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Motivation: QHE

Motivation: Quantum Hall effect

Ill characterized

Quantized resistivity h
e2

1
Z

Great accuracy

Quantum response=Adiabatic curvature

Hall conductance= Chern number

Geometry of response in open q-system

Chern numbers in open q-system

2 K. von Klitzing

Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to

Hall Resisteance

B
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Motivation: QHE

Quantum Control

Controls: Magnetic flux tubes

H(φ) : Control space 7→ Hamiltonians

Aharonov-Bohm periodicity: H(φ) ≡ H(φ+ 2π)

Control space: T2

Φ1

Φ2

Topology of QHE in physical space
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Motivation: QHE Control

Controlled Hamiltonians

Controls: φ; Space of controls M;
Two dimensional good enough

Controlled Hamiltonian: H(φ);
2× 2 matrices good enough

M: a-priori topology, no a-priori metric
e.g. T2, S2,R2

M: Control spaces
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Motivation: QHE Response

Quantum Response

Controls = φµ; e.g. magnetic fluxes

Response: ∂H
∂φν

e.g. Loop currents

Driving= control rates = φ̇µ e.g. emf

Quantum evolution: ρ̇t = L(ρ)

Φ1

Φ2

Loop currents, emf

Definition (Response matrix)

Tr(ρt∂µH)︸ ︷︷ ︸
response

= fµν(φ)︸ ︷︷ ︸
response matrix

× φ̇ν︸︷︷︸
driving

+ . . .

f = f S︸︷︷︸
dissipative

+ f A︸︷︷︸
reactive
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Motivation: QHE Geometry

Geometry in Hilbert space

P(φ) smooth family of projections

Example: qubit P(φ) = 1+φ̂·σ
2

Metric and symplectic
structures

Definition ( Fubini-Study; adiabatic curvature)

gµν + iωµν = 2Tr(AµA
∗
ν), Aµ = P⊥∂µP, P⊥ = 1− P

g ≥ 0; symmetric

ω anti-symmetric, defines a symplectic structure

Endows control space with geometry
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Open systems

Open systems

Self-adjoints (Hamiltonians): Generate unitary

Lindbladians: Generate (completely) positive maps

Kraus:

ρ→
n∑

j=1

AjρA
∗
j ,

∑
A∗j Aj = 1

n = 1 unitary

Contraction of Bloch sphere

Interpretation: Measurement, Coupling to a Markovian bath;
Stochastic evolution
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Open systems Lindbladians

Lindbladians

Definition (Lindbladian)

ρ̇ = L(ρ) = −i [H, ρ] +
∑

[Γa, ρΓ∗a] + [Γaρ, Γ
∗
a]

H = H∗; Γa anything.

Unitary: Γa = 0

Dephasing: Γ = Γ(H)

Interpretation: Measurement of H

Pj , spectral projections of H, stationary states
L(Pj ) = 0

Unitary vs
dephasing orbits
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Open systems Adiabatic evolution

Adiabatic evolutions

Controls φ(s) and H(φ) change adiabatically,

φ̇ = O(ε)

H(φ) determines Lφ

Initial data: P(φ), instantaneous stationary state

time

Φ

Adiabatic switching of controls

Adiabatic evolutions ερ̇ = L(ρ) (re-scaled time)

Theorem (Adiabatic)

If P(φ) smooth, ρt = P(φ) + O(ε)

Clings to instantaneous stationary for long time, t = O(1/ε)

Yosi Avron, Martin Fraas, Gian Michele Graf, Oded Kenneth ()Geometry of Quantum Transport 26 Jan 2011 10 / 20



Quantum response

Main result

Theorem (Geometric transport)

Response matrix of dephasing Lindbladians with Γ(H) =
√
γH

f =
γ

1 + γ2
+

1

1 + γ2
ω

Good news: response is geometric

Bad (?) news: Hall conductance = Chern
1+γ2

Metric compatible with symplectic if

gω−1 + ωg−1 = 0

Theorem (Immunity)

Compatibility implies: (f −1) = γ g−1 + ω−1
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Quantum response Dephasing Lindbladians

Spectral properties

Instantaneous: H |j〉 = ej |j〉

L(|j〉 〈k|) = λjk |j〉 〈k | , Re λjk ≤ 0

Dephasing Lindblad λjj = 0; multiply degenerate

Suppose H simple

Ker L =
{
|j〉 〈j | , j = 1, . . .

}
Range L =

{
|i〉 〈j | , i 6= j = 1, . . .

