
Diffusion in Hamiltonian Systems

Wojciech De Roeck
Institute of Theoretical Physics, Heidelberg

23rd February 2011

based on work with O. Ajanki, A. Kupiainen, and earlier work
with J. Fröhlich.
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Main goal

Prove that a Hamiltonian (in particular: deterministic) system
exhibits diffusion for long times.
→ Emergence of irreversibility from deterministic dynamics
common wisdom phyiscally, but hard to make rigorous

Outline

I discuss the strategy following the Rayleigh gas (for which
we have no results whatsoever).

At the end, I give the real (quantum) model (with result).
Differences with the Rayleigh model are irrelevant except
for those that will be highlighted
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Previous results (scarce)

Diffusion proven in
Sinai and Bunimovich, 81, Billiards with finite horizon
(Lorentz gas)

Figure: Tracer particle bounces elastically off periodic objects.
No ’free corridors’.

Knauf, 90, A lattice of −1/r attractive potentials in 2D ⇒,
smooth+uniformly hyperbolic.
Harris and Spitzer, 69, 1D gas of point particles, all
masses equal: exactly solvable
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Rayleigh gas: particle in ideal gas

Heavy particle with mass M in a gas of point particles with
mass m.
Elastic collisions M − m and free flow between collisions.
Initial positions ∼ point process with density ρ.

Maxwellian initial velocities ρβE(dv) ∼ e−
β
2 mv2

dv
Formally;

ρβE(dxdv) ∼
∏

i

ρe−
β
2 mv2

i dxidvi

M

m
m

m
elastic collisions

Figure: Particle M has volume, particles m are points: No collisions
between M and m.
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Rayleigh gas: Diffusion?

The heavy particle is with position X (t) is originally placed at
the origin. X (0) = 0. Does the particle diffuse?

|X (t)|2
t

in expectation→
tր∞

D

....and in probability? CLT? invariance principle?

If you assume each gas particle collides only once, then
(X (t), dX(t)

dt ) is just a Markov process (fully stochastic).
Diffusion follows easily upon analyzing this Markov process
(Linear Boltzmann Equation)

However, what about recollisions?
⇒ Markov property breaks down
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Rayleigh gas: Scaling limit

Make recollisions infinitely unlikely ⇒ easier problem. This
is the idea of scaling limits. For example, let density of the
gas particles be small and observe the system for long
times

density ∼ ǫ, time ∼ 1/ǫ, ǫց 0.

In the limit, ǫց 0, the probability of one collision,
respectively a recollision is

(1/ǫ)× ǫ, (1/ǫ)× ǫ2

One expects that (ǫX ǫ(τ/ǫ),V ǫ(τ/ǫ) converges to a Markov
process (Linear Boltzmann equation) in τ as ǫց 0.

This was done (essentially) by Durr-Goldstein-Lebowitz in
1981. However, without scaling limit (i.e. ǫ fixed), no results
available!
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Scaling limits are not the end of the story

The dynamical system gets adjusted as time grows.
⇒ Does not give information on the long-time limit of the

fixed ǫ dynamical system.

Example

2D Anderson model is well-described by LBE for short times,
but localized for large times: With probability exp−ǫ−1

, the
particle is sent back to its starting place. The scaling limit is
lying!

Results (NOT exhaustive) on scaling limits

Yau, Erdös, ’99, Yau, Erdös, Salmhofer, ’05, Lukkarinen,
Spohn, ’08, quantum or wave models

Toth, Holley, Dürr-Goldstein-Lebowitz, ’81, Rayleigh gas

Komorowski, Ryzhik, ’04, particle in random force field

Dolgopyat, Liverani, ’10, coupled Anosov systems.
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Why is it not obvious?

Problem is formulated as perturbation of ballistic system

Strategy: first establish stochasticity on short time-scales.
View the system as a perturbation of the stochastic
system.

