From tree matching to graph alignment

Luca Ganassali and Laurent Massoulié

https://arxiv.org/pdf/2002.01258.pdf

Inria

January 26, 2021

The graph isomorphism problem
Definition: Given two graphs $G=(V, E), G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, is there a graph isomorphism, i.e. a bijection $f: V \rightarrow V^{\prime}$ such that $(i, j) \in E \Leftrightarrow(f(i), f(j)) \in E^{\prime}$?

\rightarrow Classical problem in NP, thought to be neither in P, nor NP-complete

Graph alignment

Relaxed version: bijection f between vertices V of G and V^{\prime} of G^{\prime} that preserves most edges

Formally, f minimizes $\sum_{i, j \in V}\left|\mathbb{I}_{(i, j) \in E}-\mathbb{I}_{(f(i), f(j)) \in E^{\prime}}\right|$
\rightarrow An instance of the NP-hard quadratic assignment problem: $\max _{\Pi} \operatorname{Trace}\left(A \Pi A^{\prime} \Pi^{\top}\right)$ where Π runs over permutation matrices

Applications

- De-anonymization of users of social network

Applications

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B

Applications

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align meshes of 3D images of hearts to transfer segmentation into distinct parts from image of reference heart

Applications

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align meshes of 3D images of hearts to transfer segmentation into distinct parts from image of reference heart
- Align graphs between words in languages A and B to construct dictionary between the two languages

Generative, probabilistic models of graphs

Erdős-Rényi random graph $\mathcal{G}(n, p)$:
n vertices. Each edge (i, j) present with probability p independently of other edges.

Generative, probabilistic models of graphs

Erdős-Rényi random graph $\mathcal{G}(n, p)$: n vertices. Each edge (i, j) present with probability p independently of other edges.

Correlated Erdős-Rényi graphs $\left(G_{1}, G_{2}\right) \sim \operatorname{ERC}(n, p, s)$: Start from "master graph" $G_{0} \sim \mathcal{G}(n, p / s)$

Generative, probabilistic models of graphs

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

 n vertices. Each edge (i, j) present with probability p independently of other edges.Correlated Erdős-Rényi graphs $\left(G_{1}, G_{2}\right) \sim \operatorname{ERC}(n, p, s)$:
Start from "master graph" $G_{0} \sim \mathcal{G}(n, p / s)$

- Keep each edge with prob. s to form $G_{1} \sim \mathcal{G}(n, p)$ and independently, $G_{2}^{\prime} \sim \mathcal{G}(n, p)$

Generative, probabilistic models of graphs

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

 n vertices. Each edge (i, j) present with probability p independently of other edges.

Correlated Erdős-Rényi graphs $\left(G_{1}, G_{2}\right) \sim \operatorname{ERC}(n, \overline{p, s})$:
Start from "master graph" $G_{0} \sim \mathcal{G}(n, p / s)$

- Keep each edge with prob. s to form $G_{1} \sim \mathcal{G}(n, p)$ and independently,

$$
\begin{aligned}
& G_{2}^{\prime} \sim \mathcal{G}(n, p) \\
& \rightarrow \mathbb{P}\left((i, j) \in E_{1} \cap E_{2}^{\prime}\right)=p * s, \\
& \rightarrow \mathbb{P}\left((i, j) \in E_{1},(i, j) \notin E_{2}^{\prime}\right)=p(1-s)
\end{aligned}
$$

Generative, probabilistic models of graphs

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

 n vertices. Each edge (i, j) present with probability p independently of other edges.

Correlated Erdős-Rényi graphs $\left(G_{1}, G_{2}\right) \sim \operatorname{ERC}(n, \overline{p, s})$:
Start from "master graph" $G_{0} \sim \mathcal{G}(n, p / s)$

- Keep each edge with prob. s to form $G_{1} \sim \mathcal{G}(n, p)$ and independently, $G_{2}^{\prime} \sim \mathcal{G}(n, p)$
$\rightarrow \mathbb{P}\left((i, j) \in E_{1} \cap E_{2}^{\prime}\right)=p * s$,
$\rightarrow \mathbb{P}\left((i, j) \in E_{1},(i, j) \notin E_{2}^{\prime}\right)=p(1-s)$
- Shuffle labels of nodes of G_{2}^{\prime} uniformly at random to form G_{2}

