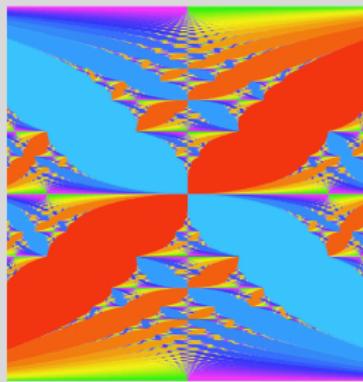


Geometry of Quantum Transport

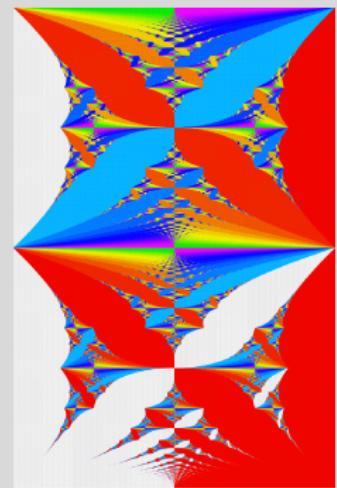
Yosi Avron, Martin Fraas, Gian Michele Graf, Oded Kenneth

26 Jan 2011



Outline

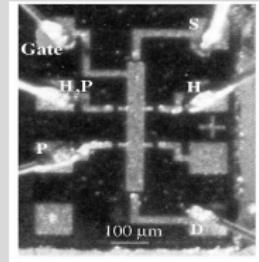
- 1 Motivation: QHE
 - Control
 - Response
 - Geometry
- 2 Open systems
 - Lindbladians
 - Adiabatic evolution
- 3 Quantum response
 - Dephasing Lindbladians
- 4 Compatibility



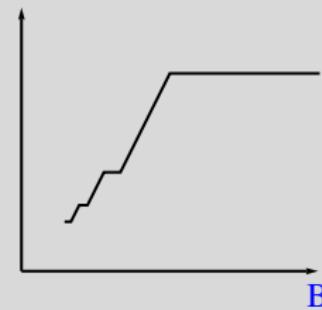
Landau-TKNN butterfly

Motivation: Quantum Hall effect

- III characterized
- Quantized resistivity $\frac{h}{e^2} \frac{1}{\mathbb{Z}}$
- Great accuracy
- Quantum response = Adiabatic curvature
- Hall conductance = Chern number
- Geometry of response in open q-system
- Chern numbers in open q-system

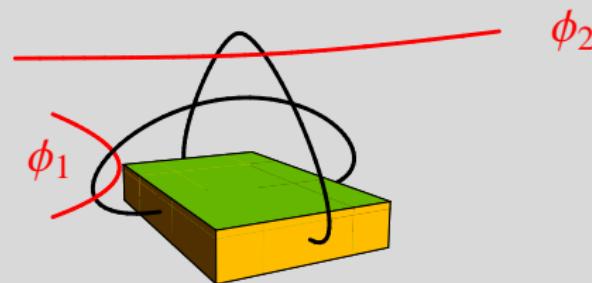


Hall Resistance



Quantum Control

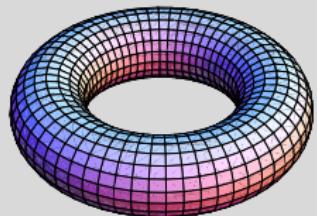
- Controls: Magnetic flux tubes
- $H(\phi)$: *Control space* \mapsto *Hamiltonians*
- Aharonov-Bohm periodicity: $H(\phi) \equiv H(\phi + 2\pi)$
- Control space: \mathbb{T}^2



Topology of QHE in physical space

Controlled Hamiltonians

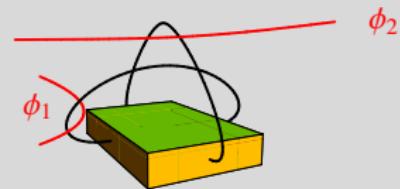
- Controls: ϕ ; Space of controls \mathcal{M} ;
Two dimensional good enough
- Controlled Hamiltonian: $H(\phi)$;
2 \times 2 matrices good enough
- \mathcal{M} : a-priori topology, no a-priori metric
e.g. $\mathbb{T}^2, \mathbb{S}^2, \mathbb{R}^2$



