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Structure and function of complex networks: epidemics and optimization
Moderator: Remco van der Hofstad (Eindhoven)

9h00 — 9h10: Opening

9h10 - 10h00: Remco van der Hofstad (Eindhoven): Critical percolation on scale-free
random graphs

10h00 — 10h45: Jean-Stéphane Dhersin (Paris): Spatial evolution of an epidemic and
“social" networks

10h45 — 10h55: “Coffee" Break

10h55 — 11h40: Christina Goldschmidt (Oxford): The scaling limit of a critical random
directed graph
11h40 — 12h25: Nicolas Broutin (Paris): The Brownian parabolic tree

12h25 — 13h30: “Lunch" Break

13h30 — 14h15: Lenka Zdeborova (Lausanne): Epidemic mitigation by statistical inference
from contact tracing data

14h15 - 15h00: Amin Coja-Oghlan (Frankfurt): Group testing

15h00 — 15h10: “Coffee" Break

15h10 — 15h55: Laurent Massoulié (Paris): Partial alignment of sparse random graphs

15h55 — 16h40: Pieter Trapman (Stockholm): Herd immunity, population structure and the
second wave of an epidemic
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Part 1. Complex networks and

percolation on them



Complex networks

Yeast protein interaction network? Internet 2010°

Attention focussing on unexpected commonality.

4Barabasi & Oltvai 2004
bOpte project http://www.opte.org/the-internet



Scale-free paradigm
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Loglog plot degree sequences WWW in-degree and Internet

> Straight line: proportion p, of vertices of degree k satisfies p, = ck ™.

> Empirical evidence: Often 7 € (2, 3) reported.



Percolation

> Percolation: edges are retained independently with fixed proba-
bility p € [0, 1].

> Infinite graphs: Phase transition at some p € [0, 1] :
* p < p. : No infinite connected component;
* p > p. - Infinite connected component(s) exist.

> Most infinite graphs have p. € (0, 1):
Non-trivial phase transition.

Most interesting behavior occurs when p is close to p. :

Self-similar fractal critical (finite?) components.




Percolation finite graphs

> We will be mainly interested in
percolation on finite graphs,
where even definition critical value is non-trivial and not unique.

[Borgs-Chayes-vdH-Slade-Spencer 05-06, Nachmias-Peres07, Janson-Warnke17]

> Often, exists (increasing) one-parameter family of critical values
A= pe(n; A) s.d.

* A, — —oco : All components are dust;

* A, — oo : Unique largest component of almost deterministic size.

A — pe(n; ) is critical window.

Most interesting behavior occurs for p in critical window:

Fractal random components of mesocopic size.

Here, study percolation on random graphs.



Part 2: Network models

and their giants



Configuration model

> n number of vertices;
>d = (dy,ds, . ..,d,) sequence of degrees.

[Bender-Canfield (78), Bollobas (80), Molloy-Reed (95), Newman-Strogatz-Watts (01)]

> Assign d; half-edges to vertex j. Assume total degree even, i.e.,

(0, = Z d;  even.
i€[n]

> Pair half-edges to create edges as follows:
Number half-edges from 1 to 7, in any order.
First pair first half-edge at random to one of other /,, — 1 half-edges.

> Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.



Choice degrees

> Aim: Proportion of vertices i with d, = k is close to
F(k) = F(k—1) =pr =P(D = k),

where D has distribution function F.
*= Power law degrees: precise structure of large degrees crucial.

* Take d = (dy, ..., d,) as i.i.d. rvs with distribution function F.

x Take d; = [1 — F]~'(i/n), with F" distribution function on N.

Power-law degrees:
[1— F|(k)~ck~""Y  sothat d;=~ (en/j)"Y.




Phase transition

Let D ~ Fand v =E[D(D — 1)|/E[D] > 1. Then

[Cohen et al. (00, 02), Callaway et al. (00), Newman et al. (01), Dorogovtsev-Goltsev-Mendes (07)]

[Molloy-Reed (95), Janson-Luczak (09), Bollob$-Riordan (09), Fountoulakis (07), Janson (09)]

> largest component ~ pn with p € (0,1) for p > 1/v;
> largest component o(n) for p < 1/v.

|dentifies percolation critical value CM as
pe=1/v, where v =E[D(D —1)]/E[D] > 1,

v is expected number forward neighbors of vertex in uniform edge.

