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Outline
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Non-equilibrium phase transitions

Analogy with Ising model

Proofs
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Glasses

Key properties.

huge increase of relaxation time as the temperature decays

dynamical heterogeneities

ageing

Kinetically constrained dynamics

➪ Simple lattice models of glass forming systems at high density
➪ Rich dynamical behavior (cooperative relaxation ...)
➪ Trivial thermodynamics
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East model

Markov chain: η(t) = {ηi (t)}1≤i≤N with ηi ∈ {0, 1}

Transition rules.

A site can be updated only if its East neighbor is empty

Update rates : 0
ρ→ 1 and 0

1−ρ← 1
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East model

Markov chain: η(t) = {ηi (t)}1≤i≤N with ηi ∈ {0, 1}

ρ ⇑ ⇓ 1− ρ

Transition rules.

A site can be updated only if its East neighbor is empty

Update rates : 0
ρ→ 1 and 0

1−ρ← 1

The markov chain is reversible wrt

µN =

N
⊗

i=1

νρ(ηi ) with νρ(1) = 1− νρ(0) = ρ
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Works on kinetically constrained models

Huge class of models, with various constrained.

Many results on

Ergodicity ( ➪ phase transition)

Spectral gap

Relaxation to equilibrium

.....

Question.
Can we find a dynamical free energy characterizing glassiness?

[Garrahan, Jack, Lecomte, Pitard, van Duijvendijk, van Wijland]
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Activity

Dynamical parameter to characterize the

dynamical heterogeneities

jammed configurations

Ai(t) = { Number of flips at site i during the time interval [0, t]}

Total activity : A(t) =
∑

i

Ai(t)

East model: EµN

(

A(t)
)

= t(N − 1)ρ(1 − ρ)2 + tρ(1− ρ)
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Large deviations

Mean activity: A = limN→∞ limt→∞
1
N

EµN

(

A(t)
)

Question.

a 6= A, EµN

(1

t
A(t) ≃ a

)

≈ exp(−Nt F(a))
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Large deviations

Mean activity: A = limN→∞ limt→∞
1
N

EµN

(

A(t)
)

Question.

a 6= A, EµN

(1

t
A(t) ≃ a

)

≈ exp(−Nt F(a))

Forλ ∈ R, ϕ(λ) = lim
N→∞

lim
t→∞

1

Nt
log EµN

(

exp
(

λA(t)
))

ϕ(λ)

λ

Phase transition.

[Garrahan, Jack, Lecomte, Pitard, van

Duijvendijk, van Wijland]
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Heuristics

λ ∈ R, ϕ(λ) = lim
N→∞

lim
t→∞

1

Nt
log EµN

(

exp
(

λA(t)
))

First order phase transition.

• λ > 0 then the activity is increased : no singularity

• λ < 0 then the activity is suppressed

t = 0 : configuration totally filled
t > 0 : system is forbidden to move

EµN
(A(t) = 0) ≈ ρN exp(−(1− ρ)t)
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Finite size scaling

λ ∈ R, ϕ(λ) = lim
N→∞

lim
t→∞

1

Nt
log EµN

(

exp
(

λA(t)
))

ψ(λ) = lim
N→∞

lim
t→∞

1

t
log EµN

(

exp
( λ

N
A(t)

)

)

ϕ(λ)

λ

ψ(λ)

λλ2 λ1

Σ

Theorem.

There are λ2 ≤ λ1 < 0 such that

∀λ > λ1, ψ(λ) = Aλ,

∀λ < λ2, ψ(λ) = Σ .
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Finite size scaling

λ ∈ R, ϕ(λ) = lim
N→∞

lim
t→∞

1

Nt
log EµN

(

exp
(

λA(t)
))

ψ(λ) = lim
N→∞

lim
t→∞

1

t
log EµN

(

exp
( λ

N
A(t)

)

)

ϕ(λ)

λ

ψ(λ)

λ
λ2 λ1

Σ

If there was no transition, then

ψ(λ) ≃ Nϕ(
λ

N
) = N

[

ϕ(0) + ϕ′(0)
λ

N
+ O

(

1

N2

)]

= ϕ′(0)λ+O

(

1

N

)

As ϕ′(0) = A ⇒ ψ(λ) ≃ Aλ
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Surface tension

λ < λ2, ψ(λ) = lim
N→∞

lim
t→∞

1

t
log EµN

(

exp
( λ

N
A(t)

)

)

Blocking the whole system :

EµN
(A(t) = 0) ≈ ρN exp(−(1− ρ)t)
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Surface tension

λ < λ2, ψ(λ) = lim
N→∞

lim
t→∞

1

t
log EµN

(

exp
( λ

N
A(t)

)

)

Blocking the whole system :

EµN
(A(t) = 0) ≈ ρN exp(−(1− ρ)t)

t

o(N)

Surface tension : Σ ∈]0, 1 − ρ[

EµN

(

exp
(

λ
N
A(t)

))

≈ exp(−Σt)

Cost of maintaining an interface dur-
ing time t
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ψ(λ)

λλ2 λ1

Σ

Tilted measures.

