Universal laws for hulls in large planar maps

Emmanuel Guitter (IPhT, CEA Saclay)

IHP January 24, 2017

Universal laws for hulls in large planar maps

Emmanuel Guitter (IPhT, CEA Saclay)

IHP January 24, 2017
arXiv:1511.01773 The distance-dependent two-point function of triangulations: a new derivation from old results
arXiv:1512.00179 The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion
arXiv:1602.07433 Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations
arXiv:1606.06532 Eulerian triangulations: two-point function and hull perimeter statistics
arXiv:1611.02871 Refined universal laws for hull volumes and perimeters in large planar maps

The hull: a heuristic presentation

Consider:

- a planar map, say a quadrangulation, i.e. a connected graph embedded on the sphere whose all faces have degree 4

The hull: a heuristic presentation

Consider:

- a planar map, say a quadrangulation, i.e.
a connected graph embedded on the sphere whose all faces have degree 4
- with two marked vertices x_{0} et x_{1} at graph distance

$$
d\left(x_{0}, x_{1}\right)=k
$$

The hull: a heuristic presentation

Consider:

- a planar map, say a quadrangulation, i.e.
a connected graph embedded on the sphere whose all faces have degree 4
- with two marked vertices x_{0} et x_{1} at graph distance

$$
d\left(x_{0}, x_{1}\right)=k
$$

Pour $d<k$:
\exists a closed line "at distance" d from x_{0} and
 separating x_{0} from x_{1}

The hull at distance d is the part of the map lying on the same side as x_{0} from this separating line (here denoted by \mathcal{H}_{d})

More precisely, we shall work in the ensemble $\mathcal{Q}_{k, N}$ of quadrangulations with N faces, with two marked vertices x_{0} et x_{1} at graph distance $d\left(x_{0}, x_{1}\right)=k$ and (this simplifies the combinatorics) with a marked edge from x_{1} to a vertex at distance $k-1$ from x_{0} (such an edge always exists)

The dividing line will be chosen as a simple closed curve following edges of the map and visiting alternately vertices at distance d and $d-1$ from x_{0}

Quantities of interest

Hull perimeter: $\mathcal{L}(d)=$ length (number of edges) of the separating line Hull volume: $\mathcal{V}(d)=$ area (number of faces) of the hull

What is the statistics $\mathcal{L}(d)$ and $\mathcal{V}(d)$ in the ensemble $\mathcal{Q}_{k, N}$ for a given $d<k$?

The coding of maps by slices

Upon cutting the map along the leftmost shortest path from x_{1} to x_{0} (taking the marked edge $k \rightarrow k-1$ as first step), we transform it into a so-called k-slice

k-slice
k-slice $=$ "quadrangulation with a boundary" of total length $2 k$

The coding is one-to-one and the distances from x_{0} are preserved.

A construction of the hull on the k-slice

Slice generating functions (let N be unfixed)

$$
T_{k} \equiv T_{k}(g): \text { generating function for } \ell \text {-slices with } 2 \leq \ell \leq k
$$ with a weight g per face

\rightarrow cut the ℓ-slice along the separating line at distance $\ell-1$
(i.e. visiting vertices at distance $\ell-2$ and $\ell-1$) Upon defining

$$
\mathcal{K}(T) \equiv \mathcal{K}(T ; g)=\sum_{i \geq 2} K_{2 i}(g) T^{i-2}
$$

where $K_{2 i}(g)$ enumerates particular quadrangulations with a boundary of length $2 i$, then we have the recursion:

$$
T_{k}=\mathcal{K}\left(T_{k-1}\right)
$$

$2 i=4+2 \#$ subslices

Explicit form of $\mathcal{K}(T)$

$$
\mathcal{K}(T)=\sum_{i \geq 2} K_{2 i}(g) T^{i-2}
$$

where $K_{2 i}$ enumerates quadrangulations with a boundary of length $2 i$ with some constraints

Explicit form of $\mathcal{K}(T)$

Introducing the parametrization

$$
g=g(x)=\frac{x\left(1+x+x^{2}\right)}{\left(1+4 x+x^{2}\right)^{2}} \quad T_{\infty}=T_{\infty}(x)=\frac{x\left(1+4 x+x^{2}\right)}{\left(1+x+x^{2}\right)^{2}}
$$

with $0 \leq x \leq 1$, we find that $\mathcal{K}(T)=T_{\infty} \times \kappa\left(\frac{T}{T_{\infty}}\right)$ where

