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The graph isomorphism problem

Definition: Given two graphs G = (V,E), G’ = (V'  E’), is there a graph
isomorphism, i.e. a bijection f : V — V/ such that
(i.j) € E = (f(i),f())) € E?

— Classical problem in NP, thought to be neither in P, nor NP-complete
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Graph alignment

Relaxed version: bijection f between vertices V of G and V'’ of G’ that
preserves most edges

Formally, f minimizes ZIJE\/ L jyee — Ly r(yeer]
— An instance of the NP-hard quadratic assignment problem:
maxn Trace(AMATIT) where I runs over permutation matrices
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Applications

@ De-anonymization of users of social network
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Applications

@ De-anonymization of users of social network

@ Align protein interaction networks for cells of species — infer function
of proteins in biology of species A from knowledge of protein function
in biology of species B

@ Align meshes of 3D images of hearts to transfer segmentation into
distinct parts from image of reference heart
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@ De-anonymization of users of social network

@ Align protein interaction networks for cells of species — infer function
of proteins in biology of species A from knowledge of protein function
in biology of species B

@ Align meshes of 3D images of hearts to transfer segmentation into
distinct parts from image of reference heart

@ Align graphs between words in languages A and B to construct
dictionary between the two languages

@ ---
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Generative, probabilistic models of graphs

Erdés-Rényi random graph G(n, p):

n vertices. Each edge (7, /) present with
probability p independently of other edges.
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probability p independently of other edges.

Correlated Erdés-Rényi graphs (Gy, G;) ~ ERC(n, p, s):
Start from “master graph” Go ~ G(n, p/s)
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Generative, probabilistic models of graphs

Erdés-Rényi random graph G(n, p):

n vertices. Each edge (7, /) present with
probability p independently of other edges.

Correlated Erdés-Rényi graphs (Gy, G;) ~ ERC(n, p, s):
Start from “master graph” Go ~ G(n, p/s)
o Keep each edge with prob. s to form G; ~ G(n, p) and independently,
Gy ~ G(n,p)
— P((i,j) € EENE})) =p=s,
= P((i.J) € E1,(i,J) ¢ B5) = p(1 —s)
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Generative, probabilistic models of graphs

Erdés-Rényi random graph G(n, p):

n vertices. Each edge (7, /) present with
probability p independently of other edges.

Correlated Erdés-Rényi graphs (Gy, G;) ~ ERC(n, p, s):
Start from “master graph” Go ~ G(n, p/s)
o Keep each edge with prob. s to form G; ~ G(n, p) and independently,
Gy ~ G(n,p)
— P((i,j) € EENE})) =p=s,
= P((i,J) € E1,(i.j) € E3) = p(1 - s)
o Shuffle labels of nodes of G} uniformly at random to form G
Formally: random permutation o;
Adjacency matrix Ay = M, AN}
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Goal: recover permutation o from graphs G; and G

Exact recovery of permutation o:

o Information-theoretically feasible iff nps = log n + w(1)
[Cullina-Kyavash'16]

o Polynomial-time feasible if np > log®(n) and 1 — s < log~?(n) [Ding
et al.'18]

— Recovery of o only feasible for random graphs with average degree
np = Q(log n)
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Goal: recover permutation o from graphs G; and G

Exact recovery of permutation o:

o Information-theoretically feasible iff nps = log n + w(1)
[Cullina-Kyavash'16]

o Polynomial-time feasible if np > log®(n) and 1 — s < log™?(n) [Ding
et al.'18]

— Recovery of o only feasible for random graphs with average degree
np = Q(log n)

This work: polynomial-time recovery, in sparse regime np = O(1).
— We relax objective from exact recovery to partial recovery:

Construct permutation 6 from G1, Gy such that
overlap(6) := 1 377 | I, —5, = Q(1)
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Main result

Theorem

Let p = \/n for fixed A € (1, \o]. There exists s*(\) < 1 such that for all
s € (s*()\), 1], the Neighborhood Tree Matching Algorithm (NTMA)
returns a permutation & achieving positive overlap with high probability.

