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From steady properties to processes

- Nonequilibrium steady state — static versus dynamic

- McLennan-Born nonequilibrium expansion

- Nonequilibrium processes: the concept of quasistatic limit
- Extended Clausius relation

Key technical point: adding explicit time-dependence

Collaboration: J. Pesek (Institute of Physics, Prague)

C. Maes (K.U.Leuven)
E. Boksenbojm (K.U.Leuven)
B. Wynants (CEA-Saclay, Paris)
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Generic nonequilibrium example

Ergodic continuous-time jump process with generator
LA(x) =), Mz, y) [Aly) — A(z)], ==A,B,C, ...

Detailed balance = rate asymmetry

log 354 = BlE() ~ E(w)] / \
Y A S

entropy flux o(z,y)

From global to local detailed balance:
- inhomogeneous temperature environment: 8 = 5(z,y)
- extra non-potential force: o(z,y) = B[E(x) — E(y) + F(z,y)]
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Generic nonequilibrium example

Ergodic continuous-time jump process with generator
LA(x) =), Mz, y) [Aly) — A(z)], ==A,B,C, ...

Detailed balance = rate asymmetry

log 354 = BIE(z) - Ely)] /
|

entropy flux o(z,y)

From global to local detailed balance:
- inhomogeneous temperature environment: 8 = 5(x,y)
- extra non-potential force: o(z,y) = B[E(x) — E(y) + F(x,y)]

o(z,y) # S(z) = S()]
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Generic nonequilibrium example

From global to local detailed balance:
- inhomogeneous temperature environment: 8 = (z,y)
- extra non-potential force: o(z,y) = B[E(z) — E(y) + F(x,y)]

Possibly close to equilibrium in the perturbative sense

Blz,y) =L+ ebi(z,y)+ ..., or Flz,y) =€eFi(z,y) +...

Many results are known up to first order, including:
v'variational characterization of steady state (MinEP/MaxEP principles)
v'McLennan(-Zubarev) stationary ensembles

v Green-Kubo relations etc.
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McLennan stationary ensemble

Question: What is the leading correction to the Boltzmann-Gibbs
distribution beyond equilibrium?

pr(x) = & exp|—BE(x) + Alw)

\

transient component of the entropy flux
along relaxation started from «

» First derived for mechanical systems driven by coupling to two heat
baths at different temperatures

Relates the stationary occupation to relaxation transport properties

Ref: ]J. A. McLennan Jr., Phys. Rev. 115, 1405 (1959)
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McLennan-Born expansion

Stationary problem pr(LY) =0 (VYY) can be solved
perturbatively around a reference detailed balanced

dynamics, £ = Lo+ L1 :

pS = p(S) + fooo dt etﬁ*ﬁ*pg
=Py — 7z Lioh + 2 L1 2= Ling — - -

Detailed balance Pseudoinverse

LE(psY) = pSLoY = Jo ds(Prerc, — %)
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McLennan-Born expansion

ps — p(S) + fooo dt etﬁ*ﬁ*pg

The leading nonequilibrium correction has a simple interpretation in
terms of the transient part of the work of nonpotential forces:

<WF>[0’T] - <ZJ F(mtj—lvxtj»[o’T]
= (fy dtw(z,)OT

Expected power of non-gradient forces
Claim: w(z) = Zy Az, y) F(z,y)

105 = Pwpj + O(€?)

= Due to local detailed balance, Zgg%ig,gg — Bl (2)=F(y)]
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McLennan-Born expansion

McLennan representation:

p" = & expl-B(E - tw—X)], X =0()
/

= Ji Ly = e Fute)) e = (5 [(w)” = w(an)]),™

Transient part of the nongradient work when relaxing from state «

» This specific decomposition of the nonequilibrium correction appears
useful when discussing quasistatic processes; see below

~Itis a model-independent observation (no essential changes even
when including inertial degrees of freedom)

> The first-order approximation already displays non-locality effects etc.

» The “genuine nonequilibrium correction” X can be expressed via a
modified perturbation series and also in terms of correlations

C. Maes and K.N., J. Math. Phys. 51, 015219 (2010)



IRS Workshop (26-Jan-11) Quasistatic heat processes

Time-dependent processes

- Let £ = E, with some time-dependent protocol a(t)
- Amore general thermodynamic process is specified by

(t) = la(t), B(1), F(t)]
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Time-dependent processes

- Let £ = E, with some time-dependent protocol a(t)
- Amore general thermodynamic process is specified by

(t) = la(t), B(1), F(t)]

Is that all? No!

