

Diffusion in Hamiltonian Systems

Wojciech De Roeck
Institute of Theoretical Physics, Heidelberg

23rd February 2011

based on work with O. Ajanki, A. Kupiainen, and earlier work with J. Fröhlich.

Main goal

Prove that a Hamiltonian (in particular: deterministic) system exhibits diffusion for long times.

→ **Emergence of irreversibility from deterministic dynamics**
common wisdom physically, but hard to make rigorous

Outline

- I discuss the strategy following the Rayleigh gas (for which we have no results whatsoever).
- At the end, I give the real (quantum) model (with result). Differences with the Rayleigh model are irrelevant except for those that will be highlighted

Previous results (scarce)

Diffusion proven in

- *Sinai and Bunimovich, 81, Billiards with finite horizon (Lorentz gas)*

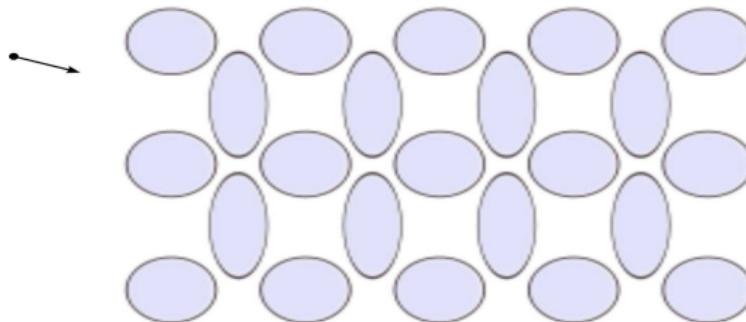


Figure: Tracer particle bounces elastically off periodic objects.
No 'free corridors'.

- *Knauf, 90, A lattice of $-1/r$ attractive potentials in 2D \Rightarrow , smooth+uniformly hyperbolic.*
- *Harris and Spitzer, 69, 1D gas of point particles, all masses equal: exactly solvable*

Rayleigh gas: particle in ideal gas

- Heavy particle with mass M in a gas of point particles with mass m .
- Elastic collisions $M - m$ and free flow between collisions.
- Initial positions \sim point process with density ρ .
- Maxwellian initial velocities $\rho_E^\beta(dv) \sim e^{-\frac{\beta}{2}mv^2} dv$
- Formally;

$$\rho_E^\beta(d\mathbf{x}d\mathbf{v}) \sim \prod_i \rho e^{-\frac{\beta}{2}mv_i^2} dx_i dv_i$$

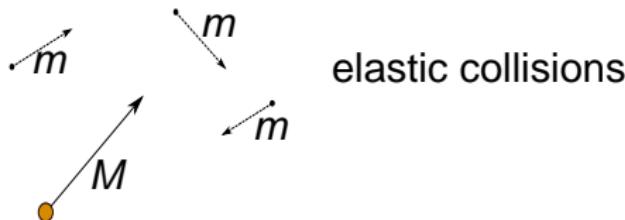


Figure: Particle M has volume, particles m are points: No collisions between M and m .

Rayleigh gas: Diffusion?

The heavy particle is with position $X(t)$ is originally placed at the origin. $X(0) = 0$. Does the particle diffuse?

$$\frac{|X(t)|^2}{t} \xrightarrow[t \nearrow \infty]{\text{in expectation}} D$$

....and in probability? CLT? invariance principle?

If you assume each gas particle collides only once, then $(X(t), \frac{dX(t)}{dt})$ is just a Markov process (fully stochastic). Diffusion follows easily upon analyzing this Markov process (Linear Boltzmann Equation)

However, what about recollisions?
⇒ Markov property breaks down

Rayleigh gas: Diffusion?

The heavy particle is with position $X(t)$ is originally placed at the origin. $X(0) = 0$. Does the particle diffuse?

$$\frac{|X(t)|^2}{t} \xrightarrow[t \nearrow \infty]{\text{in expectation}} D$$

....and in probability? CLT? invariance principle?

If you assume each gas particle collides only once, then $(X(t), \frac{dX(t)}{dt})$ is just a Markov process (fully stochastic). Diffusion follows easily upon analyzing this Markov process (Linear Boltzmann Equation)

However, what about recollisions?
⇒ Markov property breaks down

Rayleigh gas: Diffusion?

The heavy particle is with position $X(t)$ is originally placed at the origin. $X(0) = 0$. Does the particle diffuse?

$$\frac{|X(t)|^2}{t} \xrightarrow[t \nearrow \infty]{\text{in expectation}} D$$

....and in probability? CLT? invariance principle?

If you assume each gas particle collides only once, then $(X(t), \frac{dX(t)}{dt})$ is just a Markov process (fully stochastic). Diffusion follows easily upon analyzing this Markov process (Linear Boltzmann Equation)

However, what about recollisions?
⇒ Markov property breaks down

Rayleigh gas: Diffusion?

The heavy particle is with position $X(t)$ is originally placed at the origin. $X(0) = 0$. Does the particle diffuse?

$$\frac{|X(t)|^2}{t} \xrightarrow[t \nearrow \infty]{\text{in expectation}} D$$

....and in probability? CLT? invariance principle?

