Optimal Group Testing

Amin Coja-Oghlan

Goethe University Frankfurt

Jjoint work with Oliver Gebhard, Max Hahn-Klimroth, Philipp Loick



The problem

Group testing [D43,DH93]

> n =population size, k = n’ = #infected, m = #tests

all tests are conducted in parallel

>
> how many tests are necessary. ..
» ...information-theoretically?

>

...algorithmically?



Information-theoretic lower bounds
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> if k ~ n? we need

1_
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» if k = ©(n) we inevitably need m = n tests [A18]



Random hypergraphs

A randomised test design [JAS16,A17]

» arandom A-regular I'-uniform hypergraph with
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» the choice of A,T" maximises the entropy of the test results



Random hypergraphs
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The inference problem on the random hypergraph
» isinsolubleif m < (1 —¢&)mpg [JAS16]
» reduces to hypergraph VC if m > (1 + &) minq [COGHKL19]



Greedy algorithms

DD: Definitive Defectives [ABJ14]
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declare all individuals in negative tests uninfected

check for positive tests with just one undiagnosed individual
declare those individuals infected

declare all others uninfected

~ may produce false negatives
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Greedy algorithms

SCOMP: greedy vertex cover [ABJ14]
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declare all individuals in negative tests uninfected

check for positive tests with just one undiagnosed individual
declare those individuals infected

greedily cover the remaining positive tests

~ may produce false positives/negatives

Conjecture: SCOMP strictly outperforms DD [ABJ14]



Greedy algorithms
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» if m > (1+ ¢&)mpp, then both DD and SCOMP succeed [ABJ14]
» if m < (1 - ¢&)mpp, then both of them fail [COGHKL19]



Prior work: summary
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» the counting bound

» the cavity method, two-stages, FKG lower bound [MTTO07]
» greedy algorithms: positive [ABJ14]
> greedy algorithms: negative [COGHKL19]



The SPIV algorithm
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Theorem [COGHKL19]

There exist a test design and an efficient algorithm SPIV that
succeed w.h.p. for
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The SPIV algorithm
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Spatial coupling

» aring comprising 1 < ¢ <« logn compartments
» individuals join tests within a sliding window of size 1 < s < ¢

> extra tests at the start facilitate DD

inspired by low-density parity check codes [KMRU10]



The SPIV algorithm
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> low-density parity check codes [KMRU10]
» compressed sensing [KMSSZ11,DJM13]
> quantitative group testing [ZKMZ13]

» spatial coupling as a proof technique [GMU12]



The SPIV algorithm
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The algorithm

» run DD on the s seed compartments
» declare all individuals that appear in negative tests uninfected
» tentatively declare infected k/¢ individuals with max score Wy

» combinatorial clean-up step



The SPIV algorithm

Unexplained tests

> let Wy, ; be the number of ‘unexplained’ positive tests j— 1
compartments to the right of x



The SPIV algorithm

Unexplained tests

> if x is infected, then W, j ~ Bin(A/s,2//571)
> if x is uninfected, then W, ; ~ Bin(A/s,2//5 — 1)



The SPIV algorithm
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The score: first attempt

> just count unexplained tests
S=ll
> we find the large deviations rate function of ) Wy
j=1
» unfortunately, we will likely misclassify > k individuals



The SPIV algorithm

The score: second attempt

s—1
» consider a weighted sum W, = Z w;jWy,
j=1

> Lagrange optimisation ~~ optimal weights w; = —log(1 - 27718y

» only o(k) misclassifications



The SPIV algorithm

The score: Belief Propagation
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The SPIV algorithm

The score: Belief Propagation
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A matching lower bound
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Theorem [COGHKL19]

Identifying the infected individuals is information-theoretically
impossible with (1 — €) mq tests.



A matching lower bound

Proposition [dilution]
Let
log2

<0<8 <1.
1+log2

If there exists a sequence of successful designs for density 8, then
there also exists one for 6'.

Proof idea
Add healthy dummies.



A matching lower bound

Proposition
For any € > 0 there exists 0y (¢) < 1 such that for all ) <8 <1 and
large enough 7 for any test design with
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tests there are at least log n disguised individuals w.h.p.

Proofidea

» Regularisation: optimal designs are approximately regular
» Positive correlation: probability of being disguised [MT11,A18]

» Probabilistic method: disguised individuals likely exist



Is spatial coupling necessary?
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No overlap gap property vs trivial BP fixed point

» overlap gap in some inference problems [GZ17,BWZ20]
» but not in group testing [1Z20]
» yet BP stuck in trivial fixed point



Summary
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optimal efficient algorithm SPIV based on spatial coupling
matching information-theoretic lower bound

existence of an adaptivity gap

optimal two-round adaptive algorithm [HKL19]



