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@ Kinetically constrained dynamics
@ Non-equilibrium phase transitions
@ Analogy with Ising model

@ Proofs
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Kinetically constrained dynamics

Glasses

Key properties.

@ huge increase of relaxation time as the temperature decays
@ dynamical heterogeneities

@ ageing
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Kinetically constrained dynamics

Glasses

Key properties.

@ huge increase of relaxation time as the temperature decays
@ dynamical heterogeneities

@ ageing

Kinetically constrained dynamics

O Simple lattice models of glass forming systems at high density
O Rich dynamical behavior (cooperative relaxation ...)
[0 Trivial thermodynamics

Thierry Bodineau Kinetically constrained dynamics



Kinetically constrained dynamics

East model

Markov chain: n(t) = {ni(t)}1<i<n with n; € {0,1}

— 0 —0 0 -

Transition rules.

@ A site can be updated only if its East neighbor is empty

o Update rates : 02 1 and 0 =
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Kinetically constrained dynamics

East model

Markov chain: n(t) = {ni(t)}1<i<y with n; € {0,1}
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Kinetically constrained dynamics

East model

Markov chain: n(t) = {ni(t)}1<i<n with n; € {0,1}
——0 0 —00@ -
pfdl—p
—00—00—00 -

Transition rules.

@ A site can be updated only if its East neighbor is empty

@ Update rates : 0% 1 and 0 1

The markov chain is reversible wrt
N
UN = ®1/p(7],-) with v,(1)=1-1,(0)=p
i=1
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Kinetically constrained dynamics

Works on kinetically constrained models

Huge class of models, with various constrained.

Many results on
@ Ergodicity ( O phase transition)
@ Spectral gap

@ Relaxation to equilibrium
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Kinetically constrained dynamics

Works on kinetically constrained models

Huge class of models, with various constrained.

Many results on
@ Ergodicity ( O phase transition)
@ Spectral gap

@ Relaxation to equilibrium

Question.
Can we find a dynamical free energy characterizing glassiness?

[Garrahan, Jack, Lecomte, Pitard, van Duijvendijk, van Wijland]
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Phase transitions

Activity

Dynamical parameter to characterize the
@ dynamical heterogeneities
@ jammed configurations

Aj(t) = { Number of flips at site / during the time interval [0, t]}
Total activity : A(t) = ZA;(t)
East model:  E,, (A(t)) = t(N — 1)p(1 — p)* + tp(1 — p)

————00—00 -
P T T
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Phase transitions

Large deviations

Mean activity: A = limpy_oo liMs—oo = N u/v( (t))

a#A, EMN(%A(t) ~ a) ~ exp(— Nt F(a))
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Phase transitions

Large deviations

Mean activity: A = limy_oo liMs_oo ~ N #N( (t))

Question.

a#A, EMN(%A(t) ~ a) ~ exp(— Nt F(a))

o1
For\ € R, o(A\) = NlinOO Jim Ni log E,,, (exp (VA(1)))
p(N)
Phase transition.

[Garrahan, Jack, Lecomte, Pitard, van
Duijvendijk, van Wijland]
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Phase transitions

Heuristics

. .1
NER,  p(A) = lim lim —logRy, (exp (VA(t)))
First order phase transition.

e )\ > 0 then the activity is increased : no singularity

e )\ < 0 then the activity is suppressed
t = 0 : configuration totally filled

E t > 0 : system is forbidden to move

Epy (A(t) = 0) = p" exp(—(1 - p)t)
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Phase transitions

Finite size scaling

AER,  p(d) = lim lim %IogEuN (exp (MA(1)))
Pp(\) = /vlin tli)ngo%logEuN <exp (%A(t)))
U oo | \
A
‘ — pa

There are A\ < A\; < 0 such that
VA > Aq, P(A) = AX,
VA < Ao, PY(A) =X.
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Phase transitions