If you assume each gas particle collides only once, then $(X(t), \frac{dX(t)}{dt})$ is just a Markov process (fully stochastic). Diffusion follows easily upon analyzing this Markov process (Linear Boltzmann Equation)

However, what about recollisions?
⇒ Markov property breaks down

Rayleigh gas: Scaling limit

- Make recollisions infinitely unlikely \Rightarrow easier problem. This is the idea of scaling limits. For example, let density of the gas particles be small and observe the system for long times

$$\text{density} \sim \epsilon, \quad \text{time} \sim 1/\epsilon, \quad \epsilon \searrow 0.$$

In the limit, $\epsilon \searrow 0$, the probability of one collision, respectively a recollision is

$$(1/\epsilon) \times \epsilon, \quad (1/\epsilon) \times \epsilon^2$$

One expects that $(\epsilon X^\epsilon(\tau/\epsilon), V^\epsilon(\tau/\epsilon))$ converges to a Markov process (Linear Boltzmann equation) in τ as $\epsilon \searrow 0$.

- This was done (essentially) by Durr-Goldstein-Lebowitz in 1981. However, without scaling limit (i.e. ϵ fixed), no results available!

Scaling limits are not the end of the story

The dynamical system gets adjusted as time grows.

⇒ Does not give information on the long-time limit of the fixed ϵ dynamical system.

Example

2D Anderson model is well-described by LBE for short times, but localized for large times: With probability $\exp^{-\epsilon^{-1}}$, the particle is sent back to its starting place. The scaling limit is lying!

Results (NOT exhaustive) on scaling limits

- *Yau, Erdős, '99, Yau, Erdős, Salmhofer, '05, Lukkarinen, Spohn, '08*, quantum or wave models
- *Toth, Holley, Dürr-Goldstein-Lebowitz, '81*, Rayleigh gas
- *Komorowski, Ryzhik, '04*, particle in random force field
- *Dolgopyat, Liverani, '10*, coupled Anosov systems.

Why is it not obvious?

- Problem is formulated as perturbation of ballistic system
- Strategy: first establish stochasticity on short time-scales. View the system as a perturbation of the stochastic system.
- Time for stochasticity to set in (E.g. gap of the velocity process) is of the order of $1/\epsilon$ (at least one collision)
- However, in time $1/\epsilon$, the particle travels a distance $1/\epsilon$. The probability that two particles cross the swept-out space region simultaneously is $O(1)$. **No small parameter**

Solution: creeping particle

Make mass M ϵ -dependent, such that velocity $v \rightarrow 0$ as $\epsilon \rightarrow 0$ and swept-out space cylinder shrinks. Then the recollisions are manifestly subleading!

But Let p, q be pre-collision S and E respectively, and p', q' post-collision.

$$\begin{cases} p + q = p' + q' \\ \frac{p^2}{2M} + \frac{q^2}{2m} = \frac{(p')^2}{2M} + \frac{(q')^2}{2m} \end{cases}$$

Indeed, let $M \nearrow \infty$ and $\frac{p^2}{2M} = O(\beta^{-1}) = O(1)$ (Maxwell distribution), then

$$\frac{|p' - p|}{|p|} = \frac{|q' - q|}{|p|} \sim \frac{O(1)}{O(\sqrt{M})}$$

Hence gap of velocity process vanishes, we lose effective stochasticity.

Solution: creeping particle

Make mass M ϵ -dependent, such that velocity $v \rightarrow 0$ as $\epsilon \rightarrow 0$ and swept-out space cylinder shrinks. Then the recollisions are manifestly subleading!

But Let p, q be pre-collision S and E respectively, and p', q' post-collision.

$$\begin{cases} p + q = p' + q' \\ \frac{p^2}{2M} + \frac{q^2}{2m} = \frac{(p')^2}{2M} + \frac{(q')^2}{2m} \end{cases}$$

Indeed, let $M \nearrow \infty$ and $\frac{p^2}{2M} = O(\beta^{-1}) = O(1)$ (Maxwell distribution), then

$$\frac{|p' - p|}{|p|} = \frac{|q' - q|}{|p|} \sim \frac{O(1)}{O(\sqrt{M})}$$

Hence gap of velocity process vanishes, we lose effective stochasticity.

Solution: creeping particle with internal spring

- Assume the particle has some internal dgf. s with energy $E_{int}(s)$, e.g. it is a molecule with a vibrational mode.
- Replace $\frac{p^2}{2M} \rightarrow \frac{1}{M}E_{kin}(p)$, with $E_{kin}(\cdot)$ bounded (realistic for quantum particle on the lattice). Instead of collisions, consider absorption, and emission.

$$\text{emit } q' \Rightarrow \begin{cases} p &= p' + q', \\ \frac{1}{M}E_{kin}(p) + E_{int}(s) &= \frac{1}{M}E_{kin}(p') + \frac{(q')^2}{2m} + E'_{int}(s') \end{cases}$$

If $M \nearrow \infty$ and $E_{int} = E'_{int}$, then $p = p'$, \Rightarrow No momentum transfer.