Time for stochasticity to set in (E.g. gap of of the velocity
process) is of the order of 1/ǫ (at least one collision)

However, in time 1/ǫ, the particle travels a distance 1/ǫ.
The probability that two particles cross the swept-out
space region simultaneously is O(1). No small parameter

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Diffusion in Hamiltonian Systems



Solution: creeping particle

Make mass M ǫ-dependent, such that velocity v → 0 as ǫ→ 0
and swept-out space cylinder shrinks. Then the recollisions are
manifestly subleading!
But Let p, q be pre-collision S and E respectively, and p′, q′

post-collision.
{

p + q = p′ + q′

p2

2M + q2

2m = (p′)2

2M + (q′)2

2m

Indeed, let M ր ∞ and p2

2M = O(β−1) = O(1) (Maxwell
distribution), then

|p′ − p|
|p| =

|q′ − q|
|p| ∼ O(1)

O(
√

M)

Hence gap of velocity process vanishes, we lose effective
stochasticity.
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Solution: creeping particle with internal spring

Assume the particle has some internal dgf. s with energy
Eint(s), e.g. it is a molecule with a vibrational mode.

Replace p2

2M → 1
M Ekin(p), with Ekin(·) bounded (realistic for

quantum particle on the lattice). Instead of collisions,
consider absorption, and emission.

emit q′ ⇒
{

p = p′ + q′,

1
M Ekin(p) + Eint(s) = 1

M Ekin(p′) + (q′)2

2m + E ′
int(s

′)

If M ր ∞ and Eint = E ′
int , then p = p′, ⇒ No momentum

transfer.
If M ր ∞ and Eint − E ′

int = O(1), then p − p′ = O(1), ⇒ No
problem, momentum randomized after O(1) collisions
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Quantum dynamics and diffusion

Ingredients
Hilbert space H and a positive-definite density matrix
ρ ∈ B1(H) with Tr ρ = 1.
A unitary time-evolution Ut : UtUt′ = Ut+t′ , given by
Ut = eitH .
A position observable X = X∗ ∈ B(H)

Evolved density matrix UtρU−t describes system at time t :

E0[F (X )] ∼ Tr[ρF (X )], Et [F (X )] ∼ Tr[UtρU−tF (X )]

E.g. F = 1x , then Tr[ρ1x(X )] prob. to measure X = x .

Diffusion: for ρ such that originally, Tr[ρF (X )] = F (0)

Tr[UtρU−te
i γ√

t
X
] →

tր∞
e−

1
2 (γ,Dγ)

for some diffusion tensor D.
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Setup: Quantum particle coupled to a field I.

The Hilbert space is of the form (S=system, E=reservoir)

H := HS ⊗HE

where

HE = Γsymm(h) = Ω⊕ h⊕ (h⊗symm h)⊕ . . .

The space h = L2(Td ,dq) or h = L2(Rd ,dq) is the Hilbert
space of one field quantum, a phonon or photon in our
case.
The Hamiltonian is

Hλ := HS + HE + λHSE

where HS = HS ⊗ 1 acts on HS and HE = 1 ⊗ HE on HE.
The coupling strength λ will be assumed to be small.
For λ = 0, particle and field are decoupled ⇒ particle is
ballistic.

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Diffusion in Hamiltonian Systems



Setup II: The field

The free dynamics t → U0
t of one field quantum (one gas

particle):

U0
t φ(q) = eiωE(q)tφ(q), Hamiltonianω(q)

Examples: ωE(q) = |q| (photons) or ωE(q) =
√

m2 + q2

(optical phonons)

Free dynamics on Γsymm(h) = C⊕ h⊕ (h⊗symm h)⊕ . . .

HE = dΓ(ωE) = 0 ⊕ ω ⊕ (1 ⊗ ωE + ωE ⊗ 1)⊕ . . .

Initial (field) density matrix

ρE =
1

Norm
e−βHE

(Restrict to finite volume Λ ⊂ Z
d )
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Setup III: Particle

Hilbert space: translation dgf. and internal dgf. (IDF)

HS = l2(Zd )⊗ C
N

Hamiltonian
HS = λ2∆⊗ 1 + 1 ⊗ HIDF

with ∆ the discrete Laplacian and HIDF some Hermitian
matrix.

The free time-evolution is ballistic! Let X be position
operator on l2(Zd ), then

Tr[(X ⊗ 1)
(

e−itHSρSeitHS

)

] ∝ t

for generic initial density matrices, e.g.