Formally: random permutation σ; Adjacency matrix $A_{2}=\Pi_{\sigma} A_{2}^{\prime} \Pi_{\sigma}^{\top}$

Goal: recover permutation σ from graphs G_{1} and G_{2}

Exact recovery of permutation σ :

- Information-theoretically feasible iff $n p s=\log n+\omega(1)$
[Cullina-Kyavash'16]
- Polynomial-time feasible if $n p \geq \log ^{\alpha}(n)$ and $1-s \leq \log ^{-\beta}(n)$ [Ding et al.'18]
\rightarrow Recovery of σ only feasible for random graphs with average degree $n p=\Omega(\log n)$

Goal: recover permutation σ from graphs G_{1} and G_{2}

Exact recovery of permutation σ :

- Information-theoretically feasible iff $n p s=\log n+\omega(1)$ [Cullina-Kyavash'16]
- Polynomial-time feasible if $n p \geq \log ^{\alpha}(n)$ and $1-s \leq \log ^{-\beta}(n)$ [Ding et al.'18]
\rightarrow Recovery of σ only feasible for random graphs with average degree $n p=\Omega(\log n)$

This work: polynomial-time recovery, in sparse regime $n p=O(1)$.
\rightarrow We relax objective from exact recovery to partial recovery:

Construct permutation $\hat{\sigma}$ from G_{1}, G_{2} such that $\operatorname{overlap}(\hat{\sigma}):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\sigma_{i}=\hat{\sigma}_{i}}=\Omega(1)$

Main result

Theorem

Let $p=\lambda / n$ for fixed $\lambda \in\left(1, \lambda_{0}\right]$. There exists $s^{*}(\lambda)<1$ such that for all $s \in\left(s^{*}(\lambda), 1\right]$, the Neighborhood Tree Matching Algorithm (NTMA) returns a permutation $\hat{\sigma}$ achieving positive overlap with high probability.

Outline

- Tree matching weights
- NTMA algorithm
- Matching weights for pairs of random trees
- Proof outline and experiments

Tree matching weights

Definition

Given two rooted trees $\mathcal{T}, \mathcal{T}^{\prime}$ and integer $d \geq 0$, matching weight $\mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$: largest number of leaves of all rooted sub-trees $\mathcal{T}^{\prime \prime}$ of both \mathcal{T}, \mathcal{T}^{\prime} of depth d.

Example of two trees $\mathcal{T}, \mathcal{T}^{\prime}$ with $\mathcal{W}_{3}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=7$, where an optimal $t \in \mathcal{A}_{3}$ is drawn in red.

Tree matching weights

Definition

Given two rooted trees $\mathcal{T}, \mathcal{T}^{\prime}$ and integer $d \geq 0$, matching weight $\mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$: largest number of leaves of all rooted sub-trees $\mathcal{T}^{\prime \prime}$ of both \mathcal{T}, \mathcal{T}^{\prime} of depth d.

Example of two trees $\mathcal{T}, \mathcal{T}^{\prime}$ with $\mathcal{W}_{3}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=7$, where an optimal $t \in \mathcal{A}_{3}$ is drawn in red.

Recursive computation: $\mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=\max \sum_{(i, u) \in m} \mathcal{W}_{d-1}\left(\mathcal{T}_{i}, \mathcal{T}_{u}^{\prime}\right)$
where max over matchings m between neighbors i of $\rho(\mathcal{T})$ and u of $\rho\left(\mathcal{T}^{\prime}\right)$, and \mathcal{T}_{i} : tree rooted at i obtained from \mathcal{T} by removing edge $(\rho(\mathcal{T}), i)_{\bar{\Xi}}$

A first attempt

Match vertices i of G_{1} and u of G_{2} whose respective d-neighborhoods:

- are trees $\mathcal{T}_{1}, \mathcal{T}_{2}$
- with large matching weight $\mathcal{W}_{d}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$

A first attempt

Match vertices i of G_{1} and u of G_{2} whose respective d-neighborhoods:

- are trees $\mathcal{T}_{1}, \mathcal{T}_{2}$
- with large matching weight $\mathcal{W}_{d}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$