If $M \nearrow \infty$ and $E_{int} - E'_{int} = O(1)$, then $p - p' = O(1)$, \Rightarrow No problem, momentum randomized after $O(1)$ collisions

Solution: creeping particle with internal spring

- Assume the particle has some internal dgf. s with energy $E_{int}(s)$, e.g. it is a molecule with a vibrational mode.
- Replace $\frac{p^2}{2M} \rightarrow \frac{1}{M}E_{kin}(p)$, with $E_{kin}(\cdot)$ bounded (realistic for quantum particle on the lattice). Instead of collisions, consider absorption, and emission.

$$\text{emit } q' \Rightarrow \begin{cases} p &= p' + q', \\ \frac{1}{M}E_{kin}(p) + E_{int}(s) &= \frac{1}{M}E_{kin}(p') + \frac{(q')^2}{2m} + E'_{int}(s') \end{cases}$$

If $M \nearrow \infty$ and $E_{int} = E'_{int}$, then $p = p'$, \Rightarrow No momentum transfer.

If $M \nearrow \infty$ and $E_{int} - E'_{int} = O(1)$, then $p - p' = O(1)$, \Rightarrow No problem, momentum randomized after $O(1)$ collisions

Solution: creeping particle with internal spring

- Assume the particle has some internal dof. s with energy $E_{int}(s)$, e.g. it is a molecule with a vibrational mode.
- Replace $\frac{p^2}{2M} \rightarrow \frac{1}{M}E_{kin}(p)$, with $E_{kin}(\cdot)$ bounded (realistic for quantum particle on the lattice). Instead of collisions, consider absorption, and emission.

$$\text{emit } q' \Rightarrow \begin{cases} p &= p' + q', \\ \frac{1}{M}E_{kin}(p) + E_{int}(s) &= \frac{1}{M}E_{kin}(p') + \frac{(q')^2}{2m} + E'_{int}(s') \end{cases}$$

If $M \nearrow \infty$ and $E_{int} = E'_{int}$, then $p = p'$, \Rightarrow No momentum transfer.

If $M \nearrow \infty$ and $E_{int} - E'_{int} = O(1)$, then $p - p' = O(1)$, \Rightarrow No problem, momentum randomized after $O(1)$ collisions

- Ingredients

- Hilbert space \mathcal{H} and a positive-definite density matrix $\rho \in \mathcal{B}_1(\mathcal{H})$ with $\text{Tr } \rho = 1$.
- A unitary time-evolution U_t : $U_t U_{t'} = U_{t+t'}$, given by $U_t = e^{itH}$.
- A position observable $X = X^* \in \mathcal{B}(\mathcal{H})$

- Evolved density matrix $U_t \rho U_{-t}$ describes system at time t :

$$\mathbb{E}_0[F(X)] \sim \text{Tr}[\rho F(X)], \quad \mathbb{E}_t[F(X)] \sim \text{Tr}[U_t \rho U_{-t} F(X)]$$

E.g. $F = 1_x$, then $\text{Tr}[\rho 1_x(X)]$ prob. to measure $X = x$.

- Diffusion: for ρ such that originally, $\text{Tr}[\rho F(X)] = F(0)$

$$\text{Tr}[U_t \rho U_{-t} e^{i \frac{\gamma}{\sqrt{t}} X}] \underset{t \nearrow \infty}{\rightarrow} e^{-\frac{1}{2}(\gamma, D\gamma)}$$

for some *diffusion tensor* D .

Setup: Quantum particle coupled to a field I.

- The Hilbert space is of the form (S=system, E=reservoir)

$$\mathcal{H} := \mathcal{H}_S \otimes \mathcal{H}_E$$

where

$$\mathcal{H}_E = \Gamma_{symm}(\mathfrak{h}) = \Omega \oplus \mathfrak{h} \oplus (\mathfrak{h} \otimes_{symm} \mathfrak{h}) \oplus \dots$$

The space $\mathfrak{h} = L^2(\mathbb{T}^d, dq)$ or $\mathfrak{h} = L^2(\mathbb{R}^d, dq)$ is the Hilbert space of one field quantum, a phonon or photon in our case.

- The Hamiltonian is

$$H_\lambda := H_S + H_E + \lambda H_{SE}$$

where $H_S = H_S \otimes 1$ acts on \mathcal{H}_S and $H_E = 1 \otimes H_E$ on \mathcal{H}_E .
The coupling strength λ will be assumed to be small.
For $\lambda = 0$, particle and field are decoupled \Rightarrow particle is ballistic.