\mathcal{M} : Control spaces

Quantum Response

- Controls $= \phi_\mu$; e.g. magnetic fluxes
- Response: $\frac{\partial H}{\partial \phi_\nu}$ e.g. Loop currents
- Driving= control rates $= \dot{\phi}_\mu$ e.g. emf
- Quantum evolution: $\dot{\rho}_t = \mathcal{L}(\rho)$



Loop currents, emf

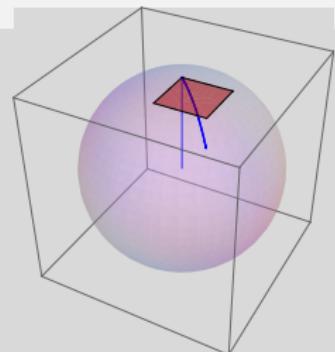
Definition (Response matrix)

$$\underbrace{\text{Tr}(\rho_t \partial_\mu H)}_{\text{response}} = \underbrace{f_{\mu\nu}(\phi)}_{\text{response matrix}} \times \underbrace{\dot{\phi}_\nu}_{\text{driving}} + \dots$$

$$\bullet f = \underbrace{f^S}_{\text{dissipative}} + \underbrace{f^A}_{\text{reactive}}$$

Geometry in Hilbert space

- $P(\phi)$ smooth family of projections
- Example: qubit $P(\phi) = \frac{1+\hat{\phi}\cdot\sigma}{2}$



Metric and symplectic structures

Definition (Fubini-Study; adiabatic curvature)

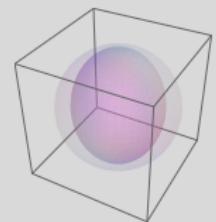
$$g_{\mu\nu} + i\omega_{\mu\nu} = 2 \operatorname{Tr}(A_\mu A_\nu^*), \quad A_\mu = P_\perp \partial_\mu P, \quad P_\perp = 1 - P$$

- $g \geq 0$; symmetric
- ω anti-symmetric, defines a symplectic structure
- Endows control space with geometry

Open systems

- Self-adjoints (Hamiltonians): Generate unitary
- Lindbladians: Generate (completely) positive maps
- Kraus:

$$\rho \rightarrow \sum_{j=1}^n A_j \rho A_j^*, \quad \sum A_j^* A_j = 1$$



Contraction of Bloch sphere

$n = 1$ unitary

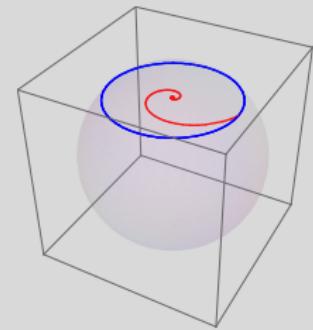
- Interpretation: Measurement, Coupling to a Markovian bath; Stochastic evolution

Lindbladians

Definition (Lindbladian)

$$\dot{\rho} = \mathcal{L}(\rho) = -i[H, \rho] + \sum [\Gamma_a, \rho \Gamma_a^*] + [\Gamma_a \rho, \Gamma_a^*]$$

- $H = H^*$; Γ_a anything.
- Unitary: $\Gamma_a = 0$
- Dephasing: $\Gamma = \Gamma(H)$
- Interpretation: Measurement of H
- P_j , spectral projections of H , stationary states
 $\mathcal{L}(P_j) = 0$



Unitary vs
dephasing orbits

Adiabatic evolutions

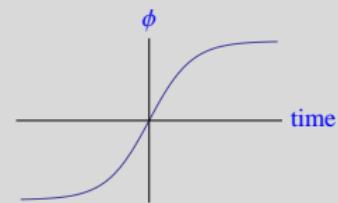
- Controls $\phi(s)$ and $H(\phi)$ change adiabatically,

$$\dot{\phi} = O(\epsilon)$$

- $H(\phi)$ determines \mathcal{L}_ϕ

- Initial data: $P(\phi)$, instantaneous stationary state

- Adiabatic evolutions $\epsilon \dot{\rho} = \mathcal{L}(\rho)$ (re-scaled time)



Adiabatic switching of controls

Theorem (Adiabatic)

If $P(\phi)$ smooth, $\rho_t = P(\phi) + O(\epsilon)$

- Clings to instantaneous stationary for long time, $t = O(1/\epsilon)$

Main result

Theorem (Geometric transport)

