Active Matter

Drive at the microscopic level ===y Strongly out of equilibrium ===y Fundamentally new physics

Swimming bacteria Bird Flocks Crawling cells
[COBBS Lab, Rome] [Poujade, PNAS 2007]
e Biological relevance e Explore new dynamical phenomenology
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Active Matter

Drive at the microscopic level ===y Strongly out of equilibrium ===y Fundamentally new physics

Clusters without Solitonic waves Filaments

attractive interactions [Bricard , Nature 2013] [Thutupalli, PNAS 2018]

[van der Linden, PRL 2019]

e Biological relevance e Explore new dynamical phenomenology

e Active Soft Materials e Build generic framework for Active Matter

=3 A whole spectrum of questions ranging from applied maths to experimental physics
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e Cecile Cottin-Bizonne: Active matter in real life

e Clément Erignoux: Exact coarse-grained descriptions of (some) active systems
e Liesbeth Janssen: Glasses, from passive to active

e Yariv Kafri: Random inhomogeneous active systems

e Martin Evans: Exact results on active lattice gases

e Mike Cates: Time-reversal symmetry in active field theories

e Vincent Calvez: How applied maths meet spreading organisms
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Collective motion
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Myxobacteria Quincke rollers Vibrated disks
[Peruani et al., PRL 2012] [Bricard et al., Nature 2013] [Deseigne et al., PRL 2010]

Minimal ingredients: Self-propulsion + Alignment



The Vicsek model vicsek et al. pRL 75, 1226 (1995)]
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The Vicsek model [Vicsek et al. PRL 75, 1226 (1995)]

e N self-propelled particles in 2D continuous space

e Local alignment rule
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The Vicsek model [Vicsek et al. PRL 75, 1226 (1995)]
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Flocking transition

Fluctuating
flocking state

Disordered

noise\ or density /’

e Non-equilibrium transition to long-range order in d = 2 [Toner-Tu, PRL (1995)]
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e Non-equilibrium transition to long-range order in d = 2 [Toner-Tu, PRL (1995)]

e First-order transition [Gregoire, Chaté, PRL (2004)] (after a long debate)

J. Tailleur (CNRS-Univ Paris Diderot) 6/21



The two scenarios for the transition to collective motion

1st order transition

e Metric Vicsek model

Ve NS <
(\I\._) /l

\f S ~
Ve

= analytical (MF) & numerical results



The two scenarios for the transition to collective motion

1st order transition Continuous transition
e Metric Vicsek model e “Topological” Vicsek model
S L —3 Voronoi neighbours
. T._) J
VRSN N ~
N K
Ve s 1 -
= analytical (MF) & numerical results N 7

Ve




The two scenarios for the transition to collective motion

1st order transition Continuous transition
e Metric Vicsek model e “Topological” Vicsek model
S L —3 Voronoi neighbours
. T._) J
VRSN SRR ~
N )
Ve YRS -
= analytical (MF) & numerical results N 7

Ve




The two scenarios for the transition to collective motion

1st order transition Continuous transition
e Metric Vicsek model e “Topological” Vicsek model
e NS ~ —3 Voronoi neighbours
LA
\
2N
S e

z

= analytical (MF) & numerical results




The two scenarios for the transition to collective motion

1st order transition Continuous transition
e Metric Vicsek model e “Topological” Vicsek model
S r L —3 Voronoi neighbours
LA
\
2N
S e

Vs
= analytical (MF) & numerical results

—> k-nearest neighbours
—> numerical & analytical (MF) results

e Some metric model
=—> Scaling limits




The two scenarios for the transition to collective motion

1st order transition Continuous transition
e Metric Vicsek model e “Topological” Vicsek model
S r L —3 Voronoi neighbours
LA
\
2N
S e

