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Part 1: Complex networks and

percolation on them



Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
18

in
Yeast protein interaction networka Internet 2010b

Attention focussing on unexpected commonality.
aBarabási & Óltvai 2004
bOpte project http://www.opte.org/the-internet



Scale-free paradigm
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Loglog plot degree sequences WWW in-degree and Internet

B Straight line: proportion pk of vertices of degree k satisfies pk = ck−τ .

B Empirical evidence: Often τ ∈ (2, 3) reported.



Percolation
B Percolation: edges are retained independently with fixed proba-
bility p ∈ [0, 1].

B Infinite graphs: Phase transition at some p ∈ [0, 1] :

? p < pc : No infinite connected component;
? p > pc : Infinite connected component(s) exist.

B Most infinite graphs have pc ∈ (0, 1):

Non-trivial phase transition.

Most interesting behavior occurs when p is close to pc :

Self-similar fractal critical (finite?) components.



Percolation finite graphs
B We will be mainly interested in

percolation on finite graphs,

where even definition critical value is non-trivial and not unique.
[Borgs-Chayes-vdH-Slade-Spencer 05-06, Nachmias-Peres07, Janson-Warnke17]

B Often, exists (increasing) one-parameter family of critical values
λ 7→ pc(n;λ) s.t.
? λn → −∞ : All components are dust;
? λn →∞ : Unique largest component of almost deterministic size.

λ 7→ pc(n;λ) is critical window.

Most interesting behavior occurs for p in critical window:

Fractal random components of mesocopic size.

Here, study percolation on random graphs.



Part 2: Network models

and their giants



Configuration model
B n number of vertices;
B d = (d1, d2, . . . , dn) sequence of degrees.

[Bender-Canfield (78), Bollobás (80), Molloy-Reed (95), Newman-Strogatz-Watts (01)]

B Assign dj half-edges to vertex j. Assume total degree even, i.e.,

`n =
∑
i∈[n]

di even.

B Pair half-edges to create edges as follows:
Number half-edges from 1 to `n in any order.
First pair first half-edge at random to one of other `n − 1 half-edges.

B Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.



Choice degrees
B Aim: Proportion of vertices i with di = k is close to

F (k)− F (k − 1) = pk = P(D = k),

where D has distribution function F.
? Power law degrees: precise structure of large degrees crucial.

? Take d = (d1, . . . , dn) as i.i.d. rvs with distribution function F.

? Take di = [1− F ]−1(i/n), with F distribution function on N.

Power-law degrees:

[1− F ](k) ≈ ck−(τ−1), so that dj ≈ (cn/j)1/(τ−1).



Phase transition
Let D ∼ F and ν = E[D(D − 1)]/E[D] > 1. Then
[Cohen et al. (00, 02), Callaway et al. (00), Newman et al. (01), Dorogovtsev-Goltsev-Mendes (07)]

[Molloy-Reed (95), Janson-Luczak (09), Bollobś-Riordan (09), Fountoulakis (07), Janson (09)]

B largest component ∼ ρn with ρ ∈ (0, 1) for p > 1/ν;

B largest component o(n) for p ≤ 1/ν.

Identifies percolation critical value CM as

pc = 1/ν, where ν = E[D(D − 1)]/E[D] > 1,

ν is expected number forward neighbors of vertex in uniform edge.

B When E[D(D − 1)] =∞, graph always supercritical pc = 0 :

Robustness of the giant.



Poissonian RGs
Vertex i ∈ [n] has vertex weight wi ≥ 0, make edge between ver-
tices i, j independently occupied with probability

pij = 1− e−wiwj/`n, where `n =
∑
i∈[n]

wi is total weight.

Motivation is that wi is close to expected degree vertex i

B Percolation can be thought of as replacing wi by pwi.

? CM and PRG both “uncorrelated networks”, strongly related by

conditioning on simplicity and degrees.

? Again take wj = [1− F ]−1(j/n) with [1− F ](k) ≈ ck−(τ−1), so that

wj ≈ (cn/j)1/(τ−1).



