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Periodic patterns

The spontaneous emergence of periodic states is an
ubiquitous phenomenon in nature.

Nevertheless, a fundamental understanding of why
crystals, or ordered patterns, form is still missing.

In this talk I would like to focus on the phenomenon
of formation of periodic arrays of stripes or slabs,
which are observed in a variety of systems, ranging
from magnetic films to superconductors, polymer
suspensions, twinned martensites, etc.
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Stripes

Magnetic garnet film (YGdTm)3(FeGa)602 at H = 0
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Competing interactions

The basic mechanism behind stripe formation seems
to be the competition between a short-range
attractive and a long-range repulsive interaction.

The resulting frustration induces the system to form
mesoscopic islands of a uniform phase, which
alternate regularly on the scale of the whole sample.
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Striped and slabbed patterns

Theoretically, the understanding of these regular
patterns is based on a variational computation of
the “best energy” among a selected class of
periodic states.

Remarkably, in many different situations, the “best
state” seems to be striped or slabbed. But why?
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A standard model for competing interactions

In many situations, the following Hamiltonian is the
simplest realistic model for pattern formation in
systems with competing interactions:

H = −J
∑
〈x,y〉

(σxσy − 1) +
1

2

∑
x 6=y

(σxσy − 1)

|x− y|p

The long range interaction can model:

• a Coulomb potential (p = 1),

• a dipolar potential (p = 3).

More general values of p describe a “generic” antiferromagnetic

power law potential.
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Known facts about the ground state

What are the ground states of the system?

Limiting cases:

J = +∞: homogeneous FM state
J = 0: AF state (by RP: Fröhlich-Israel-Lieb-Simon 1978)

The FM state is stable for J large, for all p > d + 1
(Ginibre-Grossmann-Ruelle 1966)

The AF state is stable for J & 0 for all d , p.

If p > d + 1, the FM transition line can be
computed exactly (G-Lebowitz-Lieb 2011):

J = Jc(p) =
1

2

∑
y∈Zd

|y1|
|y|p
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J = 0: AF state (by RP: Fröhlich-Israel-Lieb-Simon 1978)

The FM state is stable for J large, for all p > d + 1
(Ginibre-Grossmann-Ruelle 1966)

The AF state is stable for J & 0 for all d , p.

If p > d + 1, the FM transition line can be
computed exactly (G-Lebowitz-Lieb 2011):

J = Jc(p) =
1

2

∑
y∈Zd

|y1|
|y|p



Introduction Ising models with competing interactions Sketch of the proof

Known facts about the ground state

What are the ground states of the system?

Limiting cases:

J = +∞: homogeneous FM state
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The expected ground state phase diagram

What happens in the intermediate region?

Expected: periodic patterns!
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Which periodic patterns?

Standard procedure: minimize the energy among a class of periodic
states, say stripes and checkerboard. If d = 2, in the universal regime:

2 < p < 3 es ∼ −J−
p−2
3−p , ec ∼ −J−

p−2
3−p

p = 3 es ∼ −e−J/2 , ec ∼ −e−J/2

3 < p ≤ 4 es ∼ −(Jc − J)
p−2
p−3 , ec ∼ −(Jc − J)

p−2
p−3

p > 4 es ∼ −(Jc − J)
p−2
p−3 , ec ∼ −(Jc − J)2

In all cases, by computing the prefactors, we find
that es < ec : the best configuration seems to be the
one consisting of periodic stripes of width h∗(J).
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Rigorous results

1 If the ground state is striped, then it is periodic.
In particular, in d = 1 it is always periodic
(G-Lebowitz-Lieb 2006)

2 Upper and lower bounds on the g.s. energy,
matching at the dominant order (G-Lebowitz-Lieb

2006, 2007, 2011)

3 p > 2d : upper lower bounds on the g.s. energy,
matching at the 1st subdominant order
(G-Lieb-Seiringer 2013)

Methods: RP + decimation + localization estimates
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Other results, I

Our methods have been generalized and applied to other models:

1 1D continuum functionals with magnetic field
(G-Lebowitz-Lieb): RP + convexity;

2 1D models where the FM interaction is not n.n.
(Buttà-Esposito-G-Marra): RP + coarse graining;

3 anisotropic 2D system for martensitic phase
transitions (G-Müller): RP + localization bounds;

4 isotropic 2D magnetic models with in-plane
spins (G-Lebowitz-Lieb): FM RP + AF RP.
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Other results, II

More results on related models (in the continuum):

In d = 1:

Periodicity of 1D minimizers

(Chen-Oshita, Hubbard, Müller, Kohn-Müller, ...)