$$
\begin{aligned}
\kappa(\tau)= & \frac{1}{2 x(1+x(x+\tau))}\left\{x\left(1-3 x+x^{2}-x^{3}\right)+x\left(1+6 x+x^{2}+x^{3}\right) \tau-x^{2} \tau^{2}\right\} \\
& \left.\quad-(1-\tau)\left(1-\sqrt{\left(1+x+x^{2}+x^{3}+x^{4}\right)^{2}-2 x^{2}\left(1+3 x+5 x^{2}+3 x^{3}+x^{4}\right) \tau+x^{4} \tau^{2}}\right)\right\}
\end{aligned}
$$

so that we have for any (small enough) U :

$$
\mathcal{K}\left(T_{\infty} \frac{\left(1-U x^{-1}\right)\left(1-U x^{4}\right)}{(1-U x)\left(1-U x^{2}\right)}\right)=T_{\infty} \frac{(1-U)\left(1-U x^{5}\right)}{\left(1-U x^{2}\right)\left(1-U x^{3}\right)}
$$

Solution of the recursion

$$
\mathcal{K}\left(T_{\infty} \frac{\left(1-U x^{-1}\right)\left(1-U x^{4}\right)}{(1-U x)\left(1-U x^{2}\right)}\right)=T_{\infty} \frac{(1-U)\left(1-U x^{5}\right)}{\left(1-U x^{2}\right)\left(1-U x^{3}\right)}
$$

Setting

$$
T_{k}=T_{\infty} \frac{\left(1-U_{k}\right)\left(1-U_{k} x^{5}\right)}{\left(1-U_{k} x^{2}\right)\left(1-U_{k} x^{3}\right)}
$$

we may reformulate the recursion as

$$
T_{k}=\mathcal{K}\left(T_{k-1}\right) \Rightarrow U_{k}=x U_{k-1}
$$

with initial condition $U_{1}=1\left(\right.$ since $\left.T_{1}=0\right) \Rightarrow U_{k}=x^{k-1}$

$$
T_{k}(g)=T_{\infty}(x) \frac{\left(1-x^{k-1}\right)\left(1-x^{k+4}\right)}{\left(1-x^{k+1}\right)\left(1-x^{k+2}\right)} \quad \text { with } x \text { s.t. } g=g(x)
$$

If we wish to enumerate quadrangulations with $d\left(x_{0}, x_{1}\right)=k$, we must fix $\ell=k$ and the desired g.f. is

$$
W(g ; k)=T_{k}(g)-T_{k-1}(g)
$$

Slice generating functions controlling the hull geometry

$T_{k}(g)$ enumerates ℓ-slices with $2 \leq \ell \leq k$ and satisfies

$$
T_{k}(g)=\mathcal{K}\left(T_{k-1}(g)\right)
$$

Slice generating functions controlling the hull geometry

$T_{k}(g)$ enumerates ℓ-slices with $2 \leq \ell \leq k$ and satisfies

$$
T_{k}(g)=\mathcal{K}\left(\mathcal{K}\left(T_{k-2}(g)\right)\right)
$$

Slice generating functions controlling the hull geometry

To enumerate ℓ-slices with $2 \leq \ell \leq k$ with an extra weight

$$
\rho^{\mathcal{V}(\ell-2)} \alpha^{\mathcal{L}(\ell-2)}
$$

we simply have to consider

$$
\mathcal{K}\left(\mathcal{K}\left(\alpha^{2} T_{k-2}(h)\right)\right)
$$

where

$$
h=\rho g
$$

NB: here $\mathcal{K}(T) \equiv \mathcal{K}(T ; g)$ depends

$$
(2 \leq \ell \leq k)
$$ on g only

More generally, if we wish to enumerate ℓ-slices with $2 \leq \ell \leq k$, and for $1 \leq m \leq k-1$ a weight

$$
\rho^{\mathcal{V}(\ell-m)} \alpha^{\mathcal{L}(\ell-m)}
$$

we simply have to consider

$$
\underbrace{\mathcal{K}(\cdots(\mathcal{K}(}_{m \text { times }} \alpha^{2} T_{k-m}(h))))
$$

NB: with the convention $\mathcal{V}(\ell-m)=\mathcal{L}(\ell-m)=0$ if $\ell \leq m$
If we wish to enumerate quadrangulations with $d\left(x_{0}, x_{1}\right)=k$ and a weight $\rho^{\mathcal{V}(d)} \alpha^{\mathcal{L}(d)}$, we must fix $\ell=k$ and $m=k-d$

The desired generating function is (setting $h=\rho g$)