Setup II: The field

- The free dynamics $t \rightarrow U_t^0$ of one field quantum (one gas particle):

$$U_t^0 \phi(q) = e^{i\omega_E(q)t} \phi(q), \quad \text{Hamiltonian } \omega(q)$$

Examples: $\omega_E(q) = |q|$ (photons) or $\omega_E(q) = \sqrt{m^2 + q^2}$ (optical phonons)

- Free dynamics on $\Gamma_{\text{symm}}(\mathfrak{h}) = \mathbb{C} \oplus \mathfrak{h} \oplus (\mathfrak{h} \otimes_{\text{symm}} \mathfrak{h}) \oplus \dots$

$$H_E = d\Gamma(\omega_E) = 0 \oplus \omega \oplus (1 \otimes \omega_E + \omega_E \otimes 1) \oplus \dots$$

- Initial (field) density matrix

$$\rho_E = \frac{1}{\text{Norm}} e^{-\beta H_E}$$

(Restrict to finite volume $\Lambda \subset \mathbb{Z}^d$)

Setup III: Particle

- Hilbert space: translation dgf. and internal dgf. (IDF)

$$\mathcal{H}_S = l^2(\mathbb{Z}^d) \otimes \mathbb{C}^N$$

- Hamiltonian

$$H_S = \lambda^2 \Delta \otimes \mathbf{1} + \mathbf{1} \otimes H_{IDF}$$

with Δ the discrete Laplacian and H_{IDF} some Hermitian matrix.

- The free time-evolution is ballistic! Let X be position operator on $l^2(\mathbb{Z}^d)$, then

$$\text{Tr}[(X \otimes \mathbf{1}) \left(e^{-itH_S} \rho_S e^{itH_S} \right)] \propto t$$

for generic initial density matrices, e.g.

$$\rho_S = \rho_S(x, y, IDF) = \delta_{x,0} \delta_{y,0} \otimes \rho_S(IDF)$$

The interaction

$$H_{\text{SE}} := \sum_x \{1_x \otimes W \otimes a(\phi_x) + 1_x \otimes W \otimes a^*(\phi_x)\}$$

- W is a Hermitian matrix acting on \mathbb{C}^N
- $a^*(\phi_x)/a(\phi_x)$ creates/annihilates a field quantum with wavefunction $\phi_x \in \mathfrak{h} = L^2(\mathbb{T}^d)$.

$$a^*(\psi) \text{Sym}[\psi_1 \otimes \dots \otimes \psi_k] := \sqrt{k+1} \text{Sym}[\psi \otimes \psi_1 \otimes \dots \otimes \psi_k]$$

with Sym projection on symmetric subspace, and
 $a(\phi) = (a^*(\phi))^*$. Satisfy CCR:

$$[a(\psi'), a^*(\psi)] = \langle \psi', \psi \rangle$$

- $\phi_x(q) = e^{iqx}\phi(q)$. The function $\phi(q)$ is the *form factor*, containing appropriate IR and UV cutoffs: it determines the *form* of the particle.

Setup: Summary

The Hamiltonian

$$\begin{aligned} H_\lambda &:= \lambda^2 \Delta \otimes 1 \otimes 1 + 1 \otimes H_{IDF} \otimes 1 + 1 \otimes 1 \otimes d\Gamma(\omega) \\ &+ \lambda \sum_x \{1_x \otimes W \otimes a(\phi_x) + 1_x \otimes W \otimes a^*(\phi_x)\} \end{aligned}$$

where H_{IDF} and W are $N \times N$ -matrices.

Initial density matrix

$$\rho_0 = \delta_{x,0} \delta_{y,0} \otimes \rho(IDF) \otimes \frac{1}{Norm} e^{-\beta H_E}$$

Quantity of interest

$$\mathbb{E}_t[e^{i\frac{\gamma}{\sqrt{t}}X}] = \text{Tr}[e^{i\frac{\gamma}{\sqrt{t}}X} e^{-itH_\lambda} \rho_0 e^{itH_\lambda}]$$

with $X = X \otimes 1_{IDF} \otimes 1_E$ position operator on $L^2(\mathbb{Z}^d)$.

Particle in contact with reservoir

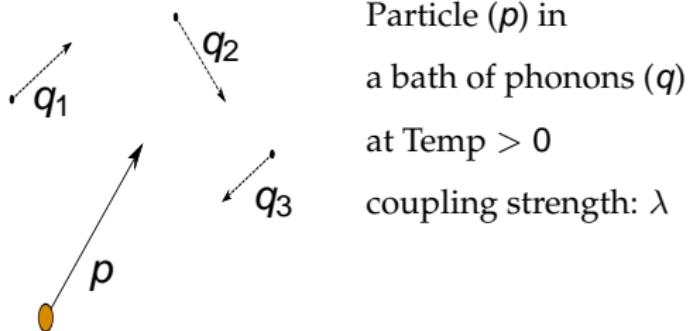
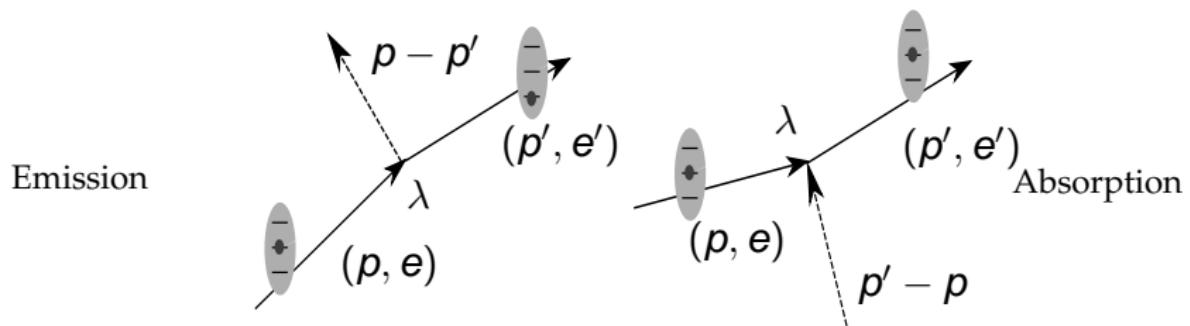