Response matrix of dephasing Lindbladians with $\Gamma(H) = \sqrt{\gamma}H$

$$f = \frac{\gamma}{1 + \gamma^2} + \frac{1}{1 + \gamma^2} \omega$$

- Good news: response is geometric
- Bad (?) news: Hall conductance $= \frac{\text{Chern}}{1 + \gamma^2}$
- Metric compatible with symplectic if

$$g\omega^{-1} + \omega g^{-1} = 0$$

Theorem (Immunity)

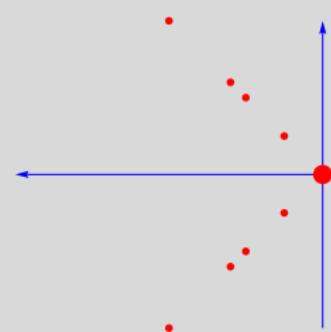
Compatibility implies: $(f^{-1}) = \gamma g^{-1} + \omega^{-1}$

Spectral properties

- Instantaneous: $H |j\rangle = e_j |j\rangle$
- $\mathcal{L}(|j\rangle \langle k|) = \lambda_{jk} |j\rangle \langle k|, \quad \text{Re } \lambda_{jk} \leq 0$
- Dephasing Lindblad $\lambda_{jj} = 0$; multiply degenerate
- Suppose H simple

$$\text{Ker } \mathcal{L} = \{ |j\rangle \langle j|, j = 1, \dots \}$$

$$\text{Range } \mathcal{L} = \{ |i\rangle \langle j|, i \neq j = 1, \dots \}$$



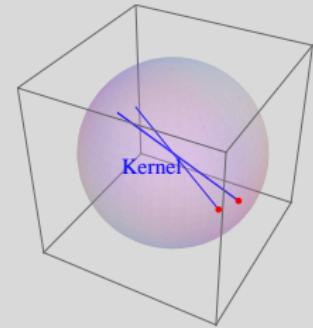
Spectrum Lindblad

Adiabatic evolution

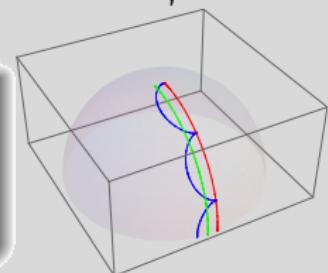
- $\text{Ker } \mathcal{L}_\phi : \mathcal{M} \mapsto \mathcal{H} = \text{Ker } \mathcal{L} \oplus \text{Range } \mathcal{L}$
- Basic identity $P^2 = P \implies \dot{P}P = 0$
- It follows that $\text{Ker } \mathcal{L}_\phi$ evolves like a rigid body
- Characterize motion in *ker* and in *range*;

Theorem (Adiabatic)

$$\rho_t = \underbrace{P(\phi) + O(\epsilon)}_{\text{in kernel}} + \underbrace{\mathcal{L}^{-1}(\partial_\mu P)\dot{\phi}^\mu + O(\epsilon^2)}_{\text{in range}} + \dots$$



Motion of Kernel



Qubit adiabatic orbit

Linear response

- First order in adiabaticity:

$$f_{\mu\nu} = \text{Tr} \left(\underbrace{\partial_\mu H}_{\text{observable}} \underbrace{\mathcal{L}^{-1}(\partial_\nu P)}_{\delta\rho} \right)$$

- Geometric Hamiltonians:

$$H(\phi) = \sum_j \underbrace{e_j}_{\text{fixed}} \underbrace{P_j(\phi)}_{\text{moving}}$$

- Kubo type formula:

$$f_{\mu\nu} = \sum_j e_j \text{tr} \left((\partial_\mu P_j) \mathcal{L}^{-1}(\partial_\nu P) \right)$$

Geometric linear response

- Kubo type formula:

$$f_{\mu\nu} = \sum_j e_j \text{tr}((\partial_\mu P_j) \mathcal{L}^{-1}(\partial_\nu P))$$

- Special: Two level system $P_1 = P_\perp$:

$$f_{\mu\nu} = \frac{1}{i + \gamma} \text{tr}(\partial_\mu P P_\perp \partial_\nu P), \quad \gamma = -\frac{Re \lambda_{01}}{e_1 - e_0}$$