vz
= analytical (MF) & numerical results

—> k-nearest neighbours
—> numerical & analytical (MF) results

e Some metric model
=—> Scaling limits

1 Characterize the “1st-order transition”
2 Discuss the underlying mechanism

3 Show/argue that “1st-order scenario” is generic



The two scenarios for the transition to collective motion

1st order transition

e Metric Vicsek model

VAR ~
’x -—>Tl
NS ~
\ \_’/z\
Ve

= analytical (MF) & numerical results

e Active Ising Model
=3 numerical results

1 Characterize the “1st-order transition”

2 Discuss the underlying mechanism

3 Show/argue that “1st-order scenario” is generic

Continuous transition
e “Topological” Vicsek model

=3 Voronoi neighbours

—> k-nearest neighbours

—> numerical & analytical (MF) results
e Some metric model

=—> Scaling limits
e Active Ising Model

=3 mean-field computations



Active Ising model [Solon, Tailleur, PRL 2013]
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e Density p; =nj +n;  Magnetisation m; = n;
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Active Ising model [Solon, Tailleur, PRL 2013]
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e Density p; =n +n;  Magnetisation m; = n} —n;

e Local alignment =) Wf = exp(:ﬁ:ﬁ%)

—> Fully connected Ising models on each site
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Active Ising model (soion, Tailleur, PRL 2013]

Spin-flip Biased hopping
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e Density p; =n +n;  Magnetisation m; = n} —n;

e Local alignment =) Wf = exp(£f ’[’%)
—> Fully connected Ising models on each site

e Self-propulsion == Hoping along é,. biased by the spins
(Symmetric diffusion along d — 1 other directions)
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Phase diagramin 2d (p, 7 = 57 1)
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A liquid-gas phase transition: nucleation, hysteresis, lever rule, finite-size scaling
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1st take-home Message

e Flocking transition ==) Liquid-gas transition in canonical ensemble
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1st take-home Message

e Flocking transition ==) Liquid-gas transition in canonical ensemble

e Symmetry of the liquid phase == p. = c©

T Te, Pc Te, pPec = 00
Equilibirum "™~ ==
Liquid-gas

Active

Liquid-gas

0
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Can we understand (analytically) the nature of the transition ?



Phenomenological hydrodynamic description in 1d

e Density p; = 3, (n] + n;") and magnetisation m; = 3, (nj — n})

(3

o Mean-field approximation (f(pi, ms)) =~ f({ps), (m;)) + gradient expansion
pla,t) =
m(z,t) =
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(3

o Mean-field approximation (f(pi, ms)) =~ f({ps), (m;)) + gradient expansion
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e Random hopping ==y Diffusion
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Phenomenological hydrodynamic description in 1d

Density p; = 3°,(n]” +n;) and magnetisation m; = 3, (n} —n;")

K3

Mean-field approximation (f(ps:, mi)) ~ f({pi), (m;)) + gradient expansion
p(x,t) = DOyap — v

m(z,t) = DOgam — 00.p

e Random hopping ==y Diffusion

Self-propulsion == advective terms e
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Phenomenological hydrodynamic description in 1d

+

i

Density p; = 3, (n;” +n;) and magnetisation m; = 3, (n

_nz_)

Mean-field approximation (f(ps:, mi)) ~ f({pi), (m;)) + gradient expansion
p(x,t) = DOyap — v

m(z,t) = DOzam — L'E'),,,/)+2psinh(ﬁ%) —2m cosh(/ﬁ%)

e Random hopping ==y Diffusion

Self-propulsion == advective terms e

Alignment =) Mean-field theory with local intensive magnetisation m(x) =
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The dependence of the ‘critical temperature’ o with pg leads to a liquid-gas scenario
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Refined Mean-Field Model (RMFM)
e AIM: MF is WRONG (phase diagram, order of transition, no inhomogeneous profile)
p=DAp—vd,m

m = DAm—v0,p+2m(—1 — i) —a—
o

o Finite density fluctuations = 8. =1+ 1r/p

e Numerical simulations

G
p Spinodals
2
— m(x
: e\ p<(x>)
’ ‘ Coexistence
1)
L

e Same phenomenology as microscopic model
e Q1: Can we indeed show that fluctuations make «(p)

e Q2: How generic is this?