In d ≥ 2:

Computat’n of the ground state energy at dominant order

Proof of the self-similarity of the finite volume free energy

Derivation of effective functionals for meso-patterns

Identification of the best periodic pattern among selected
class of periodic states

(Alberti, Choksi, Conti, Kohn, Müller, Muratov, Otto, Sandier, Serfaty, ...)
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Periodicity in d ≥ 2

There are just a few very special cases for which one
can prove the existence of non-trivial periodic
structures in d ≥ 2. Remarkable: existence of
triangular lattice by Heilmann-Radin, Theil, Süto.

Open problem: prove (or disprove) the periodicity of
the minimizers for our model, or related models in
the continuum, in d ≥ 2 and p ≥ 1.

In this talk, I present the first proof of periodicity of
the minimizers, for all d ≥ 2 and p > 2d , in a left
neighborhood of the FM transition line.
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Main results

Theorem [G-Seiringer]. Let d ≥ 2, p > 2d and
Jc = Jc(p) be the location of the FM transition line.

There exists ε > 0 such that, if Jc − ε < J < Jc ,
then, in any finite box, the ground state with
“optimal striped boundary conditions” is unique.

Such ground state is periodic and striped, with
stripes all of width h∗(J).
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Remarks

Our theorem is based on quantitative lower
bounds on the excess energy of generic spin
states with optimal striped boundary conditions.

Our result can be restated by saying that all the
infinite periodic striped configurations are
(strictly stable) infinite volume ground states.

We also prove that any infinite volume g.s.,
invariant under translations by d − 1 independent
integer vectors, consists of two periodic striped
halves separated by a finite interface.
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Main steps

Restrict to d = 2 and p > 4, for simplicity.
The main steps of the proof are:

1 Representation of the energy in terms of droplet
self-energies and droplet-droplet interactions.

2 Localization of the droplets’ energy functional in
bad tiles of side ` containing at least one corner
and good striped regions.

3 Key fact: the localized energy of the bad tiles
has an excess energy ∝ Nc .

4 The localized energy of the good regions can be
bounded from below via reflection positivity and
a (subtle) control of the boundary error.
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The droplet representation

In the presence of + boundary conditions, we define
the droplets δi to be the maximal connected regions
of negative spins. Their boundaries Γi are the usual
low-temperature contours of the Ising model.



Introduction Ising models with competing interactions Sketch of the proof

The droplet representation

The total energy can be rewritten as:

H =
∑
i

[
2J |Γi |+ U(δi)

]
+
∑
i<j

W (δi , δj)

where:

U(δ) = −2
∑
x∈δ

∑
y∈Z2\δ

1

|x− y|p

W (δ, δ′) = 4
∑
x∈δ

∑
y∈δ′

1

|x− y|p

Note: the droplet-droplet interaction is positive.
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Energy of a droplet (p > 4)
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Energy of a droplet (p > 4)
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Corners

Take home message: corners cost a finite energy!
They look like elementary excitations.

However: how do we eliminate corners by local
moves? How do we exclude that their presence does
not decrease the interaction energy substantially?
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Localization

We localize in bad tiles Ti of side h∗�`�(Jc−J)−1

and good regions Gi .
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Lower bounds on the local energies

As far as W (δi , δj) is concerned, we just neglect the
terms with δi , δj belonging to different tiles Ti or
good regions Gi .

The local energy of a bad tile is ≥ es(h∗)`2 + nc(T ).

Non trivial part: lower bound on the energy of the
good regions, of the form

EG ≥ es(h∗)|G |−(Jc−J)|∂G |+
∑
h 6=h∗

(es(h)−es(h∗))Ah(G )

with Ah(G ) the area covered by stripes of width h.