Problem: false positives caused by nearby nodes

Neighborhood tree matching algorithm

Pair of nodes $(i, u) \in V_{1} \times V_{2}$ whose d-neighborhood in G_{1}, resp. G_{2} is a tree:

- if $\exists j, j^{\prime} \stackrel{1}{\sim} i, v, v^{\prime} \stackrel{2}{\sim} u$ such that $\mathcal{W}_{d}\left(\mathcal{T}_{j \rightarrow i}, \mathcal{T}_{v \rightarrow u}\right), \mathcal{W}_{d}\left(\mathcal{T}_{j^{\prime} \rightarrow i}, \mathcal{T}_{v^{\prime} \rightarrow u}\right)>\tau$, add pair (i, u) to set \mathcal{S}
- Then for $d=\Theta(\log n), \tau=\Theta\left((\lambda s)^{d}\right)$, with high probability:
$\frac{1}{n} \sum_{i \in V_{1}} \mathbb{I}_{(i, \sigma(i)) \in \mathcal{S}}=\Omega(1)$,
$\frac{1}{n} \sum_{i \in V_{1}} \mathbb{I}_{\exists u \neq \sigma(i):(i, u) \in \mathcal{S}}=o(1)$.

Matching weights for independent random trees

$\mathcal{T}, \mathcal{T}^{\prime}$: two independent Galton-Watson branching random trees, with offspring distribution Poisson (λ).

Theorem
For $\lambda \in\left(1, \lambda_{0}\right]$ and $s \in\left(s^{*}(\lambda), 1\right]$, then there exists $\gamma<\lambda s$ such that $\mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \ll \gamma^{d}$ as $d \rightarrow \infty$.

Proof: Probabilistic bounds on $\mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$ established by induction on d.

Arguments for main result: local structure of graphs G_{1}, G_{2}

- Local neighborhood of $i \in V_{1}$ in G_{1} : Poisson (λ) Galton-Watson branching process.
- Local structure of union graph $G_{1} \cup G_{2}^{\prime}$: three-type branching process
- Local structure of intersection graph $G_{1} \cap G_{2}^{\prime}$: $\operatorname{Poisson}(\lambda s)$ Galton-Watson branching process.

Arguments, continued

\rightarrow For $u=\sigma(i), \mathcal{W}_{d}\left(\mathcal{T}_{i}, \mathcal{T}_{u}\right) \geq$ size at generation d of Poisson (λs)
Galton-Watson branching tree, hence $\approx(\lambda s)^{d}$
\rightarrow For nodes i, u "far apart" in union graph, $\mathcal{W}_{d}\left(\mathcal{T}_{i}, \mathcal{T}_{u}\right) \approx \mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$ for
$\mathcal{T}, \mathcal{T}^{\prime}$: independent, Poisson (λ) branching trees, hence $\ll \gamma^{d}$ for $\gamma<\lambda s$.

Arguments, continued

\rightarrow For $u=\sigma(i), \mathcal{W}_{d}\left(\mathcal{T}_{i}, \mathcal{T}_{u}\right) \geq$ size at generation d of Poisson (λs)
Galton-Watson branching tree, hence $\approx(\lambda s)^{d}$
\rightarrow For nodes i, u "far apart" in union graph, $\mathcal{W}_{d}\left(\mathcal{T}_{i}, \mathcal{T}_{u}\right) \approx \mathcal{W}_{d}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$ for $\mathcal{T}, \mathcal{T}^{\prime}$: independent, Poisson (λ) branching trees, hence $\ll \gamma^{d}$ for $\gamma<\lambda s$.

Several other cases need to be dealt with...

Mean score of NTMA-2 for $\lambda=2.1, d=5$ (25 iterations per value of n).

Conclusions and outlook

- Graph alignment: important unsupervised learning problem with many applications
- NTMA: first method proven to succeed at partial alignment in relevant regime of sparse graphs
- To be done: boundaries of phases in (λ, s) diagram, in particular IT-feasibility and poly-time feasibility of partial alignment (see [Hall-M'20]: partial alignment IT-feasible for $n q s=\Theta(1), 1-s=\Omega(1))$
- Extend NTMA for better scalability and handling of denser graphs (with more cycles)