µN,λ,t

(

·
)

=
EµN

(· exp( λ
N
A(t)))

EµN
(exp( λ

N
A(t)))

Theorem: density profiles

There are λ2 ≤ λ1 < 0 such that

∀λ > λ1, µN,λ,T

( 1

NT

∫ T

0
dt

∑

i

ηi (t) ∈ [ρ−δN , ρ+δN ]
) T→∞→ 1

∀λ < λ2, µN,λ,T

( 1

NT

∫ T

0
dt

∑

i

ηi (t) ≥ (1− δN)
) T→∞→ 1

with δN → 0 as N →∞.
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Consequence : anomalous large deviation scaling

Large deviations for reducing the activity. Fix 0 ≤ u < 1

−Σ(1− u) ≤ lim
N→∞

lim
t→∞

1

t
log PµN

(A(t)

N t
≈ uA

)

≤ λ1A(1− u)

Dynamics without constraints

lim
N→∞

lim
t→∞

1

tN
log PµN

(A(t)

N t
≈ uA

)

= F (u) 6= 0
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Other dynamics

Theorem valid for a larger class of 1D dynamics.

Fredrickson Andersen model (FA-1f)

A site can be updated only if a neighbor is empty

Update rates : 0
ρ→ 1 and 0

1−ρ← 1

ψ(λ)

λ
λ2 λ1

λc

↓

−Σ

Question. Extending the results up to λc ?

λc = −Σ

A
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Simulations FA-1f

Sizes : 4, 5, 6, 7, 8, 10 and 16, 32, 64

Work in progress [B., Lecomte, Toninelli]
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Higher Dimensions

East Model in {1,N}2 ⇔ N independent East Models in {1,N}

ψ(2D)(λ) = lim
N→∞

lim
t→∞

1

tN
log EµN

(

exp
( λ

N
A(t)

)

)

= ψ(1D)(λ)
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FA-1f in higher Dimensions

Finite size scaling is sensitive to boundary conditions

lim
N→∞

lim
t→∞

1

tN
log EµN

(

exp
( λ

N
A(t)

)

)

lim
N→∞

lim
t→∞

1

t
log EµN

(

exp
( λ

N2
A(t)

)

)

Only partial results on the inactive regime.
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FA-1f in higher Dimensions

Finite size scaling is sensitive to boundary conditions

a < A, lim
N→∞

lim
t→∞

1

tN
log PµN

(A(t)

N2t
≈ a

)

a < A, lim
N→∞

lim
t→∞

1

t
log PµN

(A(t)

N2t
≈ a

)

Consequence

Different large deviation scalings
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The constraint matters

North-East model.

North and East sites
empty

0
ρ→ 1 and 0

1−ρ← 1

ψ(NE)(λ)
?
= lim

N→∞
lim

t→∞

1

t
log EµN

(

exp
( λ

N2
A(t)

)

)

.
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What did we learn ?

Question.

Can we find a dynamical free energy characterizing glassiness?

First order phase transition.

ψ(λ)

λ
λ2 λ1

λc

↓

Σ

Finite size scaling :

Shift of the critical value

Can one predict something by looking at the activity at λ = 0 ?
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Box: ΛN = {−N,N}2,
Spins : σ = {σi}i∈ΛN

with σi ∈ {−1, 1}

Hamiltonian: H(σ) = −
∑

i∼j
i,j∈ΛN

σiσj −
∑

i∈ΛN

hi σi

Gibbs measure: µT ,N(σ) =
1

ZT ,N

exp

(

− 1

T
H(σ)

)

−

−−

−

−m∗

+

++

+

m∗ T < Tc : phase transition

hi = 0 for i away from the boundary.
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First order phase transition

For T < Tc

−

−−

−

m(h) < −m∗

h < 0

−

−−

−

m(h) > m∗

h > 0

m(h)

h
m(h) : magnetization in the in-
finite volume with field h.
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Finite size scaling