- In fact, the symmetric part of the rates also becomes
relevant from the second order on!

»The relevance of traffic/activity as an independent physical
characterization of the nonequilibrium system
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Quasistatic limit

- Introducing a slow-time by rescaling

Y(t) — y(et), 0<t<T/e, e—0
- The evolution equation
310? _ * €
ot Foy(et)P
has the well known adiabatic-limit solution
lime10 pt/e = Py (1)

with P3¢y stationary w.r.t. £

But for path quantities we need a next correction!
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An extension of adiabatic theorem

- Time-integrated non-adiabatic correction reads

. T/e
lim, 0 J, / PF = Pen) dt = Jap -1 V’Yp”Y

Integration runs along the geometric
shape of ~(t)

- It can be used to calculate quasistatic expectations of the
excess parts of path observables and it proves its purely
geometrical nature

Voo a0/ == [, pdy - (V5 (£73));

/Y

1im5¢0 < fD
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Some more Insight

- The formula can be recognized as a (quasi-static) balance
equation for the observable ®, = z-Y,

. € 0,7 /e
(@p)p — (Ba)a = [y pdy- (V@) +Timeyo ([J75(LD) o () dt) T

| @s changes along j@
T

. /5 d~ (et [O,T/E']
11m5¢0 <f0 dt % : v'y(st)q)>
@ changes along flat pieces of the traje@

Example: For ¢, = E, this is the decomposition of energy
changes into the work of potential forces and the rest (=
work of non-potential forces + heat)
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Application: Work of non-potential forces

- The work of non-potential force comes (in the present
model) only from jumps, and its expectation reads

We = ([ wlz) dt) ™", w(z) =3, Ma,y) F(z,y)

- In the quasistatic limit it diverges as 1/¢ but it has a well
defined geometrical finite-part:

Wrp = % foT dt <’w>fy(t) - waB dry - <V7(iw’v)>i +0(e)

Excess component WE* = [§WEr

- Recall that z; % is the leading nonequilibrium correction
to the Boltzmann-Gibbs distribution



IRS Workshop (26-Jan-11) Quasistatic heat processes

Measuring excess work?

Divergent and finite components behave differently under
the protocol reversal ~(t) — v(T —t)

W = % foT dt <w>fy(t) - fAWB dry - <V7(iw7)>i +O(e)

| ) \ )
| |

even odd

WF . le;eversed — QWI%SC i O(E)

u

Necessary to adjust the speed of the
process and the number of cycles to
control the errors!
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Quasistatic energetics

- Quasistatic work of potential forces is well defined and
geometric:
Wg = waB<vaE>z - do

- The excess heat is defined so that to have energy
balance in the form of the First Law:

(Ep)p — (Ea)a = Wg + W 4 Q°*

- All quantities are well defined already on the path-level

- Main question: What can we say about Q" ?
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Extended Clausius relation

Q= [, gB Sy + [, zdv- (V,X)2 + O(e?)

Second-order correction

o Clausius relation remains valid
Sy = —(In P:g)f)fsy up to first order
o The second-order correction
vanishes if assuming
Aa = 0O(e) and AS = Oe)
o The latter can also be given in
terms of correlations

Nonequilibrium (Shannon) entropy

D. Ruelle, Proc. Nat. Acad. Sci. USA 18, 3054 (2003)
T. S. Komatsu et al, Phys. Rev. Lett. 100, 230602 (2008)
K. N. and J. PeSek, in preparation
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Nonequilibrium heat capacity

Let  and F' are kept fixed:
dQ°* = d(E)* — dW &

= d(E)* + (w z-E)§ d3

Corresponding heat capacity:

o dQeT . 8(E 2 S
C=am|, = oym ~ Pz Bl
O(E)° S S
= 9(1/B) /8[<E> o <E>0] all up to O(e)
I(E)* /8F 8(E

— 9(1/B)
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Conclusions

< Equilibrium thermodynamics allows for a natural extensions “slightly
away” from equilibrium

<Quasistatic limit well defined for path observables in terms of excess
components — measurable in principle

< Clausius formulation of the Second Law remains generally valid up to
first (respectively second) order in the degree of detailed balance
breaking

<+Excess heat naturally gives rise to a generalized heat capacity with
leading nonequilibrium correction related with an unconvential
equilibrium linear response coefficient

Needs to be understood:

< The structure of higher-order contributions breaking the Clausius relation
(sufficient conditions for the existence of integrability factors,...)

<Role of fluctuations in the quasistatic regime






