From tree matching to graph alignment

Luca Ganassali and Laurent Massoulié

https://arxiv.org/pdf/2002.01258.pdf

Inria

January 26, 2021

The graph isomorphism problem

Definition: Given two graphs G = (V, E), G' = (V', E'), is there a **graph** isomorphism, i.e. a bijection $f : V \to V'$ such that $(i, j) \in E \Leftrightarrow (f(i), f(j)) \in E'$?

 \rightarrow Classical problem in NP, thought to be neither in P, nor NP-complete

Graph alignment

Relaxed version: bijection f between vertices V of G and V' of G' that preserves **most** edges

Formally, f minimizes $\sum_{i,j\in V} |\mathbb{I}_{(i,j)\in E} - \mathbb{I}_{(f(i),f(j))\in E'}|$ \rightarrow An instance of the NP-hard **quadratic assignment problem:** $\max_{\Pi} \operatorname{Trace}(A\Pi A'\Pi^{\top})$ where Π runs over permutation matrices

• De-anonymization of users of social network

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align meshes of 3D images of hearts to transfer segmentation into distinct parts from image of reference heart

- De-anonymization of users of social network
- Align protein interaction networks for cells of species \rightarrow infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align meshes of 3D images of hearts to transfer segmentation into distinct parts from image of reference heart
- Align graphs between words in languages A and B to construct dictionary between the two languages

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

n vertices. Each edge (i, j) present with probability *p* independently of other edges.

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

n vertices. Each edge (i, j) present with probability *p* independently of other edges.

Correlated Erdős-Rényi graphs $(G_1, G_2) \sim \text{ERC}(n, p, s)$: Start from "master graph" $G_0 \sim \mathcal{G}(n, p/s)$

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

n vertices. Each edge (i, j) present with probability *p* independently of other edges.

- Correlated Erdős-Rényi graphs $(G_1, G_2) \sim \text{ERC}(n, p, s)$: Start from "master graph" $G_0 \sim \mathcal{G}(n, p/s)$
 - Keep each edge with prob. s to form $G_1 \sim \mathcal{G}(n,p)$ and independently, $G_2' \sim \mathcal{G}(n,p)$

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

n vertices. Each edge (i, j) present with probability *p* independently of other edges.

Correlated Erdős-Rényi graphs $(G_1, G_2) \sim \text{ERC}(n, p, s)$: Start from "master graph" $G_0 \sim \mathcal{G}(n, p/s)$

• Keep each edge with prob. s to form $G_1 \sim \mathcal{G}(n, p)$ and independently, $G'_2 \sim \mathcal{G}(n, p)$ $\rightarrow \mathbb{P}((i, j) \in E_1 \cap E'_2) = p * s,$ $\rightarrow \mathbb{P}((i, j) \in E_1, (i, j) \notin E'_2) = p(1 - s)$

Erdős-Rényi random graph $\mathcal{G}(n, p)$:

n vertices. Each edge (i, j) present with probability *p* independently of other edges.

Correlated Erdős-Rényi graphs $(G_1, G_2) \sim \text{ERC}(n, p, s)$: Start from "master graph" $G_0 \sim \mathcal{G}(n, p/s)$

- Keep each edge with prob. s to form $G_1 \sim \mathcal{G}(n, p)$ and independently, $G'_2 \sim \mathcal{G}(n, p)$ $\rightarrow \mathbb{P}((i, j) \in E_1 \cap E'_2) = p * s,$ $\rightarrow \mathbb{P}((i, j) \in E_1, (i, j) \notin E'_2) = p(1 - s)$
- Shuffle labels of nodes of G'_2 uniformly at random to form G_2 Formally: random permutation σ ; Adjacency matrix $A_2 = \prod_{\sigma} A'_2 \prod_{\sigma}^{\top}$

< ロ > < 同 > < 回 > < 回 >

Goal: recover permutation σ from graphs G_1 and G_2

Exact recovery of permutation σ :

