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Multiple type particle systems

We have a network of servers:
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Multiple type particle systems

At every node there is a queue:
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Multiple type particle systems

The service is over:
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Multiple type particle systems

New clients are being served:
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Multiple type particle systems

We study the system in the limit when

the number of nodes,M , goes to∞,

the number of connections to (and from) every node
goes to∞ as well,

the number of clients,N , is of the order ofM , i.e.

N = ρM.

The constantρ will be calledthe load.
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Multiple type particle systems

What to expect?

(if started from a reasonable initial state):
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Multiple type particle systems

What to expect?

(if started from a reasonable initial state):

The input flow to every server is Poissonian, with
rateλ(t) = λnode,sort(t).

All the ratesλ(t) go to their limiting constant values.

The network equilibrates after timeT independent
of the sizeM .

In words, the system looses all the memory about the
initial state.
This is called the Poisson Hypothesis behavior.
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Mean field graphs
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Mean field graphs

– p. 11/41



Mean field graphs
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PH: Cases of validity. Single type
clients

Poisson Hypothesis holds "always".
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PH: Cases of validity. Single type
clients

Poisson Hypothesis holds "always".

Due to the self-averaging property:

b (t) =

∫

x≥0

λ (t − x) qλ,t (x) dx

Hereλ (t) , −∞ < t < ∞ is the rate of the Poisson
process of moments of arrivals of customers to our
server. Upon completion of the service the customer
exits the system. The service time is not necessarily
exponential, it can have power law decay.
b (t) is the rate of the exit flow. The kernelqλ,t (x) is
stochastic.
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PH: Cases of validity. Low load, mul-
tiple type

Poisson Hypothesis holds since the clients almost never
meet each other.
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Violation of PH: phase transitions

The elementary network.
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Violation of PH: phase transitions
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Violation of PH: phase transitions
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Fluid systems
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Fluid system with several fluids
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Fluid system with several fluids

Cyclic behavior:
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Construction of the network
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Construction of the network

– p. 26/41



Phase transition

Let us start the network∇M , made fromM
triangles, in a state with≤ R clients per server.
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Phase transition

Let us start the network∇M , made fromM
triangles, in a state with≤ R clients per server.

Theorem

Forρ ≤ ρ0, ρ0 small, the relaxation time
Tr (M,R, ρ) is bounded byC (R, ρ0) , uniformly
in M.

Forρ ≥ ρ1, ρ1 large, there are initial states with
≤ R clients per server, such that the relaxation
timeTr (M,R, ρ) → ∞ asM → ∞.
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Phase transition

Theorem

The marginals of∇M converge, asM → ∞, to a
non-linear Markov process,∇∞.

Forρ large the process∇∞ is not ergodic.
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Non-linear Markov Processes

(Linear) Markov chainXn ∈ Ω, |Ω| = k < ∞.
Configurations= points inΩ.
State= probability measure onΩ.
Sk – the simplex of probability measures onΩ.
Transition matrix

P = P (s, t) ,
∑

t

P (s, t) = 1

Stateµ is transformed toν by

ν = µP

The map:P :Sk → Sk is linear.
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Non-linear Markov Processes

Non-linear Markov chain:
Transition probability to go froms to t depends also on
the stateµ.
The Non-linear Markov chain is defined by the collection
of transition matrices

Pµ= Pµ (s, t) ,
∑

t

Pµ (s, t) = 1,

and stateµ is transformed toν by

ν = µPµ.

The map:P :Sk → Sk is non-linear.
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The process∇∞ on
(

Z
5
)+

Let (xO, xOA, xOB, xAB, xBA) ∈
(

Z
5
)+

is drawn from
the stateν = νρ. The rates:

(xO, xOA, xOB, xAB, xBA) →

(xO − 1, xOA, xOB, xAB, xBA)
γOA + γOB = 3

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA, xOB, xAB − 1, xBA)
γBO = 2

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA, xOB, xAB, xBA − 1)
γAO = 2

(xO, xOA, xOB, xAB, xBA = 0) →

(xO, xOA − 1, xOB, xAB, xBA = 0)
γAB = 10

(xO, xOA, xOB, xAB = 0, xBA) →

(xO, xOA, xOB − 1, xAB = 0, xBA)
γBA = 10
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The process∇∞ on
(

Z
5
)+

(xO, xOA, xOB, xAB, xBA) →

(xO + 1, xOA, xOB, xAB, xBA)

γBOν (xAB > 0) +

γAOν (xBA > 0)

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA, xOB, xAB + 1, xBA)
γABν

(

xOA > 0,

xBA = 0

)

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA, xOB, xAB, xBA + 1)
γBAν

(

xOB > 0,

xAB = 0

)

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA + 1, xOB, xAB, xBA)
γOAν (xO > 0)

(xO, xOA, xOB, xAB, xBA) →

(xO, xOA, xOB + 1, xAB, xBA)
γOBν (xO > 0)
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The process∇∞ on
(

Z
5
)+

To show that forρ large the process∇∞ is not ergodic,
we consider its fluid limit asρ → ∞, the dynamical
system∆∞, which is obtained by applying the Euler
scaling. Ifνρ

t is our evolution, then we put

µt (A) = lim
ρ→∞

ν
ρ
ρt (ρA) ,

A ⊂
(

R
5
)+

.

∆∞ - the non-linear dynamical system
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Linear dynamical systems

A vector fieldVx onR
n produces a flow along it,

Ft : R
n → R

n.
It also defines the flowFt on measuresM (Rn):

µt (A) = µ0

(

F−1
t A

)

.

Ft acts linearly on measuresM (Rn)
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Non-Linear dynamical systems

A semigroupFt of (not necessarily linear)
transformations of the spaceM (Rn) .

Example: letVµ =
∫

Vx dµ (x) , and

µt+∆t (A) ≈ µt (A − ∆tVµt
)
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The fluid network
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The fluid network
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The fluid network
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The limiting fluid network ∆∞

Non-linear dynamical system onM
(

(

R
5
)+

)

.

During the short time interval the measureµ evolves
along the vector fieldVµ (x̄) ;
at a pointx̄ = (xO, xOA, xOB, xAB, xBA) with all
coordinates positive it is

Vµ (xO, xOA, xOB, xAB, xBA) =

−3

0

0

−2

−2

+

γBOµ {yAB > 0} + γAOµ {yBA > 0}

γOAµ {yO > 0}

γOBµ {yO > 0}

γABµ {yA > 0, yBA = 0}

γBAµ {yB > 0, yAB = 0}

.
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The limiting fluid network ∆∞

The cycleC ⊂ M
(

(

R
5
)+

)

of ∆ is also a cycle of∆∞.

There are other attractors as well. But if

ρKROV (µ0, C) < δ,

then
ρKROV (µt, C) → 0.

Therefore we can prove our theorem by induction in time
t.
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The End
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