Figure: p, p' are the particle momenta, e, e' are the internal dgf. (\sim vibrational levels)

Dispersive properties of the free bosons

- The bosons enter only via the 'free' correlation function

$$\zeta(x, t) := \text{Tr} \left[\rho_E^\beta \Phi(x, t) \Phi(0, 0) \right]$$

with the time-evolved, space-translated interaction terms

$$\Phi(x, t) := \int_{\mathbb{T}^d} dq \left\{ e^{i(qx - \omega t)} \phi(q) a_q + \text{h.c.} \right\}$$

- If $\omega(q) = \sqrt{m^2 + |q|^2}$ and ϕ smooth, then

$$\sup_x |\zeta(x, t)| = O(|t|^{-d/2}) \quad \text{diffusion eq.}$$

- If $\omega(q) = |q|$ and ϕ smooth, then

$$\sup_x |\zeta(x, t)| = O(|t|^{-(d-1)/2}) \quad \text{lin. wave eq.}$$

Assume that the particle is sufficiently coupled (*Fermi Golden Rule*, later) and that

$$\sup_x |\zeta(x, t)| \leq O(|t|^{-(1+\alpha)}), \quad \begin{cases} \alpha > 1/2 & \text{if noneq. } (\beta_1 \neq \beta_2) \\ \alpha > 1/4 & \text{if eq.} \end{cases}$$

(noneq. setup: replace the field by two fields)

Then, for λ small enough but not zero, the particle motion is diffusive: for any $\kappa \in \mathbb{R}^d$:

$$\lim_{\Lambda \nearrow \mathbb{Z}^d} \text{Tr}[\rho_t e^{i\gamma \frac{\kappa}{\sqrt{t}}}] \quad \rightarrow \quad e^{-(\gamma, D_\lambda \gamma)}, \quad \rho_t = e^{-itH} \rho_0 e^{itH}$$

as $t \rightarrow \infty$, with

$$D_\lambda = \lambda^2 (D_m + o(|\lambda|^0))$$

and D_m corresponds to Markov approximation (later).

- D_m is the diffusion constant of a Markovian approximation (to be defined). The strict positivity of D_m is the omitted assumption about 'sufficient coupling'.
- **Noneq:** No reasonable 3D model satisfies the time-decay assumption, yes in 4D.
- **Eq:** There are 3D models where $|\zeta(x, t)| \sim O(t^{-3/2})$.
- Earlier 4D model (D.R., J. Fröhlich) has additional assumption:

$$|\zeta(x, t)| \leq e^{-ct} \quad \text{for small 'speed': } |x| \leq v^*|t|$$

(satisfied if field consists of photons ($\omega(q) = |q|$) in the continuum+ ultrastrong infrared regularity)

The Van Hove limit (weak coupling limit)

Convergence of the reduced density matrix [Davies, 74]

Assume that $\int \sup_x |\zeta(x, t)| dt < \infty$. Then

$$e^{it[H_{IDF}, \cdot]} \rho_{S,t} \xrightarrow[t=\lambda^{-2}\tau]{\lambda \searrow 0} e^{\tau\mathcal{M}} \rho_{S,0}$$

where $\rho_{S,t} \equiv \text{Tr}_E(e^{-itH} \rho_0 e^{itH})$ and \mathcal{M} is a "Lindblad operator"

- Partial trace Tr_E (*cfr. marginal distribution*) defined by

$$\text{Tr}[(A_S \otimes 1) \rho_{S+E}] = \text{Tr}_S[A_S \text{Tr}_E[\rho_{S+E}]], \quad \forall A_S \in \mathcal{B}(\mathcal{H}_S)$$

- $\lambda^{-2} (= \epsilon^{-1})$ is timescale where effects of field become visible. The 'fast' evolution $e^{-it[H_{IDF}, \cdot]}$ is subtracted.
- $e^{\tau\mathcal{M}}$ is a 'Quantum Markov semigroup'; a semigroup of positivity-preserving, trace-preserving maps.

The Van Hove limit: properties of the generator

First, **turn off hopping**: $\mathcal{H}_S = \mathbb{C}^N$, e.g. $M = \infty$.