> When E[D(D — 1)] = oo, graph always supercritical p. = 0 :
Robustness of the giant.



Poissonian RGs

Vertex i € [n| has vertex weight w; > 0, make edge between ver-
tices ¢, 7 independently occupied with probability

pij=1—c "/ where  £,=) w is total weight.
i€[n]

Motivation is that w; is close to expected degree vertex i

> Percolation can be thought of as replacing w; by pw;.

* CM and PRG both “uncorrelated networks”, strongly related by

conditioning on simplicity and degrees.

* Again take w; = [ — F]71(j/n) with [I — F](k) ~ ¢k~ so that

wy & (en /)M,



Phase transition

Let W ~ F and v = E[W?|/E[W] > 1. Then

[Bollobas-Janson-Riordan (07), Chung-Lu (02), Soderberg (02)]

> largest component ~ pn with p € (0,1) forp > 1/v;
> largest component o(n) for p < 1/v.

|dentifies percolation critical value GRG as
pe=1/v, with v = E[W?]/E[W].

v is expected number forward neighbors of vertex in uniform edge.

> When E[IV?] = oo, graph always supercritical:

Robustness of the giant.



Part 3: Critical percolation on

Poisson random graphs



Finite third moments

Let 1 = E[IV], 0* = E[W?]/E[IV]. Let B be standard Brownian mo-
tion, and

B} = 0B, + s\ — 507/ (2u), R} = B} — min B

0<u<s

Aldous (97): Can order excursions of R* as v;(A\) > 1a(\) > ...

Let |Cy(A)| > [Co)(A)] > |Cisy(N)] - .. be ordered cluster sizes of per-
colated Poisson random graph with p = p,(\) = (1 + An~/3) /v.

Theorem 1. (Aldous 97, BvdHvL10, Turova 13) Assume that
E[1W?] < co. Then, for every \ € R,

_ d
(n 2/3’C(i)()‘)|>¢21 — (7@'()‘»2‘21'

* Homogeneous case w; = 1 of Erd6s-Rényi RG has long history:
[Erdés-Rényi (60), Bollobas (84), tuczak (90), Janson et al. (93), Aldous (97),...]



Infinite third moments

Let |Cy(A)| > [Co)(A)] > |Czy(N)| - .. denote ordered cluster sizes of
percolated Poisson random graph with

p=pu(A) = (14 An~ 3Dy,

Theorem 2. (BvdHvL12) In power-law case with 7 € (3, 4), for every
AER,
—(7— T— d

1>1
Moreover, for every pair of hubs 7, j fixed,
P(i «— j) = q;;(A) € (0,1).
> Limits H;(\) correspond to ordered hitting times of 0 of certain

fascinating ‘thinned’ Lévy process.

*x Powers of n predicted in physics community

[Kalisky-Cohen (06), Dorogovtsev, Goltsev, Mendes (07),...]



Configuration model

Theorem 3. (SB-SD-vdH-vL, Riordan 10) Theorems 1-2 hold for
critical configuration model with deterministic degrees, under suit-
able conditions on degrees very alike those on weights in Theo-
rems 1-2.

Theorem 4. (Adrien Joseph 11) Theorems 1-2 hold for critical con-
figuration model with i.i.d. degrees, under suitable conditions.

* Remarkably, scaling limit is notably different for i.i.d. degrees by

extreme value statistics degrees.

> Extensive follow-up work for metric structure

[Broutin et al. (10,12), Bhamidi-Broutin et al. (14), Conchon-Kerjan-Goldschmidt (19+), BvdHS (17), BDvdHS (18)]



Proof: weak convergence

Proof relies on three main ideas:
(1) Subsequent exploration of clusters;
(2) Removal of vertices found: depletion-of-points effect;

(3) In critical window, exploration process converges weakly;

E[WW?] < oo : steps exploration process have finite vari-
ance, and Brownian motion appears in limit:
‘power to the masses!’