Phase transition
Let W ∼ F and ν = E[W 2]/E[W ] > 1. Then
[Bollobás-Janson-Riordan (07), Chung-Lu (02), Soderberg (02)]

B largest component ∼ ρn with ρ ∈ (0, 1) for p > 1/ν;

B largest component o(n) for p ≤ 1/ν.

Identifies percolation critical value GRG as

pc = 1/ν, with ν = E[W 2]/E[W ].

ν is expected number forward neighbors of vertex in uniform edge.

B When E[W 2] =∞, graph always supercritical:

Robustness of the giant.



Part 3: Critical percolation on

Poisson random graphs



Finite third moments
Let µ = E[W ], σ2 = E[W 3]/E[W ]. Let B be standard Brownian mo-
tion, and

Bλ
s = σBs + sλ− s2σ2/(2µ), Rλ

s = Bλ
s − min

0≤u≤s
Bλ
s .

Aldous (97): Can order excursions of Rλ as γ1(λ) > γ2(λ) > . . . .

Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . be ordered cluster sizes of per-
colated Poisson random graph with p = pn(λ) = (1 + λn−1/3)/ν.

Theorem 1. (Aldous 97, BvdHvL10, Turova 13) Assume that
E[W 3] <∞. Then, for every λ ∈ R,(

n−2/3|C(i)(λ)|
)
i≥1

d−→
(
γi(λ)

)
i≥1.

? Homogeneous case wi = 1 of Erdős-Rényi RG has long history:
[Erdős-Rényi (60), Bollobás (84), Łuczak (90), Janson et al. (93), Aldous (97),...]



Infinite third moments
Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . denote ordered cluster sizes of
percolated Poisson random graph with

p = pn(λ) = (1 + λn−(τ−3)/(τ−1))/ν.

Theorem 2. (BvdHvL12) In power-law case with τ ∈ (3, 4), for every
λ ∈ R, (

n−(τ−2)/(τ−1)|C(i)(λ)|
)
i≥1

d−→
(
Hi(λ)

)
i≥1.

Moreover, for every pair of hubs i, j fixed,

P(i←→ j)→ qij(λ) ∈ (0, 1).

B Limits Hi(λ) correspond to ordered hitting times of 0 of certain
fascinating ‘thinned’ Lévy process.

? Powers of n predicted in physics community
[Kalisky-Cohen (06), Dorogovtsev, Goltsev, Mendes (07),...]



Configuration model
Theorem 3. (SB-SD-vdH-vL, Riordan 10) Theorems 1-2 hold for
critical configuration model with deterministic degrees, under suit-
able conditions on degrees very alike those on weights in Theo-
rems 1-2.

Theorem 4. (Adrien Joseph 11) Theorems 1-2 hold for critical con-
figuration model with i.i.d. degrees, under suitable conditions.

? Remarkably, scaling limit is notably different for i.i.d. degrees by

extreme value statistics degrees.

B Extensive follow-up work for metric structure
[Broutin et al. (10,12), Bhamidi-Broutin et al. (14), Conchon-Kerjan-Goldschmidt (19+), BvdHS (17), BDvdHS (18)]



Proof: weak convergence
Proof relies on three main ideas:

(1) Subsequent exploration of clusters;

(2) Removal of vertices found: depletion-of-points effect;

(3) In critical window, exploration process converges weakly;

E[W 3] <∞ : steps exploration process have finite vari-
ance, and Brownian motion appears in limit:

‘power to the masses!’

τ ∈ (3, 4) : high-weight vertices dominate exploration:
‘power to the wealthy!’



Part 4: Critical percolation on

scale-free random graphs

? In scale-free regime, degrees have infinite variance,
largest degrees are�

√
n, and giant is robust:

critical value tends to zero with network size.

What is appropriate critical value?



Critical scale-free CM
Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . be ordered cluster sizes, where

p = pn(λ) =
λ

n(3−τ)/(τ−1)
.

