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Persistence  Pro(S;(t') = S5;(0)),0 < t' < t) ~ [Size] "

» Geometry and distribution of domain sizes
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Zero temperature of the g state Potts model

Si(t) =1,2,..q E=.5(S(t), Sia(t))
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Zero Temperature Glauber dynamics = Voter model
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» Correlations % = % # 1

Arbitrary g
X = h with prob. 1 — ¢! -

h+h with prob. ¢7! — g2

h+hb+ .., with prob. q_n+1 —q "
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Arbitrary g

D Zeitak 1996

» Exact expression of p(x)

> p(x) ~ e
g~ A4 . 4(q - 1)
F 2, A th p=——5—7
or q > 2, (q—1) ng n3/2 with 2
q — "
For q < 2, @-1 Z 372 +4y/—mlog (1)
n=1
» Small x expansion
2 3 2 3
9 ™ _ 4 3, _ 4 LTI
P(x) 29-1" 8 (q-1p" "1 "
6 10 4 — 64 1 3
n v q*°(64 — 64q + 3157q )x13+ 0(x*) .

1857945600 (q—1)B
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Derivation

» Free Fermions

» Non intersecting random walks for 0 < 7 < t
Pro {x1(7) < x2(7).. < xa(7)} = Det [Pros {x;(7) < xj(7)}]
» Pro(Domain contains sites 1,2..n)
Pro(51(t) = Sa(t) = ..Sn(t))
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Universality (at g = o0)

If (x) finite at time t =0

p(x) = Cxe /2

If (x) =00 and p(x) ~x 1@ at t =0

p(x) = Cexz/z/ u™1 sinh(xu) e "/ du
0



Landau Guinzburg equation
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Landau Guinzburg equation
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Landau Guinzburg equation

d¢ _ &

dt  dx?

+¢—¢°




Long time dynamics

"= L1+ Lyin + Lo
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Long time dynamics

L' =Ly + L + Lo

N total number of intervals

ng number of intervals of length L

Under the elimination of all intervals of length Ly, = Lo

N/ = N—2n[_0

2n L2 g
/ L Pon_i—L
n, = n (1 — °> + ny, — 2

N N N

i=Lo




Scaling limit

L0—>L0+1
N/ = N—2n[_°
L—2L
2 °ni np_i_
n, = nL(l— ’;\IL°>+nL0 %HLI(IL"
i:Lo

F ()4 () +0(x—3)F(1) /1 Ty Fy)F(x—y—1) = 0
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Scaling limit _ _
Nagai Kawasaki 1986

N L
np = Tof (LO>

x—2
F(x) + xF'(x) + 0(x — 3)f(1)/1 dy F(y)f(x—y —1) = 0

Laplace tranform:  ¢(p) = [ exp(—px) f(x) dx

pd'(p) = —f (1) exp(—p) [1 — ¢*(p)]
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p
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L' =Ly + Liin + Lo ; D' =D + D,

Under the elimination of all intervals of length L,,i, = Lg
N/ = N-— 2nL0

2n E22bo oy
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Scaling limit
Bray D Godréche 1994

N _ (L . (L
=—f(— d=nNL’ —
np Lo <L0> ) npap 0 g<Lo>

x—2
(1—ﬁ)g(X)+Xg'(><)+29()<—3)7‘(1)/1 dy g(y)f(x—y—-1)=0

Laplace tranform:  ¢(p) = [, exp(—px) g(x) dx
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Small p: 4(p) = A(B) + B(B)p' 7+ O(p) =

B(3)=0 = |B=0.82492412. ..




B(p) = /0°° dq qﬁ—2 e 9 [(1 —q- e—q)er(q) +2(1—B)g+(1— 5)q2e—r(q)}

with

r(q) =~y - i )

n n!

n=1
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Persistence  Pro(Si(t') = $;(0)),0 < t/ < t) ~ [Size]’*

In (dry/length)

1n (length/N)
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Autocorrelation

Lmin
LI L2
L
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Under the elimination of all intervals of length L,,i, = Lg
N/ = N-— 2nL0
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Under the elimination of all intervals of height H,.i, = Ho



Conclusion

» Universality

» Exact real space renormalization