ρS = ρS(x , y , IDF ) = δx ,0δy ,0 ⊗ ρS(IDF )
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Setup IV: Interaction

The interaction

HSE :=
∑

x

{1x ⊗ W ⊗ a(φx) + 1x ⊗ W ⊗ a∗(φx)}

W is a Hermitian matrix acting on C
N

a∗(φx)/a(φx) creates/annihilates a field quantum with
wavefunction φx ∈ h = L2(Td).

a∗(ψ)Sym[ψ1 ⊗ . . .⊗ ψk ] :=
√

k + 1Sym[ψ ⊗ ψ1 ⊗ . . .⊗ ψk ]

with Sym projection on symmetric subspace, and
a(φ) = (a∗(φ))∗. Satisfy CCR:

[a(ψ′), a∗(ψ)] = 〈ψ′, ψ〉

φx(q) = eiqxφ(q). The function φ(q) is the form factor,
containing appropriate IR and UV cutoffs: it determines the
form of the particle.
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Setup: Summary

The Hamiltonian

Hλ := λ2∆⊗ 1 ⊗ 1 + 1 ⊗ HIDF ⊗ 1 + 1 ⊗ 1 ⊗ dΓ(ω)

+ λ
∑

x

{1x ⊗ W ⊗ a(φx) + 1x ⊗ W ⊗ a∗(φx)}

where HIDF and W are N × N-matrices.

Initial density matrix

ρ0 = δx ,0δy ,0 ⊗ ρ(IDF )⊗ 1
Norm

e−βHE

Quanitity of interest

Et [e
i γ√

t
X
] = Tr[ei γ√

t
X

e−itHλρ0eitHλ ]

with X = X ⊗ 1IDF ⊗ 1E position operator on l2(Zd).
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Particle in contact with reservoir

p

q1

q2

q3

Particle (p) in

a bath of phonons (q)

at Temp > 0

coupling strength: λ

(p, e)
(p, e)

(p′, e′)(p′, e′)

p − p′

p′ − p

Emission Absorption

λ

λ

Figure: p,p′ are the particle momenta, e,e′ are the internal dgf. (∼
vibrational levels)
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Dispersive properties of the free bosons

The bosons enter only via the ’free’ correlation function

ζ(x , t) := Tr
[

ρβEΦ(x , t)Φ(0, 0)
]

with the time-evolved, space-translated interaction terms

Φ(x , t) :=
∫

Td
dq

{

ei(qx−ωt)φ(q)aq) + h.c.
}

If ω(q) =
√

m2 + |q|2 and φ smooth, then

sup
x

|ζ(x , t)| = O(|t |−d/2) diffusion eq.

If ω(q) = |q| and φ smooth, then

sup
x

|ζ(x , t)| = O(|t |−(d−1)/2)) lin. wave eq.
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Result (D.R., Kupiainen)

Assume that the particle is sufficiently coupled (Fermi Golden
Rule, later) and that

sup
x

|ζ(x , t)| ≤ O(|t |−(1+α)),

{
α > 1/2 if noneq. (β1 6= β2)
α > 1/4 if eq.

(noneq. setup: replace the field by two fields)
Then, for λ small enough but not zero, the particle motion is
diffusive: for any κ ∈ R

d ;

lim
ΛրZd

Tr[ρte
iγ X√

t ] → e−(γ,Dλγ), ρt = e−itHρ0eitH

as t → ∞, with
Dλ = λ2(Dm + o(|λ|0))

and Dm corresponds to Markov approximation (later).
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Comments on results

Dm is the diffusion constant of a Markovian approximation
(to be defined). The strict positivity of Dm is the omitted
assumption about ’sufficient coupling’.
Noneq: No reasonable 3D model satisfies the time-decay
assumption, yes in 4D.
Eq: There are 3D models where |ζ(x , t)| ∼ O(t−3/2).
Earlier 4D model ( D.R., J. Fröhlich) has additional
assumption:

|ζ(x , t)| ≤ e−ct for small ’speed’: |x | ≤ v∗|t |

(satisfied if field consists of photons (ω(q) = |q|) in the
continuum+ ultrastrong infrared regularity)
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The Van Hove limit (weak coupling limit)

Convergence of the reduced density matrix [Davies, 74 ]

Assume that
∫

supx |ζ(x , t)|dt <∞. Then

eit[HIDF ,·]ρS,t
λց0−→

t=λ−2τ
eτMρS,0

where ρS,t ≡ TrE(e
−itHρ0eitH) and M is a “Lindblad operator”

Partial trace TrE (cfr. marginal distribution) defined by

Tr[(AS ⊗ 1)ρS+E] = TrS[AS TrE[ρS+E]], ∀AS ∈ B(HS)

λ−2(= ǫ−1) is timescale where effects of field become
visible. The ’fast’ evolution e−it[HIDF ,·] is subtracted.
eτM is a ’Quantum Markov semigroup’; a semigroup of
positivity-preserving, trace-preserving maps.
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The Van Hove limit: properties of the generator

First, turn off hopping: HS = C
N , e.g. M = ∞.

