The Coherence Phase
Transition



Multiple type particle systems
Mean-field-type graphs

Poisson Hypothesis

Cases of validity: low load (=higlt), ...

Violation of PH: phase transitions at high load (=lo\
T)

Proofs: Non-linear Markov processes, Fluid
networks, stable attractors, convergence, ...

Joint work with Alexandre Rybko and Alexandre Vladimirov
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Multiple type particle systems

We have a network of servers:
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Multiple type particle systems

At every node there Is a queue:
O



Multiple type particle systems

The service IS over:
e
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Multiple type particle systems
New clients are being served:
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Multiple type particle systems

We study the system in the limit when
= the number of noded\y/, goes taoxo,
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We study the system in the limit when
the number of nodes\/, goes tox,

the number of connections to (and from) every noc
goes toco as well,

the number of clientsV, is of the order of\/, i.e.
N = pM.

The constanp will be calledthe load.
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Multiple type particle systems

What to expect?

m (if started from a reasonable initial state)
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Multiple type particle systems

What to expect?
m (if started from a reasonable initial state)

= The input flow to every server Is Poissonian, with
rate \(t) = Anode.sort(t)-
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What to expect?
(if started from a reasonable initial state)

The input flow to every server Is Poissonian, with
rate \(t) = Anode.sort(t)-

All the rates\(t) go to their limiting constant values

The network equilibrates after tinié independent
of the sizel!.

In words, the system looses all the memory about the
initial state.
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What to expect?
(if started from a reasonable initial state)
The input flow to every server Is Poissonian, with
rate \(t) = Anode.sort(t)-
All the rates\(t) go to their limiting constant values

The network equilibrates after tinié independent
of the sizel!.

In words, the system looses all the memory about the

Initial state.
This Is called the Poisson Hypothesis behavior.
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Mean field graphs



Mean field graphs




Mean field graphs



Mean field graphs



PH. Cases of valldity. oSingle type
clients

= Poisson Hypothesis holds "always".



Poisson Hypothesis holds "always".
Due to the self-averaging property:

b(t) = />0)\(t—az) Qi (x) dx

Here\ (), —oo < t < oo is the rate of the Poisson

process of moments of arrivals of customers to ou
server. Upon completion of the service the custom
exits the system. The service time Is not necessar
exponential, it can have power law decay.

b (t) is the rate of the exit flow. The kernel; (x) is

stochastic.
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F . CLasCo Ul Valldity. LOW 104U, IT1uUl=

tiple type

Poisson Hypothesis holds since the clients almost nev
meet each other.
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Violation of PH: phase transitions

The elementary network.

A




Violation of PH: phase transitions

A

>

OO




Violation of PH: phase transitions
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Violation of PH: phase transitions
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Violation of PH: phase transitions
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Fluid systems



Fluid system with several fluids
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Fluid system with several fluids

Cyclic behavior:
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Construction of the network




Construction of the network




Phase transition

= Let us start the network ;;, made from\/
triangles, in a state witk R clients per server.
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Let us start the network’ ,, made from\M
triangles, in a state witkl R clients per server.

Theorem

For p < pg, po SMall, the relaxation time

T. (M, R, p) is bounded by’ (R, py) , uniformly
In M.

Forp > p1, p; large, there are initial states with
< R clients per server, such that the relaxation
timeT, (M, R, p) — coasM — oc.

—p. 27/



Theorem

The marginals oWV ,, converge, a3/ — oo, to a
non-linear Markov proces§/ ...

For p large the proces¥ ., Is not ergodic.
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(Linear) Markov chainX,, € ), |Q)| = k < oc.
Configurations= points Iin¢?.

State= probablility measure ofu.

S;. — the simplex of probability measures @n
Transition matrix

P =P(s,t), ZPst

Statey Is transformed to by
v = uP

The mapP :S. — S, i1s linear.
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Non- linear Markov chain:
Transition probability to go from to ¢t depends also on

the stateu..
The Non-linear Markov chain is defined by the collectic

of transition matrices

P,=P,( ZPst

and state: is transformed to by

v=puP,.

The map:P :S, — S is non-linear.
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T,

Let (z0, 204, 0B, Tap, Tpa) € (Z°) " is drawn from
the stater = ”. The rates:

(x0,ToA, TOB, TAB, TBA) —

YoA + YoB = 3
(5170 — 1,204,208, % AB, ZUBA)
(x0, ToA, TOB, TAB, TBA) — _ 5
1 YBO =
(:EO) LOA, LOB,XLAB — 1, xBA)
($0,$0A,$OB,$AB,$BA) — Va0 =
(zo,T04,%0B,TAB, Tpa — 1)
(9?0,$0A,$OB,$AB,$BA — O) — ~ap = 10
(5130,370A — 1, 20B,%AB, TBA = O)
(ZUO,ZUOA,ZUOB,ZUAB — O,ZUBA) — —1
YA = 10

(x0,Toa,x0B — 1,248 = 0,2p54)
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(x0,T0A, TOB, TAB, TBA) —  YBOV (Tap > 0) +
(xo + 1,204, 0B, AR, TBA) YaoV (xpa > 0)
(930,f()A,CCOB,CCAB,CCBA)-—> $0Ai>()
YABV
(:CO) LOA, OB, LAB + 17 xBA) BA — 0
(330@014,37037513AB;»TCBA)——> $OBi>()
YBAV
(x0, oA, 0B, AR, TpA + 1) Tap =0
(X0, ToA, OB, TAB, TBA) —
(x0,r04 + 1, 20B,XAB,TBA)
(X0, ToA, OB, TAB, TBA) —
(x0,x0a,ToB + 1,48, TBA)

YoAV (2130 > O

YoV (1o > 0)
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To show that forp large the proces¥ ., Is not ergodic,
we consider its fluid limit ag — oo, the dynamical
systemA ., which is obtained by applying the Euler

scaling. If! is our evolution, then we put

i (A) = lim %, (pA).

p—00

Ac (R,
A, - the non-linear dynamical system
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A vector fieldV, on R" produces a flow along It,
F,:R" — R".
It also defines the flowF; on measured (R"):

pe (A) = o (Ft_lA) -

JF; acts linearly on measuregt (R")

—p. 34/



Non-Linear dynamical systems

A semigroupF; of (not necessarily linear)
transformations of the spacgef (R") .

Example: letV, = [V, du(x), and
prat (A) = e (A — AtV,,)
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Non-linear dynamical system ol ((IR{5)+) .
During the short time interval the measurevolves
along the vector field’, (z) ;

at a pointf — (xO, TOA, TOB, TAB, xBA) with all
coordinates positive it is

V., (20,204, T0B, TAB, TBA) =
-3 yBop{yas > 0} + va0p{ypa > 0}

0 Yoap{yo > 0}
0 + Yosit{yo > 0}
~2 Yapt{ya > 0,ypa = 0}

—2 Ypap {ys > 0,yap = 0}
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The cycleC ¢ M ((R5)+) of A is also a cycle of\ ..
There are other attractors as well. But if

prrov (o, C) <9,

then
prrov (e, C) — 0.

Therefore we can prove our theorem by induction in tin
L.
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The End
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