Quasi-linear renormalization

e We add noise on the mean-field hydrodynamics of AIM

8tp = Daa:xp —v0zm
Om =  DOggm — v0gpp—F(p,m) + /20pn

e Landau term F(p,m) = am + v2 ,)z
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Quasi-linear renormalization

e We add noise on the mean-field hydrodynamics of AIM

8tp = Daa:xp —v0zm
Om =  DOggm — v0gpp—F(p,m) + /20pn

Landau term F(p, m) = am + v 2% ,)2

e po(z,t) = (p(z,t)) and mo(z,t) = (m(z,t))
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Quasi-linear renormalization

e We add noise on the mean-field hydrodynamics of AIM

Otp = DOzap —v0xm M
Om =  DOggm — v0gpp—F(p,m) + /20pn 2

Landau term F(p, m) = am + v 2% ,)2

e po(z,t) = (p(z,t)) and mo(z,t) = (m(z,t))

Small o limit, small perturbations p = p — po and dm = m — mg s.t. (§p) = (dm) =0

To first order beyond mean-field, (Egs. (1 — 2)) yield :

(9tp0 = Dazpo - Uazmo

O2F (5m2)  92F (5p2)  O°F
P = Dy Oupo—F(po,mo) = 50—~ oy
0 mo — vz po—F(po, Mo) om2 2 0p% 2 omop

(6mdp)

Need to compute (5p?), (§m?), (§pdm) as functions of pg and my, to leading order in o.
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e Using a Gaussian approximation on the dynamics of §p and §m:

0tdp

D&%6p — vd6m

8dm = DO 6m—vdy6p— 6—]:(/)0, mo)op— 8—}—(p0, mo)dm—+
dp om

20pon



e Using a Gaussian approximation on the dynamics of §p and §m:
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e Using a Gaussian approximation on the dynamics of §p and ém:

0tdp

D825p — vdzom (3)
19) OF

Otdm = D(?g&mfvaz&pfa%}—(po,mo)épfa—(po,mo)6m+ 20 pon (4)

o m

e This is a linear system for 6p, 5m which can be solved in Fourier space. Then

(om?) = /;Lfrwmqam,q)
6t = [ Shomso-d)
woom) = [ $2t6pu0my)

e Renormalized Landau term:

- O%2F (6m2)  9%*F (6p%)  O°F
F(po,mo) = Flpo,mo) + o5 — 7 2 amop

(9mdp) ~ amo + ymy /g

e Horrible expressions, but, in the disordered phase

_—_— 30y ,raD . _V2/u+ V14w
R T (72) with f(u) = Y (5)

e Fluctuations make & depend on density !
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Is this really true?
e 1d computations, Gaussian level = lots of approximations

e Direct simulations of our stochastic PDEs in 2d.

) 2 2

el Mean-field

E 1 1

=1 Stochastic PDE 0

_|< | Bands =

S -1 —1
100 200 300 -10[7')

o NN W

e Shift of the onset of order (& > «)

Emergence of bands

Fluctuation-induced phase-separation scenario is generic in metric models

Scaling limits in which o € R are singular limits
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‘“Topological’ models

e Other systems may lead to different choices

k nearest neighbours
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e Physical forces have finite ranges = iV iff |r; —

‘“Topological’ models

3| < ro is a natural choice

e Other systems may lead to different choices

k nearest neighbours

Voronoi neigbours

J. Tailleur (CNRS-Univ Paris Diderot)
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‘“Topological’ models

o Physical forces have finite ranges = iVj iff |r; — r;| < o is a natural choice

e Other systems may lead to different choices

k nearest neighbours

Voronoi neigbours

Interaction ruling animal collective behavior depends
on topological rather than metric distance: Evidence
from a field study
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e These systems are much less sensitive to density fluctuations
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Back to topological models

e Pretty hard to construct a toplogical field theory
e |dea: particles at r align with a field /m.(r) resulting from topological construction
o Different from coarse-grained field m(r)

e E.g: k nearest neighbours.
e Position-dependent interaction range y(x) such that
zty(x)
/ dzp(z) = k
xz—y(x)

e m(z) is averaged over [z — y(z),z + y(z)]:

1 [rrty(=)
m(z) = — dzm(z)
kJo—y(a)
e Landau term: 7 = 2m cosh(Bm) 3+ B2mm?
e Mean-field hydrodynamics
Otp = DOgzp—vizm
Om =  DOzzm — v0gp — F(p, m,m)

Predicts a continuous transition, in agreement with the literature



Stability against fluctuations?

e Again complement with noise: 8;m = [...] + v/2pon

e Pain & suffering ==y Renormalized a(p) ==y Fluctuation-induced 1°*-order transition
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Stability against fluctuations?

Again complement with noise: 9;m = [...] + /2pon
e Pain & suffering ==y Renormalized a(p) ==y Fluctuation-induced 1°*-order transition

e Test in microscopic model: topological Active Ising model

I; =s; vo Uz + V2Dn,

Spins flip from s; to —s; at rate W (s;) given by

1
W(s;) =Te P%"i  where m; = E > s
JEN;

e N is the set of the k-nearest neighbours of particle i
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Stability against fluctuations?

Again complement with noise: 9;m = [...] + /2pon

Pain & suffering ==y Renormalized a(p) ==y Fluctuation-induced 15*-order transition

e Test in microscopic model: topological Active Ising model

£ = s, vo uz + V2Dn, ®)
e Spins flip from s; to —s; at rate W (s;) given by
1
W(Sl) = Fe_Bsi nu, where m; = g Z sj (7)
JEN;

e N is the set of the k-nearest neighbours of particle i

UH ordered
« bands
0.1 disordered H

0 ) N 1 o 2000

02 03 04 05
p=N/L.L,

e In huge enough systems =% 1st-order transition & bands
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Summary

e Fluctuations generically make “critical temperature” depend on density
e A density-dependent critical temperature leads to phase-separation scenario

e Holds for metric as well as topological models
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Summary

e Fluctuations generically make “critical temperature” depend on density
e A density-dependent critical temperature leads to phase-separation scenario

e Holds for metric as well as topological models

e Articles on the Active Ising model & the transition:
[Solon, Tailleur, PRL 2013; PRE 2015; Solon, Tailleur, Chaté, PRL 2015]

e Fluctuation-induced 1st-order scenario:
[D. Martin et al. arXiv:2008.01397]

THANK YOU!
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Active terms

p(x,t) = DrOzap

m(z,t) = DmOgam—am — 'm?

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm
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Active terms

p(ﬂ% t) = DyOzazp

m(z,t) = DmOgam—am — 'm?

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm

= mg, 0, p>0
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Active terms

p(x, t) = DyOzazp

m(z,t) = DmOgam—am — 'm?

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm

= mg, 0, p>0

hops

[GIGECCIN

I®
- 0®®

- O0®
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Active terms

p(x,t) = DrOzap

m(x,t) = DimOzzm—am — T'm®—v,0.p

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm

m = mo,i),/) >0
pi=0
m; <0

hops

(0l0CO0)

I®
- 0®®

- O0®
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Active terms

p(z,t) = DrOzap

m(x,t) = DimOzzm—am — T'm®—v,0.p

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm

m = mg,dpp > 0 p=po,dem >0
@ 5=
@ /;i)z'/(l))
®® o @ ®PO®
®6 hops ) SISIO) hops
CISIS) e CISIC)

- |®

J. Tailleur (CNRS-Univ Paris Diderot) 22/21



Active terms

(2, 8) = Dyap—vmdm

m(x,t) = DimOzzm—am — T'm®—v,0.p

e Self-propulsion does not alter uniform system == active terms oc 9z p, dzm

m = mg,drp > 0 p = po,dem >0
% pi =0 i =0
%8 /i;];/\l) 8 8%% /)r,](()
ops ops
@00 > @ ee® ®
e Jump Back
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