Finite size scaling

If there was no transition, then

=07 o) - 3

As @ (0)=A = h(\) ~ A\



Phase transitions

Surface tension

A< Ao, P»(A) = lim lim %IogEuN (exp (%A(t)))

N—oo t—00

Blocking the whole system :

eo oo o000
E,y (A(t) = 0) = p" exp(—(1 - p)t)
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Phase transitions

Surface tension

A< Ao, P»(A) = lim lim %IogEHN (exp (%A(t)))

N—oo t—00

Blocking the whole system :

¢eocococe
Epy (A(t) = 0) = p" exp(—(1 — p)t)

Surface tension : ¥ €]0,1 — p|

E,y (exp (A(t))) =~ exp(—Xt)

Cost of maintaining an interface dur-
ing time t

o(N)
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Phase transitions

¥(A)
A M T N Tilted measures.
2 _ Euy (- exp(5A(1)))
— mre(+) = B A

Theorem: density profiles

There are A < A\; < 0 such that

1 /7 .
VA > Aq, BN, T(NT/ dtZTIi(t) € [p—dn, p+dn)) =21

]. —
VA < Ao, KN, T(NT/ dth,(t)> 1—5N)) T -0

with 6y — 0 as N — .
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Phase transitions

Consequence : anomalous large deviation scaling

Large deviations for reducing the activity. Fix 0 < u <1

—X(1—-wu)< lim lim %Iog]P’MN (@ ~ uA) < MA(L—w)

N—oo t—00 N t

Dynamics without constraints

. .1 A(t) B
Nlinoo tll)ngom log P,y (m ~ uA) =F(u)#0
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Phase transitions

Other dynamics

Theorem valid for a larger class of 1D dynamics.

Fredrickson Andersen model (FA-1f)

@ A site can be updated only if a neighbor is empty

@ Update rates : 0% 1 and 0 1

¥(A)
xe Aong T \ Question. Extending the results up to A. ?
¥
r
o _ A = ——
> c A
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Phase transitions

Simulations FA-1f

Sizes : 4,5,6,7,8,10 and 16,32, 64

Work in progress [B., Lecomte, Toninelli]
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Phase transitions

Higher Dimensions

East Model in {1, N}? < N independent East Models in {1, N}

1/,(20)()\) = |lim lim iN log E,,, (exp (%A(t))) _ 1/}(10)()\)

N—oo t—oo t
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Phase transitions

FA-1f in higher Dimensions

Finite size scaling is sensitive to boundary conditions

lim lim ﬁnguN <exp(%v4(f)))

N—oo t—00

lim lim %ngMN <eXp( (t))>

N—oo t—00

Only partial results on the inactive regime.
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Phase transitions

FA-1f in higher Dimensions

Finite size scaling is sensitive to boundary conditions

. .1 A(t)
a<hA o im N w8 Fuw <—N2t ~ ")
. .1 A(t)
a <A Iinootlngo?logIP’uN <N2t ~a>

Consequence

Different large deviation scalings

Thierry Bodineau Kinetically constrained dynamics



Phase transitions

The constraint matters

North-East model. &
@ North and East sites Il °
empty - .
oOilandOl;pl E

N—oo t—00

¢(NE)()\) Ilm lim = L |ogEMN <exp( (t))>
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Phase transitions

What did we learn ?

Can we find a dynamical free energy characterizing glassiness?

First order phase transition.
¥(A)

) Finite size scaling :

7 5 Shift of the critical value

Can one predict something by looking at the activity at A\ =07
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Phase transitions

Box: Ay = {—N, N}?,
Spins : 0 = {0i}ien, with o; € {-1,1}

Hamiltonian: H(o) = — Z oi0j — Z hioj

inj iehy
ijENN

Gibbs measure: wr.n(o) L exp (-iH(O')>

B _ + m* + T < T, : phase transition

— 4‘#
h; = 0 for i away from the boundary.
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Phase transitions

