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Motivation: Quantum Hall effect

Il characterized

Quantized resistivity e%%

"o
1 l\‘,}m‘

Great accuracy

@ Quantum response=Adiabatic curvature ,
Hall Resisteance

@ Hall conductance= Chern number

Geometry of response in open g-system

@ Chern numbers in open g-system 5
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Quantum Control

@ Controls: Magnetic flux tubes
e H(¢) : Control space — Hamiltonians
@ Aharonov-Bohm periodicity: H(¢) = H(¢ + 2m)

o Control space: T?

o b2

)
() ‘-

Topology of QHE in physical space
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Motivation: QHE Control

Controlled Hamiltonians

@ Controls: ¢; Space of controls M,
Two dimensional good enough

o Controlled Hamiltonian: H(¢);
2 X 2 matrices good enough

@ M: a-priori topology, no a-priori metric
e.g. T?,S?, R?
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Quantum Response

@ Controls = ¢,,; e.g. magnetic fluxes
R ;o L

® Response: 57 e.g. Loop currents

o Driving= control rates = gf'm e.g. emf

@ Quantum evolution: p = £L(p)

Definition (Response matrix)

Tr(ptBMH) - ﬁLV(¢) X ¢V +..
~— ~—~— "
response response matrix  driving

1

Loop currents, emf

b2

o f= f_ + f
~— ~—

dissipative  reactive
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Motivation: QHE Geometry

Geometry in Hilbert space
ﬂ //
@ P(¢) smooth family of projections ‘ \\‘,
/ v/
o Example: qubit P(¢) = 1+§5'U ‘
Metric and sy;;:/l/ectic
structures

Definition ( Fubini-Study; adiabatic curvature) |

g'uV + iw,w = 2Tr(A’uA;t), A/L = PJ_@HP7 PJ_ =1—P

@ g > 0; symmetric
@ w anti-symmetric, defines a symplectic structure

@ Endows control space with geometry
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Open systems

o Self-adjoints (Hamiltonians): Generate unitary

o Lindbladians: Generate (completely) positive maps
e Kraus: A
\ ¢/ |

\ .

Contraction of Bloch sphere

n
o 3ok, A =1
Jj=1
n =1 unitary
@ Interpretation: Measurement, Coupling to a Markovian bath;
Stochastic evolution
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Lindbladians

Definition (Lindbladian)
p=L(p) =—ilH,pl+ Y [Fa pl3] + [Fap, T3]

e H = H*; T, anything. A

(]
\o

Unitary: [, =0

Dephasing: I = T'(H) / g‘ \/

o
o Interpretation: Measurement of H v
- ) Unitary vs
@ P;, spectral projections of H, stationary states dephasing orbits
L(P;)=0
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Adiabatic evolutions

o Controls ¢(s) and H(¢) change adiabatically,
¢ = O(e)

time

o H(¢) determines L,

o Initial data: P(¢), instantaneous stationary state  Adiabatic switching of controls

o Adiabatic evolutions ep = L(p) (re-scaled time)

Theorem (Adiabatic)
If P(¢) smooth, p = P(¢) + O(e)

o Clings to instantaneous stationary for long time, t = O(1/e¢)
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Main result

Theorem (Geometric transport)
Response matrix of dephasing Lindbladians with T(H) = \/vH

S S
= w
1 72 1 72

@ Good news: response is geometric

@ Bad (?) news: Hall conductance :ﬂ:’g

@ Metric compatible with symplectic if

gw t4+wg =0

Theorem (Immunity)

Compatibility implies: (1) =~vg !t +w™!
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Spectral properties

o Instantaneous: H |j) = & |j)
o L(Ij) (k[) = Ajx i) (K|, ReAj <0
@ Dephasing Lindblad A\j; = 0; multiply degenerate

@ Suppose H simple
Ker £ = {1j) (il.j=1....}
Range L= {|i)(jl,i#j=1,...}
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Adiabatic evolution

o Ker Ly: M+ H = Ker LD Range L

e Basic identity P2 = P = PPP =0

o It follows that Ker L, evolves like a rigid body /

o . . . Motion of K;nel
@ Characterize motion in ker and in range;

Theorem (Adiabatic)

pe = P(¢) + O(e) + L71(9,P)H" + O(*) + ..

= \
. \
\ =
\
in kernel

\
in range

|
N\

Qubit adiabatic orbit
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Linear response

o First order in adiabaticity:

fw=Tr ( OuH LY9,P))
~ S
observable op
@ Geometric Hamiltonians:
:Z eJ Pi( J
J

flxed movin g

@ Kubo type formula:

f/,LI/ = Z ejtr((a,upj) E_l(al/P))
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Geometric linear response

o Kubo type formula:

fu = Z ejtr((O#Pj) ﬁ—l(al,P))

@ Special: Two level system P; = P :

1 Re )\01
fuy = = tr(0,P P,0,P)), ==
K I+ r(“ + )) v €1 — €
o Less special: I'(h) = /vH:
1
fuy = = tr(0,P P10,P
r i+ ( HE L ))
@ In either case: transport geometric
Y
f =
Yosi Avron, Martin Fraas, Gian Michele Graf, Geometry of Quantum Transport 26 Jan 2011

15 / 20



Compatibility: Immunity

@ g allows to compute length; w allows to compute area

Compatibility in 2-D: det g = detw

Compatibility in n-D: gw™! +wg= !t =0

Possible only if time reversal is broken: w = 0 if time reversal holds

Immunity from dephasing

~
f=
1+~

Chern number

2 Chem = [ wia(9) dos 1 doa = [ wi(9) dete(s) don n oo

integer

> &+ 2w<:>f_1:7g_1+w_1

1+~

Hall resist. averaging
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Compatibility: Tests

o Test: is there 7 € C such that
PLOP =0, 0=101—0,
plugging in
g =Tr(P {0.P,0,P}), w=iTr(P.[0.,P,0,P])
gives

2
2 = |7'\ 811, 812 = 71811, W12 = T2811.

compatible
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Compatibility: Tests and complex structure

Theorem (Complex structure)

J = gw™! with g and w compatible, endows space of controls with

complex structure: J? = —1.

Theorem (Holomorphy test)

Suppose P = % with 0 [v)) = 0 (for some T) then g and w are

compatible

P.oP = P.d (W) =P (D)) <<1<;|/;L>> tEY) 0 <<1§:|i/)|)>

0 0
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Qubit , Coherent states and QHE

Theorem

Compatible metric and curvature:
o Qubit: H¢)=d o
e Coherent states: H(¢) = (p — ¢1)* + (x — ¢2)?
e QHE: H(¢) = D*D
o D=i0+2nw¢—2nTBy

0=T0«—0,, ¢=T¢1+ ¢
Coherent states:

|61, d2) = €/ (P 79P) |0) = N(¢,9) e?*" |0)
N——

normalization holomorphic
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Compatibility

Summary

Transport in certain open quantum systems geometric
Hilbert space projections induce geometry on control space
Dissipation oc Fubini-Study metric

Non-dissipative transport o< adiabatic curvature

Kahler structure = immunity to dephasing of certain transport
coefficints

@ Chern numbers still relevant
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