- Let e, e' be non-degenerate eigenvalues of H_{IDF} ,

$$\nu(e) = \langle e | \rho_S | e \rangle, \quad \text{occupation prob.}$$

with $\langle e |$ the corresponding eigenvector. Then

$$\frac{d}{d\tau} \nu(e) = \sum_{e'} [r(e' \rightarrow e) \nu(e') - r(e \rightarrow e') \nu(e)]$$

with detailed balance $r(e' \rightarrow e) = e^{-\beta(e-e')} r(e \rightarrow e')$.

Autonomous behaviour: diagonal independent of off-diagonal: Pauli master equation

- Decoherence

$$\langle e | \rho_S | e' \rangle \sim e^{-\tau/\tau_{dc}}, \quad e \neq e'$$

Off-diagonal elements vanish (no Schrodinger cat states!)

Bloch-Boltzmann equation (with hopping)

- Let e, e' eigenvalues of H_{IDF} , and p, p' (quasi)momenta, and

$$\nu(e, p) := \langle e, p | \rho_S | e, p \rangle$$

Diagonal elements evolve as

$$\frac{d}{d\tau} \nu(e, p) = \sum_{e', p'} [r(e', p' \rightarrow e, p) \nu(e', p') - r(e, p \rightarrow e', p') \nu(e, p)]$$

with detailed balance

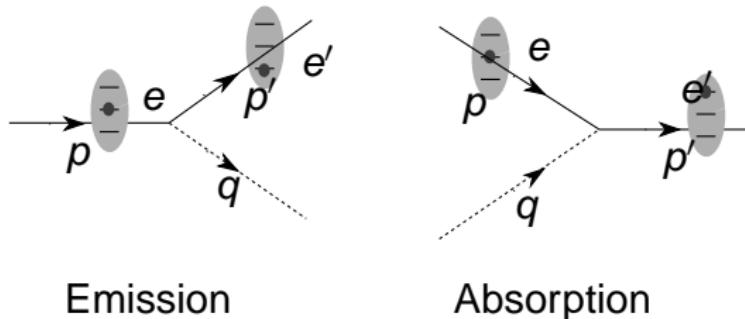
$$r(e', p' \rightarrow e, p) = e^{-\beta(e - e')} r(e, p \rightarrow e', p').$$

- Transport: At momentum p , the particle moves with (group) velocity $v_g(p) = \mathcal{O}(1)$. (position "slaved" by p , like in LBE)
- Center of mass decoherence (off diagonal position elements)

$$\langle e, x | \rho_S | e', x' \rangle \sim e^{-|x-x'|/\ell_{dc}} + e^{-\tau/\tau_{dc}}$$

Bloch-Boltzmann equation

The support of the rates $r(e, p \rightarrow e', p')$ is determined by 'collision rules'.



$$\text{emission} \left\{ \begin{array}{l} p = p' + q \\ e = e' + \omega(q) \end{array} \right. \quad \text{absorption} \left\{ \begin{array}{l} p + q = p' \\ e + \omega(q) = e' \end{array} \right.$$

Kinetic energy of particle ($\mathcal{O}(\lambda^2)$) vanishes in these collision rules!

$$\begin{array}{ll} \text{emission} & \left\{ \begin{array}{l} p = p' + q \\ e = e' + \omega(q) \end{array} \right. \quad \text{absorption} & \left\{ \begin{array}{l} p + q = p' \\ e + \omega(q) = e' \end{array} \right. \end{array}$$

Why IDF

If $e = e'$, then necessarily $p = p'$. Hence no change of direction.

Diffusion in the Markovian approximation

By the statement that the system is 'sufficiently well-coupled', we mean that the Bloch-Boltzmann equation exhibits diffusion. This can be checked within the theory of stochastic processes.

Dealing with longer time scales

- We know that on time scales $t \approx \lambda^{-2}$, the particle looks like a random walk. It takes a few steps in this time.
- The corrections to this behaviour are manifestly non-Markovian and long-range in time. The range is determined by the correlation function $\zeta(x, t)$
- This looks like the problem of proving an annealed central limit theorem for a random walk in a time-dependent random environment, with long-range memory
- More generally, this looks like doing perturbation theory around a stochastic system, rather than around the unperturbed Hamiltonian system.

- Realistic Hamiltonian models for diffusion. 3D case included. Only mild assumptions on details of the model.
- Only soft mathematics required: Van Hove scaling limit and perturbation of stochastic systems. Thanks to the introduction of a new time-scale.
- **Phenomenology is beautiful:** Diffusion, decoherence, thermalization, transport, fluctuation-dissipation, quantum ratchets.