Theorem 5. (DvdHvL18+) Assume that τ ∈ (2, 3). Then, for every
λ > 0, there exists random vector

(
γi(λ)

)
i≥1 s.t.(

n−(τ−2)/(τ−1)|C(i)(λ)|
)
i≥1

d−→
(
γi(λ)

)
i≥1.

? Power of n in pn(λ) satisfies (3− τ )/(τ − 1) ∈ (0, 1).

[Cohen et al. (00), Braunstein et al. (07)]

? Power of n in |C(i)(λ)| is that of pn(λ)n1/(τ−1) and satisfies

(τ − 2)/(τ − 1) ∈ (0, 1/2).

Fractal scaling!



Ingredients proof CM
B Largest degree vertices (=hubs) have degree Θ(n1/(τ−1));

B Number of edges between two hubs is

Θ(didj/`n) = Θ(n2/(τ−1)−1) = Θ(n(3−τ)/(τ−1)).

B Number of edges between hubs surviving percolation close to
Poisson parameter pn(λ)didj/`n :

surviving edges random for this choice of pn(λ)!

B Barely super and sub-critical regimes also studied to show that

this is right critical value.



Critical scale-free PRG
Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . be ordered cluster sizes, where

p = pn(λ) =
λ

n(3−τ)/2
� λ

n(3−τ)/(τ−1)
.

Theorem 6. (BDvdHvLb21+) Assume that τ ∈ (2, 3). Then, there
exist λc > 0 and random vector

(
γi(λ)

)
i≥1 s.t., for every λ ∈ (0, λc),(

n−(τ
2−4τ+5)/[2(τ−1)]|C(i)(λ)|

)
i≥1

d−→
(
γi(λ)

)
i≥1;

Theorem 7. (BDvdHvL21b+) For λ > λc, there exists ζ = ζλ > 0 s.t.

|C(1)(λ)| ≥ ζ
√
n.

Phase transition!
B Note that τ2−4τ+5

2(τ−1) < 1/2 for τ ∈ (2, 3);

B τ2−4τ+5
2(τ−1) = 1

τ−1 + τ−3
2 equals exponent of n in pn(λ)wi for hubs.



Single-edge constraint

B Hubs have weight Θ(nα), with α = 1/(τ − 1);

B Number of two-paths between two hubs is of order

fn(i, j) ≡
∑
v∈[n]

[1− ewiwv/`n][1− ewvwj/`n] = (n−αwi)(n
−αwj)Θ(n3−τ ).

B Number of two-paths surviving percolation close to Poisson

pn(λ)2fn(i, j).

Surviving two-paths random for our choice of pn(λ)!



Single-edge constraint
B Calculus:

pn(λ)2fn(i, j)→ cλ2h(i, j),

where h(i, j) ∼ (i ∧ j)−α(i ∨ j)−(1−α).

B h(i, j) is approximately homogeneous of degree -1, i.e.,

h(t(i, j)) ≈ t−1h(i, j).

B Such processes investigated by Durrett-Kesten (90) on Z+.

Prove that limiting process has phase transition at specific value λc.

B Below λc, limiting graph on Z+ disconnected, above connected.

B Connected regime corresponds to existence tiny giant.



Conclusions
B Scaling limits of cluster sizes inhomogeneous random
graphs depend sensitively on

number of finite moments of degrees;

Scaling limits described by excursions of limiting explo-
ration process. These processes are rather different
when degrees have

finite versus infinite-third moments.

B Extension to metric convergence, where scaling limit
has fractal structure.



Conclusions scale-free
B Scale-free regime highly sensitive to

single-edge constraint.
Even order of critical value changes.

B Critical value determined by
hub connectivity.

B One-paths vs two-paths depending on single-edge
constraint.

B Single-edge constraint:
finite critical value.

B Proof: inhomogeneous random graph comparisons.

B Similar results for uniform scale-free RG, erased CM?
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