & the transition:
[Solon, Tailleur, PRL 2013; PRE 2015; Solon, Tailleur, Chaté, PRL 2015]

• Fluctuation-induced 1st-order scenario:
[D. Martin et al. arXiv:2008.01397]

THANK YOU!
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Active terms

ρ̇(x, t) = Dr∂xxρ

−vm∂xm

ṁ(x, t) = Dm∂xxm−αm− Γm3

−vρ∂xρ

• Self-propulsion does not alter uniform system active terms ∝ ∂xρ, ∂xm

i

m = m0, ∂xρ > 0

hops

ṁi < 0

ρ̇i = 0

i i

ρ = ρ0, ∂xm > 0

hops

ρ̇i < 0

ṁi = 0

i

• Jump Back
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ṁi = 0

i

• Jump Back

J. Tailleur (CNRS-Univ Paris Diderot) 22 / 21


	Collective Motion
	AIM
	Appendix