Strategy: RWRE I (random walk in random environment)

Let $\tilde{U}_{\tau \in \mathbb{N}}$ be *random* transition kernels on \mathbb{Z}^d

- law of \tilde{U}_τ invariant under rotations and space, time-translations.
- $\mathbb{E}(\tilde{U}_\tau) = \tilde{T}$ is transition kernel of simple random walk, say $\tilde{T} \in \mathcal{B}$ with $\mathcal{B} = \mathcal{B}(l^1(\mathbb{Z}^d) \rightarrow l^1(\mathbb{Z}^d))$
- Hence, $\tilde{U}_\tau = \tilde{T} + \tilde{B}_\tau$ with \tilde{B}_τ 'dynamical disorder'.

$$\begin{aligned}\mathbb{E}(\tilde{U}_N \dots \tilde{U}_1) &= \tilde{T}^N + \sum_{A \neq \emptyset} \mathbb{E} \left(\underbrace{\tilde{B}_{\tau_i} \dots \tilde{T} \dots \tilde{B}_{\tau_j}}_{\tilde{B} \text{ at times } \tau_1, \dots, \tau_m} \right) \\ &= \tilde{T}^N + \sum_{A \neq \emptyset} \mathcal{T}[\otimes_{\tau \in A^c} \tilde{T}_\tau \otimes \mathbb{E}(\tilde{B}_{\tau_m} \dots \tilde{B}_{\tau_1})]\end{aligned}$$

where \mathcal{T} time-orders operators: $\mathcal{T}[V_3 \otimes V_2 \otimes V_1] = V_3 V_2 V_1$ and the correlation function $\mathbb{E}(\tilde{B}_{\tau_m} \dots \tilde{B}_{\tau_1})$ takes values in $\mathcal{B}^{\otimes m}$

Strategy: RWRE I (random walk in random environment)

Let $\tilde{U}_{\tau \in \mathbb{N}}$ be *random* transition kernels on \mathbb{Z}^d

- law of \tilde{U}_τ invariant under rotations and space, time-translations.
- $\mathbb{E}(\tilde{U}_\tau) = \tilde{T}$ is transition kernel of simple random walk, say $\tilde{T} \in \mathcal{B}$ with $\mathcal{B} = \mathcal{B}(l^1(\mathbb{Z}^d) \rightarrow l^1(\mathbb{Z}^d))$
- Hence, $\tilde{U}_\tau = \tilde{T} + \tilde{B}_\tau$ with \tilde{B}_τ 'dynamical disorder'.

$$\begin{aligned}\mathbb{E}(\tilde{U}_N \dots \tilde{U}_1) &= \tilde{T}^N + \sum_{A \neq \emptyset} \mathbb{E} \left(\underbrace{\tilde{B}_{\tau_i} \dots \tilde{T} \dots \tilde{B}_{\tau_j}}_{\tilde{B} \text{ at times } \tau_1, \dots, \tau_m} \right) \\ &= \tilde{T}^N + \sum_{A \neq \emptyset} \mathcal{T}[\otimes_{\tau \in A^c} \tilde{T}_\tau \otimes \mathbb{E}(\tilde{B}_{\tau_m} \dots \tilde{B}_{\tau_1})]\end{aligned}$$

where \mathcal{T} time-orders operators: $\mathcal{T}[V_3 \otimes V_2 \otimes V_1] = V_3 V_2 V_1$ and the correlation function $\mathbb{E}(\tilde{B}_{\tau_m} \dots \tilde{B}_{\tau_1})$ takes values in $\mathcal{B}^{\otimes m}$.

Strategy: RWRE II

Result (Ajanki, D.R., Kupiainen, in progress)

Let $b_\tau(x) = \sum_{x'} |\tilde{B}_\tau(x, x')| e^{c|x' - x|}$ and assume (for all m)

$$\sum_{1=\tau_1 < \dots < \tau_m} \prod_{j=2}^m (|\tau_j - \tau_{j-1}|^\alpha) \sup_{x_1, \dots, x_m} \left| \mathbb{E}^c \left(\prod_{j=1}^m b_{\tau_j}(x_j) \right)^T \right| < \delta^m,$$

(Here \mathbb{E}^c stands for the connected correlation function) Then, if $\delta < \delta_0$ and $\alpha > 0$, there is annealed CLT

$$\left[\mathbb{E}(\tilde{U}_N \dots \tilde{U}_1) \right] (0, \sqrt{N} \cdot) \xrightarrow[N \nearrow \infty]{} \text{Gauss}_\sigma(\cdot)$$

- Similar framework for RWRE was pioneered in '91 by Bricmont-Kupiainen. Here: much easier because integrable correlations.
- Proof: RG + cluster expansion.

Strategy: reduced dynamics

Let U_t be time-evolution acting on probability measures ρ_{SE} of system (S) dgf. (X, V) and environment (E) dgf. $\underline{x}, \underline{v}$. Set

$$T\rho_S := \text{Tr}_E U_{\epsilon^{-1}}(\rho_S \times \rho_E^\beta) = \int d\underline{x} d\underline{v} U_{\epsilon^{-1}}(\rho_S \times \rho_E^\beta)$$

Then, one expects (modulo space rescaling)

$$T = T_\epsilon \quad \xrightarrow[\epsilon \searrow 0]{} \quad e^{\mathcal{M}}, \quad \text{as operators on } \rho_S$$

with $e^{\mathcal{M}}$ time 1 transition kernel of the linear Boltzmann equation.