Let e, e′ be non-degenerate eigenvalues of HIDF ,

ν(e) = 〈e|ρS|e〉, occupation prob.

with 〈e| the corresponding eigenvector. Then

d

dτ
ν(e) =

∑

e′

[
r(e′ → e)ν(e′)− r(e → e′)ν(e)

]

with detailed balance r(e′ → e) = e−β(e−e′)r(e → e′).
Autonomous behaviour: diagonal independent of
off-diagonal: Pauli master equation
Decoherence

〈e|ρS|e′〉 ∼ e−τ/τdc , e 6= e′

Off-diagonal elements vanish (no Schrodinger cat states!)

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Diffusion in Hamiltonian Systems



Bloch-Boltzmann equation (with hopping)

Let e, e′ eigenvalues of HIDF , and p, p′ (quasi)momenta,
and

ν(e, p) := 〈e, p|ρS|e, p〉
Diagonal elements evolve as

d

dτ
ν(e, p) =

∑

e′,p′

[
r(e′, p′ → e, p)ν(e′, p′)− r(e, p → e′, p′)ν(e, p)

]

with detailed balance
r(e′, p′ → e, p) = e−β(e−e′)r(e, p → e′, p′).
Transport: At momentum p, the particle moves with (group)
velocity vg(p) = O(1). (position ”slaved” by p, like in LBE)
Center of mass decoherence (off diagonal position
elements)

〈e, x |ρS|e′, x ′〉 ∼ e−|x−x ′|/ℓdc + e−τ/τdc
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Bloch-Boltzmann equation

The support of the rates r(e, p → e′, p′) is determined by
’collision rules’.

p
pp′

p′

q q

e
ee′

e′

Emission Absorption

emission

{

p = p′ + q

e = e′ + ω(q)
absorption

{

p + q = p′

e + ω(q) = e′

Kinetic energy of particle (O(λ2)) vanishes in these collision
rules!
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Why do we need the internal degrees of freedom

emission

{

p = p′ + q

e = e′ + ω(q)
absorption

{

p + q = p′

e + ω(q) = e′

Why IDF

If e = e′, then necessarily p = p′. Hence no change of
direction.

Diffusion in the Markovian approximation

By the statement that the system is ’sufficiently well-coupled’,
we mean that the Bloch-Boltzmann equation exhibits diffusion.
This can be checked within the theory of stochastic processes.
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Dealing with longer time scales

We know that on time scales t ≈ λ−2, the particle looks like
a random walk. It takes a few steps in this time.
The corrections to this behaviour are manifestly
non-Markovian and long-range in time. The range is
determined by the correlation function ζ(x , t)
This looks like the problem of proving an annealed central
limit theorem for a random walk in a time-dependent
random environment, with long-range memory
More generally, this looks like doing perturbation theory
around a stochastic system, rather than around the
unperturbed Hamiltonian system.
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Conclusion

Realistic Hamiltonian models for diffusion. 3D case
included. Only mild assumptions on details of the model.
Only soft mathematics required: Van Hove scaling limit and
perturbation of stochastic systems. Thanks to the
introduction of a new time-scale.
Phenomenology is beautiful: Diffusion, decoherence,
thermalization, transport, fluctuation-dissipation, quantum
ratchets.
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Strategy: RWRE I (random walk in random
environment)

Let Ũτ∈N be random transition kernels on Z
d

law of Ũτ invariant under rotations and space,
time-translations.
E(Ũτ ) = T̃ is transition kernel of simple random walk, say
T̃ ∈ B with B = B(l1(Zd) → l1(Zd))
Hence, Ũτ = T̃ + B̃τ with B̃τ ’dynamical disorder’.