exact reconstruction
poly-time feasible

Partial reconstruction
poly-time feasible (NTMA)
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Outline

Tree matching weights
o NTMA algorithm

@ Matching weights for pairs of random trees

@ Proof outline and experiments
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Tree matching weights

Definition
Given two rooted trees 7, 7' and integer d > 0, matching weight
Wy(T, T"): largest number of leaves of all rooted sub-trees 7" of both T,

T" of depth d.

oT) p(T")

Example of two trees 7, 77 with W5(7,7") = 7, where an optimal ¢ € Ajz is drawn in
red.
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Tree matching weights

Definition
Given two rooted trees 7, 7' and integer d > 0, matching weight
Wy(T, T"): largest number of leaves of all rooted sub-trees 7" of both T,

T of depth d.

o(T)

A s

Example of two trees 7, 77 with W5(T, T") = 7, where an optimal ¢ € Aj is drawn in
red.

Recursive computation: Wy(7,7’) = max Z Wa_1(T:, T,)

(i,u)eEm
where max over matchings m between neighbors i of p(7) and u of p(T"),
and 7;: tree rooted at i/ obtained from 7T by removing edge (p(7)), /)
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A first attempt

Match vertices i of Gy and u of G, whose respective d-neighborhoods:
@ are trees 71, 1>
e with large matching weight Wy (71, 72)
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A first attempt

Match vertices i of Gy and u of G, whose respective d-neighborhoods:
@ are trees 71, 1>
e with large matching weight Wy (71, 72)

Problem: false positives caused by nearby nodes
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Neighborhood tree matching algorithm

Pair of nodes (i, u) € V4 x Vo whose d-neighborhood in Gi, resp. G is a
tree:

o if 3j,j/ ~ i, v,v' 2 u such that
Wa(Ti=is To—u)s Wa(Tj—i, Tvr—u) > 7, add pair (i, u) to set S
@ Then for d = ©(log n), 7 = O((As)9), with high probability:
%Zievl Lio(iy)es = Q(i),
5 2 iev, Buto(iy(iuyes = 0o(1).
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Matching weights for independent random trees

T, T': two independent Galton-Watson branching random trees, with
offspring distribution Poisson(\).
Theorem

For X € (1, o] and s € (s*(\), 1], then there exists v < As such that
Wu(T,T') < ~9 as d — oo.

Proof: Probabilistic bounds on Wy4(T,T’) established by induction on d.
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Arguments for main result: local structure of graphs G;, G,

@ Local neighborhood of i € V4 in Gi: Poisson(\) Galton-Watson
branching process.

@ Local structure of union graph G; U G}: three-type branching process

@ Local structure of intersection graph G; N G5: Poisson(\s)
Galton-Watson branching process.
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-
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Arguments, continued

— For u=o(i), Wa(Ti, Ty) > size at generation d of Poisson(As)
Galton-Watson branching tree, hence ~ (\s)¢

— For nodes i, u “far apart” in union graph, Wy(T;, T,) = Wy(T,T") for
T, T’: independent, Poisson(\) branching trees, hence < 79 for v < As.

Luca Ganassali and Laurent Massoulié https:/  From tree matching to graph alignment January 26, 2021 14 /1



Arguments, continued

— For u=o(i), Wa(Ti, Ty) > size at generation d of Poisson(As)
Galton-Watson branching tree, hence ~ (\s)¢

— For nodes i, u “far apart” in union graph, Wy(T;, T,) = Wy(T,T") for
T, T’: independent, Poisson(\) branching trees, hence < 79 for v < As.

Several other cases need to be dealt with...

,
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Conclusions and outlook

@ Graph alignment: important unsupervised learning problem with many
applications

o NTMA: first method proven to succeed at partial alignment in
relevant regime of sparse graphs

@ To be done: boundaries of phases in (), s) diagram, in particular
I T-feasibility and poly-time feasibility of partial alignment (see
[Hall-M'20]: partial alignment IT-feasible for
ngs = ©(1), 1 —s=Q(1))

o Extend NTMA for better scalability and handling of denser graphs
(with more cycles)
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