Good properties of T for small ϵ

- T is a translation-invariant transition kernel, acting on $\rho_S(X, V)$.
- If $e^{\mathcal{M}}$ has a gap of $O(1)$ (when restricted to functions of V), then so does T . (by spectral perturbation theory)
- discrete-time Markov process defined by $T^N, N \in \mathbb{N}$ has diffusive behaviour of the position (cfr. CLT for LBE)

Strategy: reduced dynamics

Let U_t be time-evolution acting on probability measures ρ_{SE} of system (S) dgf. (X, V) and environment (E) dgf. $\underline{x}, \underline{v}$. Set

$$T\rho_S := \text{Tr}_E U_{\epsilon^{-1}}(\rho_S \times \rho_E^\beta) = \int d\underline{x} d\underline{v} U_{\epsilon^{-1}}(\rho_S \times \rho_E^\beta)$$

Then, one expects (modulo space rescaling)

$$T = T_\epsilon \xrightarrow[\epsilon \searrow 0]{} e^{\mathcal{M}}, \quad \text{as operators on } \rho_S$$

with $e^{\mathcal{M}}$ time 1 transition kernel of the linear Boltzmann equation.

Good properties of T for small ϵ

- T is a translation-invariant transition kernel, acting on $\rho_S(X, V)$.
- If $e^{\mathcal{M}}$ has a gap of $O(1)$ (when restricted to functions of V), then so does T . (by spectral perturbation theory)
- discrete-time Markov process defined by $T^N, N \in \mathbb{N}$ has diffusive behaviour of the position (cfr. CLT for LBE)

Strategy: excitations

Let (U_t^E is free E-evolution)

$$U_{\epsilon^{-1}} = T \times U_{\epsilon^{-1}}^E + B, \quad (\text{this defines } B)$$

We are really interested in

$$\rho_{S, N\epsilon^{-1}} := \text{Tr}_E(U_{\epsilon^{-1}})^N(\rho_S \times \rho_E^\beta)$$

can be expanded in sets $A = \{\tau_1, \tau_2, \dots, \tau_m\} \subset \{1, \dots, N\}$:

$$\rho_{S, N\epsilon^{-1}} := T^N \rho_S + \sum_{A \neq \emptyset} \text{Tr}_E \underbrace{\dots B \dots (T \times U_{\epsilon^{-1}}^E) \dots B \dots}_{B \text{ at times } \tau_1, \dots, \tau_m} (\rho_S \times \rho_E^\beta)$$

$$:= T^N \rho_S + \sum_{A \neq \emptyset} \mathcal{T}[\otimes_{\tau \in A^c} T_\tau \otimes \mathbb{E}(B_{\tau_m} \dots B_{\tau_1})]$$

last line *defines* $\mathbb{E}(B_{\tau_m} \dots B_{\tau_1})$ formally. Unlike T , the B depend on environment dgf.

Good properties of B for small ϵ ?

Strategy: excitations

Let (U_t^E is free E-evolution)

$$U_{\epsilon^{-1}} = T \times U_{\epsilon^{-1}}^E + B, \quad (\text{this defines } B)$$

We are really interested in

$$\rho_{S, N\epsilon^{-1}} := \text{Tr}_E(U_{\epsilon^{-1}})^N(\rho_S \times \rho_E^\beta)$$

can be expanded in sets $A = \{\tau_1, \tau_2, \dots, \tau_m\} \subset \{1, \dots, N\}$:

$$\rho_{S, N\epsilon^{-1}} := T^N \rho_S + \sum_{A \neq \emptyset} \text{Tr}_E \underbrace{\dots B \dots (T \times U_{\epsilon^{-1}}^E) \dots B \dots}_{B \text{ at times } \tau_1, \dots, \tau_m} (\rho_S \times \rho_E^\beta)$$

$$:= T^N \rho_S + \sum_{A \neq \emptyset} \mathcal{T}[\otimes_{\tau \in A^c} T_\tau \otimes \mathbb{E}(B_{\tau_m} \dots B_{\tau_1})]$$

last line *defines* $\mathbb{E}(B_{\tau_m} \dots B_{\tau_1})$ formally. Unlike T , the B depend on environment dgf.

Good properties of B for small ϵ ?

- If T satisfy CLT and $\mathbb{E}^c(B_{\tau_m} \dots B_{\tau_1})$ satisfy the same condition as for RWRE, then we have diffusion, but we need here $\alpha > 1/2$ (power of time decay) because one loses a Ward identity in the RG compared to RWRE.
- Originally, decay of $B - B$ correlations comes from properties of the ideal gas, roughly $\langle b_\tau(x) b_0(0) \rangle$ should originate from

$$\mathbb{E}_E^\beta(\delta(x - x(t))\delta(x(0) - 0)) \sim t^{-d}, \quad t = \tau\epsilon^{-1}$$

- Smallness δ of B comes from ϵ .
- Controlling all cumulants (as required in our approach) seems out of reach for models like Rayleigh gas with unit mass. **But realistic with huge mass**

- Quenched CLT requires some additional assumption.
- B can not be viewed as environment RV's because they are influenced by particle.
- Much simpler Kipnis-Varadhan approach for symmetric disorder $\tilde{U}(x, x') = \tilde{U}(x', x)$ (then reversible markov process). The above theorem does not exploit this. However, our Hamiltonian model is reversible, **so perhaps there is a shortcut possible.**