}
Spectrum Lindblad
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Quantum response Dephasing Lindbladians

Adiabatic evolution

Ker Lφ :M 7→ H = Ker L ⊕ Range L

Basic identity P2 = P =⇒ PṖP = 0

It follows that Ker Lφ evolves like a rigid body

Characterize motion in ker and in range;

Theorem (Adiabatic)

ρt = P(φ) + O(ε)︸ ︷︷ ︸
in kernel

+L−1(∂µP)φ̇µ + O(ε2)︸ ︷︷ ︸
in range

+ . . .

Kernel

Motion of Kernel

,

Qubit adiabatic orbit
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Quantum response Dephasing Lindbladians

Linear response

First order in adiabaticity:

fµν = Tr
(

∂µH︸︷︷︸
observable

L−1(∂νP)︸ ︷︷ ︸
δρ

)
Geometric Hamiltonians:

H(φ) =
∑

j

ej︸︷︷︸
fixed

Pj (φ)︸ ︷︷ ︸
moving

Kubo type formula:

fµν =
∑

j

ej tr
(
(∂µPj ) L−1(∂νP)

)
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Quantum response Dephasing Lindbladians

Geometric linear response

Kubo type formula:

fµν =
∑

j

ej tr
(
(∂µPj ) L−1(∂νP)

)
Special: Two level system P1 = P⊥:

fµν =
1

i + γ
tr
(
∂µP P⊥∂νP)

)
, γ = −Re λ01

e1 − e0

Less special: Γ(h) =
√
γH:

fµν =
1

i + γ
tr
(
∂µP P⊥∂νP)

)
In either case: transport geometric

f =
γ

1 + γ2
g +

1

1 + γ2
ω
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Compatibility

Compatibility: Immunity

g allows to compute length; ω allows to compute area

Compatibility in 2-D: det g = detω

Compatibility in n-D: gω−1 + ωg−1 = 0

Possible only if time reversal is broken: ω = 0 if time reversal holds

Immunity from dephasing

f =
γ

1 + γ2
g +

1

1 + γ2
ω ⇐⇒ f −1 = γg−1 + ω−1

Chern number

2π Chern︸ ︷︷ ︸
integer

=

∫
ω12(φ) dφ1 ∧ dφ2 =

∫
ω−1

12 (φ)︸ ︷︷ ︸
Hall resist.

det g(φ) dφ1 ∧ dφ2︸ ︷︷ ︸
averaging
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Compatibility

Compatibility: Tests

Test: is there τ ∈ C such that

P⊥∂̄P = 0, ∂̄ = τ∂1 − ∂2

plugging in
g = Tr(P⊥{∂µP, ∂νP}), ω = i Tr(P⊥[∂µP, ∂νP])

gives

g22 = |τ |2g11, g12 = τ1g11, ω12 = τ2g11.

compatible
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Compatibility

Compatibility: Tests and complex structure

Theorem (Complex structure)

J = gω−1 with g and ω compatible, endows space of controls with
complex structure: J2 = −1.

Theorem (Holomorphy test)

Suppose P = |ψ〉〈ψ|
〈ψ|ψ〉 with ∂̄ |ψ〉 = 0 (for some τ) then g and ω are

compatible

P⊥∂̄P = P⊥∂̄

( |ψ〉 〈ψ|
〈ψ|ψ〉

)
= P⊥ (∂̄ |ψ〉)︸ ︷︷ ︸

0

( 〈ψ|
〈ψ|ψ〉

)
+ P⊥ |ψ〉︸ ︷︷ ︸

0

∂̄

( 〈ψ|
〈ψ|ψ〉

)
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Compatibility

Qubit , Coherent states and QHE

Theorem

Compatible metric and curvature:

Qubit: H(φ) = φ̂ · σ
Coherent states: H(φ) = (p − φ1)2 + (x − φ2)2

QHE: H(φ) = D∗D

D = i∂ + 2πφ− 2πτ̄By

∂ = τ̄ ∂x − ∂y , φ = τ̄φ1 + φ2

Coherent states:

|φ1, φ2〉 = e i(φ1x−φ2p) |0〉 = N(φ, φ̄)︸ ︷︷ ︸
normalization

eφa∗ |0〉︸ ︷︷ ︸
holomorphic

x

Φ

p

1

2
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Compatibility

Summary

Transport in certain open quantum systems geometric

Hilbert space projections induce geometry on control space

Dissipation ∝ Fubini-Study metric

Non-dissipative transport ∝ adiabatic curvature

Kähler structure =⇒ immunity to dephasing of certain transport
coefficints

Chern numbers still relevant
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