€ (3,4) : high-weight vertices dominate exploration:
‘power to the wealthy!’




Part 4: Critical percolation on

scale-free random graphs

* In scale-free regime, degrees have infinite variance,
largest degrees are > /n, and giant is robust:

critical value tends to zero with network size.

What is appropriate critical value?




Critical scale-free CM

Let |Ci)(A)| > [Cry(A)| > |Ciy(A)] - .. be ordered cluster sizes, where

A
p=pN) = e

Theorem 5. (DvdHvL18+) Assume that 7 € (2,3). Then, for every
A > 0, there exists random vector (v;())) _, s.t.

(n_(T_Q)/(T_l)|C(¢)(>\)\)i21 BN (72.()\))721.

x Power of n in p,(\) satisfies (3 —7)/(7 — 1) € (0,1).

[Cohen et al. (00), Braunstein et al. (07)]

* Power of n in |C,,,()\)] is that of p,(A\)n'/"~1) and satisfies

(1—2)/(r—1)€(0,1/2).

Fractal scaling!



Ingredients proof CM

> Largest degree vertices (=hubs) have degree O(n!/(7=1);

> Number of edges between two hubs is

O(did;/¢,) = O(n* T~ V=1) = @(pB="/=1),

> Number of edges between hubs surviving percolation close to
Poisson parameter p,,(\)d;d; /¢, :

surviving edges random for this choice of p,,(\)!

> Barely super and sub-critical regimes also studied to show that

this is right critical value.



Critical scale-free PRG

Let |Ci)(A)| > [Cry(A)| > |Ciy(A)] - .. be ordered cluster sizes, where

A A
p=pN) =155 > S

Theorem 6. (BDvdHvLb21+) Assume that = € (2,3). Then, there
exist \. > 0 and random vector (v;(\)) ., s.t., for every A € (0, \),
—(12—41 T— d
(n (r2—4745) /[2( 1)”C<i)(}‘)|>¢z1 SN (%()\))721;
Theorem 7. (BDvdHvL21b+) For A > A, there exists ( = (), > 0 s.1.

ICoy(N)| > ¢v/n.

Phase transition!

> Note that % < 1/2forT € (2,3);

> T;(fjlf’ = L+ =3 equals exponent of n in p,(A)w; for hubs.




Single-edge constraint

> Hubs have weight ©(n"), with v = 1/(7 — 1);

> Number of two-paths between two hubs is of order

Faliyg) = Y [1— e/l — e/t = (n~w;) (n”w;)O(n* 7).

ve(n]

> Number of two-paths surviving percolation close to Poisson

PN fl3, 5).

Surviving two-paths random for our choice of p,,(\)!



Single-edge constraint

> Calculus:
Pu(N)? fuli, §) = eN*h(i, 5),
where h(i,j) ~ (i A j) (i Vv 5)~07),
> h(i, j) is approximately homogeneous of degree -1, i.e.,

h(t(i, 7)) =t h(i, j).

> Such processes investigated by Durrett-Kesten (90) on Z ..
Prove that limiting process has phase transition at specific value ).

> Below )., limiting graph on Z ., disconnected, above connected.

> Connected regime corresponds to existence tiny giant.



Conclusions

> Scaling limits of cluster sizes inhomogeneous random
graphs depend sensitively on

number of finite moments of degrees;

Scaling limits described by excursions of limiting explo-
ration process. These processes are rather different
when degrees have

finite versus infinite-third moments.

> Extension to metric convergence, where scaling limit
has fractal structure.




Conclusions scale-free

> Scale-free regime highly sensitive to
single-edge constraint.
Even order of critical value changes.

> Critical value determined by

hub connectivity.

> One-paths vs two-paths depending on single-edge
constraint.

> Single-edge constraint:
finite critical value.

> Proof: inhomogeneous random graph comparisons.
> Similar results for uniform scale-free RG, erased CM?
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