- Information-theoretically feasible iff $nps = \log n + \omega(1)$ [Cullina-Kyavash'16]
- Polynomial-time feasible if $np \ge \log^{\alpha}(n)$ and $1 s \le \log^{-\beta}(n)$ [Ding et al.'18]
- \rightarrow Recovery of σ only feasible for random graphs with average degree $np = \Omega(\log n)$

Goal: recover permutation σ from graphs G_1 and G_2

Exact recovery of permutation σ :

- Information-theoretically feasible iff $nps = \log n + \omega(1)$ [Cullina-Kyavash'16]
- Polynomial-time feasible if $np \ge \log^{\alpha}(n)$ and $1 s \le \log^{-\beta}(n)$ [Ding et al.'18]
- \rightarrow Recovery of σ only feasible for random graphs with average degree $np = \Omega(\log n)$

This work: polynomial-time recovery, in sparse regime np = O(1).

 \rightarrow We relax objective from exact recovery to partial recovery:

Construct permutation $\hat{\sigma}$ from G_1 , G_2 such that overlap $(\hat{\sigma}) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\sigma_i = \hat{\sigma}_i} = \Omega(1)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Main result

Theorem

Let $p = \lambda/n$ for fixed $\lambda \in (1, \lambda_0]$. There exists $s^*(\lambda) < 1$ such that for all $s \in (s^*(\lambda), 1]$, the Neighborhood Tree Matching Algorithm (NTMA) returns a permutation $\hat{\sigma}$ achieving positive overlap with high probability.

Outline

- Tree matching weights
- NTMA algorithm
- Matching weights for pairs of random trees
- Proof outline and experiments

Tree matching weights

Definition

Given two rooted trees \mathcal{T} , \mathcal{T}' and integer $d \ge 0$, **matching weight** $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$: largest number of leaves of all rooted sub-trees \mathcal{T}'' of both \mathcal{T} , \mathcal{T}' of depth d.

Example of two trees $\mathcal{T}, \mathcal{T}'$ with $\mathcal{W}_3(\mathcal{T}, \mathcal{T}') = 7$, where an optimal $t \in \mathcal{A}_3$ is drawn in red.

Tree matching weights

Definition

Given two rooted trees \mathcal{T} , \mathcal{T}' and integer $d \ge 0$, **matching weight** $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$: largest number of leaves of all rooted sub-trees \mathcal{T}'' of both \mathcal{T} , \mathcal{T}' of depth d.

Example of two trees $\mathcal{T}, \mathcal{T}'$ with $\mathcal{W}_3(\mathcal{T}, \mathcal{T}') = 7$, where an optimal $t \in \mathcal{A}_3$ is drawn in red.

Recursive computation: $W_d(\mathcal{T}, \mathcal{T}') = \max \sum_{(i,u) \in m} W_{d-1}(\mathcal{T}_i, \mathcal{T}'_u)$

where max over matchings *m* between neighbors *i* of $\rho(\mathcal{T})$ and *u* of $\rho(\mathcal{T}')$, and \mathcal{T}_i : tree rooted at *i* obtained from \mathcal{T} by removing edge $(\rho(\mathcal{T}), i)$

A first attempt

Match vertices *i* of G_1 and *u* of G_2 whose respective *d*-neighborhoods:

- are trees \mathcal{T}_1 , \mathcal{T}_2
- with large matching weight $\mathcal{W}_d(\mathcal{T}_1, \mathcal{T}_2)$

A 1

A first attempt

Match vertices *i* of G_1 and *u* of G_2 whose respective *d*-neighborhoods:

- are trees \mathcal{T}_1 , \mathcal{T}_2
- with large matching weight $\mathcal{W}_d(\mathcal{T}_1, \mathcal{T}_2)$

Problem: false positives caused by nearby nodes

Neighborhood tree matching algorithm

Pair of nodes $(i, u) \in V_1 \times V_2$ whose *d*-neighborhood in G_1 , resp. G_2 is a tree:

• if $\exists j, j' \stackrel{1}{\sim} i, v, v' \stackrel{2}{\sim} u$ such that $\mathcal{W}_d(\mathcal{T}_{j \to i}, \mathcal{T}_{v \to u}), \mathcal{W}_d(\mathcal{T}_{j' \to i}, \mathcal{T}_{v' \to u}) > \tau$, add pair (i, u) to set S

• Then for $d = \Theta(\log n)$, $\tau = \Theta((\lambda s)^d)$, with high probability: $\frac{1}{n} \sum_{i \in V_1} \mathbb{I}_{(i,\sigma(i)) \in S} = \Omega(1)$, $\frac{1}{n} \sum_{i \in V_1} \mathbb{I}_{\exists u \neq \sigma(i):(i,u) \in S} = o(1)$.

Matching weights for independent random trees

 \mathcal{T} , \mathcal{T}' : two independent Galton-Watson branching random trees, with offspring distribution Poisson(λ).

Theorem

For $\lambda \in (1, \lambda_0]$ and $s \in (s^*(\lambda), 1]$, then there exists $\gamma < \lambda s$ such that $W_d(\mathcal{T}, \mathcal{T}') \ll \gamma^d$ as $d \to \infty$.

Proof: Probabilistic bounds on $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ established by induction on d.

Arguments for main result: local structure of graphs G_1 , G_2

- Local neighborhood of i ∈ V₁ in G₁: Poisson(λ) Galton-Watson branching process.
- Local structure of union graph $G_1 \cup G'_2$: three-type branching process
- Local structure of intersection graph $G_1 \cap G'_2$: Poisson(λs) Galton-Watson branching process.

Luca Ganassali and Laurent Massoulié https:// From tree matching to graph alignment

Arguments, continued

 \rightarrow For $u = \sigma(i)$, $\mathcal{W}_d(\mathcal{T}_i, \mathcal{T}_u) \ge$ size at generation d of Poisson (λs) Galton-Watson branching tree, hence $\approx (\lambda s)^d$

 \rightarrow For nodes *i*, *u* "far apart" in union graph, $\mathcal{W}_d(\mathcal{T}_i, \mathcal{T}_u) \approx \mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ for $\mathcal{T}, \mathcal{T}'$: independent, Poisson(λ) branching trees, hence $\ll \gamma^d$ for $\gamma < \lambda s$.

Arguments, continued

→ For $u = \sigma(i)$, $\mathcal{W}_d(\mathcal{T}_i, \mathcal{T}_u) \ge$ size at generation d of Poisson(λs) Galton-Watson branching tree, hence $\approx (\lambda s)^d$ → For nodes i, u "far apart" in union graph, $\mathcal{W}_d(\mathcal{T}_i, \mathcal{T}_u) \approx \mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ for \mathcal{T} \mathcal{T}'_i is descered by based on the product of the set of the set

 $\mathcal{T}, \mathcal{T}'$: independent, Poisson(λ) branching trees, hence $\ll \gamma^d$ for $\gamma < \lambda s$.

Several other cases need to be dealt with...

Mean score of NTMA-2 for $\lambda = 2.1$, d = 5 (25 iterations per value of n).

э

イロト イヨト イヨト イヨト

(a) $n = 150, \lambda = 1.4, d = 5.$

э

イロト イヨト イヨト イヨト

Conclusions and outlook

- Graph alignment: important unsupervised learning problem with many applications
- NTMA: first method proven to succeed at partial alignment in relevant regime of sparse graphs
- To be done: boundaries of phases in (λ, s) diagram, in particular IT-feasibility and poly-time feasibility of partial alignment (see [Hall-M'20]: partial alignment IT-feasible for nqs = Θ(1), 1 − s = Ω(1))
- Extend NTMA for better scalability and handling of denser graphs (with more cycles)