For T < Tc . Rescaled magnetic field h = λ
N
> 0

−

−−

−

−m∗

λ < λc

Shift of the free energy :

−N2m∗ λ

N

−−

−

−

m∗

λ > λc

Shift of the free energy :

N2m∗ λ

N
− τN

Critical parameter : λc = τ
2m∗
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Finite size scaling

For T < Tc . Rescaled magnetic field h = λ
N
> 0

−

−−

−

−m∗

λ < λc

−−

−

−

m∗

λ > λc

λc

λ

[Schonmann, Shlosman]
[Borgs, Kotecky]
[Borgs, Imbrie] ...
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Ingredients of the proof

Donsker-Varadhan large deviation principle

Local equilibrium (Hydrodynamic theory)

Surface tension (Equilibrium phase coexistence)
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Large deviation principle

The flip rate at i 6= N is :

ci (η) = (1− ηi+1)
(

ρ(1 − ηi ) + (1− ρ)ηi

)

The time changed dynamics with rates : cλ
i (η) = exp(λ)ci (η) .

Probability measure on trajectories {ηs}s≤t : P,Pλ

Radon-Nykodim derivative :

dPλ

dP
= exp

(

λAt −
∫ t

0
(exp(λ)− 1)

N
∑

i=1

ci(ηs) ds
)

Correspondence between the activity and the path density

E
(

exp
(

λAt

))

= Eλ

(

exp
(

(exp(λ)− 1)

∫ t

0

∑

i

ci (ηs) ds
))

.
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∫ t

0
(exp(λ)− 1)

N
∑

i=1

ci(ηs) ds
)
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E
(

exp
(

λAt

))

= Eλ

(

exp
(

(exp(λ)− 1)

∫ t

0

∑

i

ci (ηs) ds
))

.

Donsker-Varadhan theory (in the reversible case)

limt→∞
1
t
log E

(

exp
(

λAt

))

= exp(λ) sup
f

{

(1− exp(−λ))µN

(

f

N
∑

i=1

ci (η)
)

−DN(
√

f )
}

with f ≥ 0, µN(f ) = 1 and the Dirichlet form

DN(f ) =

N
∑

i=1

µN

(

ci (η)
(

f (ηi )− f (η)
)2

)

.
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For N large

lim
t→∞

1

t
log E

(

exp
( λ

N
At

))

≃ sup
f

{

λµN

(

f
1

N

N
∑

i=1

ci (η)
)

−DN(f )
}

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6 Dirichlet form evaluated for
Bernoulli with density in [0, 1].

➪ Almost minimum at density 1
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For N large

lim
t→∞

1

t
log E

(

exp
( λ

N
At

))

≃ sup
f

{

λµN

(

f
1

N

N
∑

i=1

ci (η)
)

−DN(f )
}

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6 Dirichlet form evaluated for
Bernoulli with density in [0, 1].

➪ Almost minimum at density 1

Dirichlet form ➪ Local equilibrium : density close to ρ or 1.
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Surface tension

Definition.

ΣL = inff DL(f ) for densities such that µL(f (η)η1) = 1.

Σ = lim
L→∞

ΣL .

Existence of Σ : L > L′ then ΣL < ΣL′ .
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Surface tension : Lower Bound

C = {ηi (s) = 1, i ≤ N − K , s ≤ t}

K

E
(

exp
( λ

N
At

))

≥ E
(

exp
( λ

N
At

)

1C
)

lim
t→∞

1

t
log E

(

exp
( λ

N
At

))

≥ − inf
f ;C

{

DK (f )
}

+ O(K/N)
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Surface tension

Existence of a barrier of 1 ?

T

Coexistence of the two phases

T

1 Prove that for λ < λ2 the inactive phase dominates

2 Approximate the surface tension
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Active phase

For λ > λ1 the active phase dominates :

lim
t→∞

1

t
log E

(

exp
( λ

N
At

))

≃ sup
f

{

λµN

(

f
1

N

N
∑

i=1

ci (η)
)

−DN(f )
}

If f ≃ 1 in the variational principle :

lim
t→∞

1

t
log E

(

exp
( λ

N
At

))

≃ λµN

( 1

N

N
∑

i=1

ci (η)
)

≃ λA
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Conclusion

First order phase transitition

Finite size scaling

Surface cost Σ

Open questions.

Existence of λc

Description of the interface

Higher dimensions

Conservative dynamics
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