Introduction Ising models with competing interactions Sketch of the proof

Lower bounds on the local energies

As far as W (δi , δj) is concerned, we just neglect the
terms with δi , δj belonging to different tiles Ti or
good regions Gi .

The local energy of a bad tile is ≥ es(h∗)`2 + nc(T ).

Non trivial part: lower bound on the energy of the
good regions, of the form

EG ≥ es(h∗)|G |−(Jc−J)|∂G |+
∑
h 6=h∗

(es(h)−es(h∗))Ah(G )

with Ah(G ) the area covered by stripes of width h.



Introduction Ising models with competing interactions Sketch of the proof

Lower bounds on the local energies

As far as W (δi , δj) is concerned, we just neglect the
terms with δi , δj belonging to different tiles Ti or
good regions Gi .

The local energy of a bad tile is ≥ es(h∗)`2 + nc(T ).

Non trivial part: lower bound on the energy of the
good regions, of the form

EG ≥ es(h∗)|G |−(Jc−J)|∂G |+
∑
h 6=h∗

(es(h)−es(h∗))Ah(G )

with Ah(G ) the area covered by stripes of width h.



Introduction Ising models with competing interactions Sketch of the proof

Lower bounds on the local energy of the good regions, I

A good region G can have a complicated shape.
We deform and slice G , thus reducing it to a union
of rectangles, keeping track of boundary errors.
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Lower bounds on the local energy of the good regions, II

We first move the vertical boundaries to the
interior, so that they coincide with boundaries of the
rectangular droplets.
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Lower bounds on the local energy of the good regions, III

Next we slice in horizontal slices, and show that we
only pay a boundary error from the external
boundary, of the order ∼ (Jc − J)|∂G |.
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Reflection positivity

Finally, in order to get an optimal bond on the
energy of a slice, we use block reflection positivity,
as developed by G-Lebowitz-Lieb in the study of the
1D version of our model.
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Summary

Ising models with competing interactions are a
natural “standard” model for stripe formation.

Variational computations suggest that in the
universal regime, where the homogeneous
islands are much wider than the lattice spacing,
periodic stripes are better then checkerboard,
bubbles, etc.
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Summary

We proved striped periodicity of the miminizers,
in d = 1, for all p, and in d ≥ 2, for p > 2d .

The proof combines localization bounds, based
on a convenient droplet representation of the
energy, with block reflection positivity.

Subtle aspect: control of the boundary errors in the
localization procedure.
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Open problems

1 Generalize to d < p ≤ 2d . In particular, do
stripes form in d = 2 for p = 3 at large J?

2 Prove stability of stripes (LRO) at positive
temperatures in d = 3.

3 Are stripes stable in d = 2 at positive
temperatures, or should we expect quasi-LRO
(a’la Kosterlitz-Thouless)?

. . .
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Reflection positivity

Once we reduced to a local striped configuration,
the model is effectively one dimensional:

H1D(σ) = −J
∑
x

σxσx+1 +
∑
x<y

σx v(x − y)σy

where v(x − y) ' 1/(y − x)p−1.
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Let us temporarily focus on the long range part:
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Reflection positivity

Let us temporarily focus on the long range part:

H0(σ) =
∑
x<y

σxσy
(y − x)p−1

The goal is to find the minimizing configuration σ.
The key idea to implement is reflection positivity:

H0(σL, σR) = EL(σL) + ER(σR)−

−cp

∫ ∞
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x≥1

(θσL)xe−α(x−1)
][∑

y≥1

σye−α(y−1)
]
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Reflection positivity

Let us temporarily focus on the long range part:

H0(σ) =
∑
x<y

σxσy
(y − x)p−1

The goal is to find the minimizing configuration σ.
The key idea to implement is reflection positivity:

H0(σL, σR) = EL(σL) + ER(σR)− 〈θσL, σR〉

≥ 1

2
E (σL, θσL) +

1

2
E (θσR , σR)
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Block reflection positivity

Summarizing: the long range energy decreases by
reflecting left onto right, or viceversa. If J > 0,
then we can reflect only at the “broken bonds”:

After repeated reflections we end up with a lower
bound involving periodic arrays of blocks all of the
same size . . . , hi , hi , hi , hi , . . .
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