First order phase transition

h>0

—| m(h) >m* |~

K " m(h) : magnetization in the in-

finite volume with field h.
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Phase transitions

Finite size scaling

For T < T.. Rescaled magnetic field h = % >0

A > A
_— m* p—
Shift of the free energy : Shift of the free energy :
A A
_N2 * 7Y N2 * N
m' mey T
Critical parameter : Ae = 2;*
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Phase transitions

Finite size scaling

For T < T.. Rescaled magnetic field h = % >0

A > A
_ mt _
Ae ——
= [Schonmann, Shlosman]
A [Borgs, Kotecky]

[Borgs, Imbrie] ...
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Proofs

Ingredients of the proof

@ Donsker-Varadhan large deviation principle
@ Local equilibrium (Hydrodynamic theory)

@ Surface tension (Equilibrium phase coexistence)
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Proofs

Large deviation principle

The fliprate at i # N is :
ci(n) = (1 = nit1) (p(l —ni)+(1- p)nf)

The time changed dynamics with rates : (1) = exp(\)ci(n) -

Probability measure on trajectories {ns}s<¢ : P, Py
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Proofs

Large deviation principle

The flip rate at i # N is :

ci(n) = (L —ni+1) (p(l —ni)+(1— p)nf)

The time changed dynamics with rates : (1) = exp(\)ci(n) -

Probability measure on trajectories {ns}s<¢ : P, Py
Radon-Nykodim derivative :

: N
% = exp ()\.At — /0 exp(A ; ci(ns) ds)

Correspondence between the activity and the path density
t
E(exp (M) = E)\(exp ((exp()\) - 1)/0 Z ci(ns) ds)) .
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E(exp (AA;)) = IE,\(exp ((exp()\) —1) /Ot Z ci(ns) ds))

Donsker-Varadhan theory (in the reversible case)

lime—o L log E(exp (AA))

= exp(\) sup {(1 —exp(—2)) /uv(fz C:(Tl)) DN(\/?)}

i=1

with £ >0, pun(f) =1 and the Dirichlet form

ZMN(C: f(n') — f(n )))
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For N large
1 A 1Y
Jim —logE (exp (1A¢)) = Sl;p{)\NN<f N_Zc,-('n)) _DN(f)}

Dirichlet form evaluated for
Bernoulli with density in [0, 1].

E N w a0 o

[0 Almost minimum at density 1
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For N large

Dirichlet form evaluated for
Bernoulli with density in [0, 1].

E N w a0 o

[0 Almost minimum at density 1

Dirichlet form [0 Local equilibrium : density close to p or 1.
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Proofs

Surface tension

Y, = infs D((f) for densities such that p (f(n)m) = 1.

r= Lll—tgozL'
o o
Existence of X : L> L then X; <X,.
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Proofs

Surface tension : Lower Bound

C={ni(s)=1,i<N-K,s <t}

T
oo 0000

E(exp (%At)) > E(exp (%At) lc)

tin;O%IogE(exp (%At)) > — inf, {DK(f)} + O(K/N)
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Proofs

Surface tension

Existence of a barrier of 1 7 Coexistence of the two phases
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Proofs

Surface tension

Existence of a barrier of 1 7 Coexistence of the two phases

© Prove that for A < A the inactive phase dominates

@ Approximate the surface tension
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Proofs

Active phase

For A > \; the active phase dominates :

.1 A 1
A < ezl e ifnA) = s {)\NN(f T ; Cf(??)) = DN(f)}
If f ~ 1 in the variational principle :
lim E log E (exp (iA ) ~ )\MN<i XN: c-(n)) ~ A\A
t—oo t N7 N &)
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Proofs

Conclusion

@ First order phase transitition
@ Finite size scaling

@ Surface cost *

Open questions.
@ Existence of A
@ Description of the interface
@ Higher dimensions

@ Conservative dynamics

Thierry Bodineau Kinetically constrained dynamics



	Kinetically constrained dynamics
	Phase transitions
	Proofs