- Less special: $\Gamma(h) = \sqrt{\gamma} H$:

$$f_{\mu\nu} = \frac{1}{i + \gamma} \text{tr}(\partial_\mu P P_\perp \partial_\nu P)$$

- In either case: transport geometric

$$f = \frac{\gamma}{1 + \gamma^2} g + \frac{1}{1 + \gamma^2} \omega$$

Compatibility: Immunity

- g allows to compute length; ω allows to compute area
- Compatibility in 2-D: $\det g = \det \omega$
- Compatibility in n-D: $g\omega^{-1} + \omega g^{-1} = 0$
- Possible only if time reversal is broken: $\omega = 0$ if time reversal holds
- Immunity from dephasing

$$f = \frac{\gamma}{1 + \gamma^2} g + \frac{1}{1 + \gamma^2} \omega \iff f^{-1} = \gamma g^{-1} + \omega^{-1}$$

- Chern number

$$2\pi \underbrace{\text{Chern}}_{\text{integer}} = \int \omega_{12}(\phi) d\phi_1 \wedge d\phi_2 = \int \underbrace{\omega_{12}^{-1}(\phi)}_{\text{Hall resist.}} \underbrace{\det g(\phi)}_{\text{averaging}} d\phi_1 \wedge d\phi_2$$

Compatibility: Tests

- Test: is there $\tau \in \mathbb{C}$ such that

$$P_{\perp} \bar{\partial} P = 0, \quad \bar{\partial} = \tau \partial_1 - \partial_2$$

plugging in

$$g = \text{Tr}(P_{\perp} \{\partial_{\mu} P, \partial_{\nu} P\}), \quad \omega = i \text{Tr}(P_{\perp} [\partial_{\mu} P, \partial_{\nu} P])$$

gives

$$g_{22} = |\tau|^2 g_{11}, \quad g_{12} = \tau_1 g_{11}, \quad \omega_{12} = \tau_2 g_{11}.$$

compatible

Compatibility: Tests and complex structure

Theorem (Complex structure)

$J = g\omega^{-1}$ with g and ω compatible, endows space of controls with complex structure: $J^2 = -1$.

Theorem (Holomorphy test)

Suppose $P = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$ with $\bar{\partial}|\psi\rangle = 0$ (for some τ) then g and ω are compatible

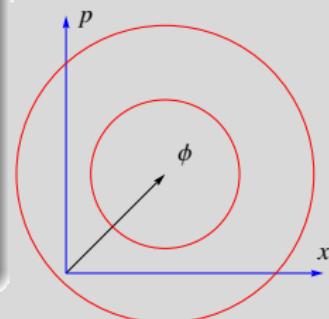
$$P_\perp \bar{\partial} P = P_\perp \bar{\partial} \left(\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle} \right) = P_\perp \underbrace{(\bar{\partial}|\psi\rangle)}_0 \left(\frac{\langle\psi|}{\langle\psi|\psi\rangle} \right) + \underbrace{P_\perp |\psi\rangle}_0 \bar{\partial} \left(\frac{\langle\psi|}{\langle\psi|\psi\rangle} \right)$$

Qubit , Coherent states and QHE

Theorem

Compatible metric and curvature:

- *Qubit:* $H(\phi) = \hat{\phi} \cdot \sigma$
- *Coherent states:* $H(\phi) = (p - \phi_1)^2 + (x - \phi_2)^2$
- *QHE:* $H(\phi) = D^* D$



- $D = i\partial + 2\pi\phi - 2\pi\bar{\tau}By$
- $\partial = \bar{\tau}\partial_x - \partial_y, \quad \phi = \bar{\tau}\phi_1 + \phi_2$
- Coherent states:

$$|\phi_1, \phi_2\rangle = e^{i(\phi_1 x - \phi_2 p)} |0\rangle = \underbrace{N(\phi, \bar{\phi})}_{\text{normalization holomorphic}} \underbrace{e^{\phi a^*} |0\rangle}_{\text{holomorphic}}$$

Summary

- Transport in certain open quantum systems geometric
- Hilbert space projections induce geometry on control space
- Dissipation \propto Fubini-Study metric
- Non-dissipative transport \propto adiabatic curvature
- Kähler structure \implies immunity to dephasing of certain transport coefficients
- Chern numbers still relevant