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Introduction
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Quench of a two dimensional Ising model

Zero temperature Glauber dynamics:

Start with a random {Si (0)}

At each time step t → t + 1
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Scaling limit t →∞ (Glauber dynamics)

System(L, t) ∼ System(L/b, t/bz)

⇓
Universality

I Size of domains ∼ ts s = 1/2 Bray 1994

I Energy E (t)− E (∞) ∼ [Size]−1

I Autocorrelation 〈Si(t)Si(0)〉 ∼ [Size]−a

I Persistence Pro(Si(t
′) = Si(0)), 0 < t ′ < t) ∼ [Size]−p

I Geometry and distribution of domain sizes
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Zero temperature of the q state Potts model

Si(t) = 1, 2, ..q E =
∑

i δ(Si(t), Si+1(t))

t ↓

Zero Temperature Glauber dynamics ≡ Voter model
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Normalized distribution p(x) of domain sizes

q =∞

I p(x) = π
2
xe−x

2π/4

I Universality classes

I Correlations
〈xixi+1〉
〈x〉2 = 3

π
6= 1

Arbitrary q

x = l1 with prob. 1− q−1

l1 + l2 with prob. q−1 − q−2

...

l1 + l2 + ...ln with prob. q−n+1 − q−n
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Results
Arbitrary q

D Zeitak 1996

I Exact expression of p(x)

I p(x) ∼ e−Ax

For q > 2, A =
q

4(q − 1)

∞∑
n=1

µn

n3/2
with µ =

4(q − 1)

q2

For q < 2, =
q

4(q − 1)

[ ∞∑
n=1

µn

n3/2
+ 4
√
−π log (µ)

]
I Small x expansion

p(x) =
π

2

q
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x − π2

8

q3

(q − 1)3
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π2

24
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(q − 1)4
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1857945600

q10(64− 64q + 315πq3)

(q − 1)13
x13 + O(x14) .
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Derivation

I Free Fermions

I Non intersecting random walks for 0 < τ < t

Qn {x1(0)→ x1(t), .. < xn(0)→ xn(t))} = Det [Q1 {xi (0)→ xj(t)}]

I Pro(Domain contains sites 1, 2..n)=

Pro(S1(t) = S2(t) = ..Sn(t))
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Derivation

I Free Fermions

I Non intersecting random walks for 0 < τ < t

Pron {x1(τ) < x2(τ).. < xn(τ)} = Det [Pro2 {xi (τ) < xj(τ)}]

I Pro(Domain contains sites 1, 2..n)

Pro(S1(t) = S2(t) = ..Sn(t))



Universality (at q =∞)

If 〈x〉 �nite at time t = 0

p(x) = Cxe−x
2/2

If 〈x〉 =∞ and p(x) ∼ x−1−α at t = 0

p(x) = Ce−x
2/2

∫ ∞
0

u−1−α sinh(xu) e−u
2/2 du



Landau Guinzburg equation
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Long time dynamics

L′ = L1 + Lmin + L2
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Scaling limit

L0 → L0 + 1

N ′ = N − 2nL0
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N

L0
f

(
L

L0

)

f (x)+xf ′(x)+θ(x−3)f (1)
∫ x−2

1

dy f (y)f (x−y−1) = 0



Scaling limit
Nagai Kawasaki 1986

nL =
N

L0
f

(
L

L0

)

f (x) + xf ′(x) + θ(x − 3)f (1)

∫ x−2

1

dy f (y)f (x − y − 1) = 0

Laplace tranform: φ(p) =
∫∞
1

exp(−px) f (x) dx

pφ′(p) = −f (1) exp(−p) [1− φ2(p)]

Solution φ(p) = tanh

[
f (1)

∫ ∞
p

dt

t
exp(−t)

]

One parameter family of solutions indexed by f (1)
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Scaling limit
Nagai Kawasaki 1986

nL =
N

L0
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Solution φ(p) = tanh

[
f (1)
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p

dt

t
exp(−t)

]

φ(p) = 1− Ap2f (1)(1 + O(p)) ⇒ f (1) =
1

2
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Scaling limit
Bray D Godrèche 1994

nL =
N

L0
f

(
L

L0

)
, nLdL = N L

β−1
0

g

(
L

L0

)

(1−β)g(x)+xg ′(x)+2θ(x−3)f (1)

∫ x−2

1

dy g(y)f (x−y −1) = 0

Laplace tranform: ψ(p) =
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1

exp(−px) g(x) dx

pψ′(p) + βψ(p) = − exp(−p) [g(1)− 2f (1)φ(p)ψ(p)]

Small p: ψ(p) = A(β) + B(β)p1−β + O(p) ⇒

B(β) = 0 ⇒ β = 0.82492412 . . .
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B(β) =

∫ ∞
0

dq qβ−2 e−q
[
(1− q − e−q)er(q) + 2(1− β)q + (1− β)q2e−r(q)

]
with

r(q) = −γ −
∞∑
n=1

(−q)n

n n!

B(β) = 0 ⇒ β = 0.82492412 . . .

Persistence Pro(Si (t
′) = Si (0)), 0 < t ′ < t) ∼ [Size]β−1
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Conclusion

I Universality

I Exact real space renormalization