E(ŨN . . . Ũ1) = T̃ N +
∑

A 6=∅

E







B̃τi . . . T̃ . . . B̃τj
︸ ︷︷ ︸

B̃ at times τ1,...,τm







= T̃ N +
∑

A 6=∅

T [⊗τ∈Ac T̃τ ⊗ E

(

B̃τm . . . B̃τ1

)

]

where T time-orders operators: T [V3 ⊗ V2 ⊗ V1] = V3V2V1 and
the correlation function E(B̃τm . . . B̃τ1) takes values in B⊗m .
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Strategy: RWRE II

Result (Ajanki, D.R., Kupiainen, in progress)

Let bτ (x) =
∑

x ′ |B̃τ (x , x ′)|ec|x ′−x | and assume (for all m)

∑

1=τ1<...<τm

m∏

j=2

(|τj − τj−1|α) sup
x1,...,xm

∣
∣
∣
∣
∣
∣
∣

E
c





m∏

j=1

bτj (xj)





T
∣
∣
∣
∣
∣
∣
∣

< δm,

(Here E
c stands for the connected correlation function) Then, if

δ < δ0 and α > 0, there is annealed CLT
[

E(ŨN . . . Ũ1)
]

(0,
√

N ·) −→
Nր∞

Gaussσ(·)

Similar framework for RWRE was pioneered in ′91 by
Bricmont-Kupiainen. Here: much easier because
integrable correlations.
Proof: RG + cluster expansion.

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Diffusion in Hamiltonian Systems



Strategy: reduced dynamics

Let Ut be time-evolution acting on probability measures ρSE of
system (S) dgf. (X ,V ) and environment (E) dgf. x , v . Set

TρS := TrE Uǫ−1(ρS × ρβE) =

∫

dxdvUǫ−1(ρS × ρβE)

Then, one expects (modulo space rescaling)

T = Tǫ −→
ǫց0

eM, as operators on ρS

with eM time 1 transition kernel of the linear Boltzmann
equation.
Good properties of T for small ǫ

T is a translation-invariant transition kernel, acting on
ρS(X ,V ).
If eM has a gap of O(1) (when restricted to functions of V ),
then so does T . (by spectral perturbation theory)
discrete-time Markov process defined by T N ,N ∈ N has
diffusive behaviour of the position (cfr. CLT for LBE)
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Strategy: excitations

Let (UE
t is free E-evolution)

Uǫ−1 = T × UE
ǫ−1 + B, (this defines B)

We are really interested in

ρS,Nǫ−1 := TrE(Uǫ−1)N(ρS × ρβE)

can be expanded in sets A = {τ1, τ2, . . . , τm} ⊂ {1, . . . ,N}:

ρS,Nǫ−1 := T NρS +
∑

A 6=∅

TrE . . .B . . . (T × UE
ǫ−1) . . .B . . .

︸ ︷︷ ︸

B at times τ1,...,τm

(ρS × ρβE)

:= T NρS +
∑

A 6=∅

T [⊗τ∈Ac Tτ ⊗ E (Bτm . . .Bτ1)]

last line defines E (Bτm . . .Bτ1) formally. Unlike T , the B depend
on environment dgf.
Good properties of B for small ǫ?
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Strategy: excitations

If T satisfy CLT and E
c(Bτm . . .Bτ1) satisfy the same

condition as for RWRE, then we have diffusion, but we
need here α > 1/2 (power of time decay) because one
loses a Ward identity in the RG compared to RWRE.
Originally, decay of B − B correlations comes from
properties of the ideal gas, roughly 〈bτ (x)b0(0)〉 should
originate from

E
β
E(δ(x − x(t))δ(x(0)− 0)) ∼ t−d , t = τǫ−1

Smallness δ of B comes from ǫ.
Controlling all cumulants (as required in our approach)
seems out of reach for models like Rayleigh gas with unit
mass. But realistic with huge mass
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Remarks

Quenched CLT requires some additional assumption.
B can not be viewed as enviromnent RV’s because they
are influenced by particle.
Much simpler Kipnis-Varadhan approach for symmetric
disorder Ũ(x , x ′) = Ũ(x ′, x) (then reversible markov
process). The above theorem does not exploit this.
However, our Hamiltonian model is reversible, so perhaps
there is a shortcut possible.
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