Using

$\underbrace{\mathcal{K}\left(\cdots\left(\mathcal{K}\left(T_{\infty} \frac{\left(1-U x^{-1}\right)\left(1-U x^{4}\right)}{(1-U x)\left(1-U x^{2}\right)}\right)\right)\right)=T_{\infty} \frac{\left(1-U x^{k-d-1}\right)\left(1-U x^{k-d+4}\right)}{\left(1-U x^{k-d+1}\right)\left(1-U x^{k-d+2}\right)}}$
$k-d$ times
we get $\underbrace{\mathcal{K}(\cdots(\mathcal{K}(} \alpha^{2} T_{d}(h))))=T_{\infty} \frac{\left(1-U_{d} x^{k-1}\right)\left(1-U_{d} x^{k+4}\right)}{\left(1-U_{d} x^{k+1}\right)\left(1-U_{d} x^{k+2}\right)}$ $k-d$ times
where $U_{d}=U_{d}(x, y, \alpha)$ is defined via
$T_{\infty}(x) \frac{\left(1-U_{d} x^{d-1}\right)\left(1-U_{d} x^{d+4}\right)}{\left(1-U_{d} x^{d+1}\right)\left(1-U_{d} x^{d+2}\right)}=\alpha^{2} T_{d}(h)=\alpha^{2} T_{\infty}(y) \frac{\left(1-y^{d-1}\right)\left(1-y^{d+4}\right)}{\left(1-y^{d+1}\right)\left(1-y^{d+2}\right)}$
where x and y satisfy $g(x)=g$ and $g(y)=h$. Finally

$$
\begin{aligned}
& Z(h, \alpha, g ; d, k)=T_{\infty}(x)\left(\frac{\left(1-U_{d} x^{k-1}\right)\left(1-U_{d} x^{k+4}\right)}{\left(1-U_{d} x^{k+1}\right)\left(1-U_{d} x^{k+2}\right)}\right. \\
& \left.\quad-\frac{\left(1-U_{d-1} x^{k-2}\right)\left(1-U_{d-1} x^{k+3}\right)}{\left(1-U_{d-1} x^{k}\right)\left(1-U_{d-1} x^{k+1}\right)}\right)
\end{aligned}
$$

Universal laws for large maps

Recall that our aim is the statistics of the hull at distance d in the ensemble $\mathcal{Q}_{k, N}$ of quadrangulations with N faces, with two marked vertices x_{0} et x_{1} at graph distance $d\left(x_{0}, x_{1}\right)=k$ (and a marked edge $k \rightarrow k-1$)

To obtain universal laws for the hull geometry, we will in practice study this statistics only in the limit of infinitely large maps. More precisely:

- we first let $N \rightarrow \infty$
- in a second step, we then let k and d become large with a fixed ratio

$$
u=d / k, \quad 0 \leq u \leq 1
$$

NB: we will not consider here the statistics obtained in another interesting universal regime where N, k and d tend simultaneously to ∞ with d / k and $k / N^{1 / 4}$ fixed

The $N \rightarrow \infty$ limit

Consider the generating function $W(g ; k)$ for quadrangulations with two marked vertices at distance k (and a marked edge $k \rightarrow k-1$). It encodes the number of maps in the ensemble $\mathcal{Q}_{k, N}$, given by

$$
\left[g^{N}\right] W(g ; k)
$$

The large N limit of this number is easily obtained from the singular behavior of $W(g ; k)$, which occurs when $x \rightarrow 1$, i.e for $g \rightarrow g(1)=\frac{1}{12}$. Setting

$$
g=\frac{1}{12}\left(1-\epsilon^{2}\right)
$$

we find an expansion of the form

$$
W(g ; k)=\mathfrak{w}_{0}(k)+\mathfrak{w}_{2}(k) \epsilon^{2}+\mathfrak{w}_{3}(k) \epsilon^{3}+O\left(\epsilon^{4}\right)
$$

so that

$$
\left.W(g ; k)\right|_{\text {sing. }}=\mathfrak{w}_{3}(k)(1-12 g)^{3 / 2}
$$

and

$$
\left[g^{N}\right] W(g ; k) \sim \frac{3}{4} \frac{12^{N}}{N^{5 / 2}} \times \mathfrak{w}_{3}(k)
$$

From our explicit form of $W(g ; k)$, we easily obtain

$$
\mathfrak{w}_{3}(k)=\frac{4\left(k^{2}+2 k-1\right)\left(5 k^{4}+20 k^{3}+27 k^{2}+14 k+4\right)}{35 k(k+1)(k+2)} .
$$

In particular for large k,

$$
\mathfrak{w}_{3}(k) \underset{k \rightarrow \infty}{\sim} \frac{4}{7} k^{3}
$$

The out- and the in-regime

For $N \rightarrow \infty$, the volume of the hull may itself be infinite!

- the "out-regime": $\mathcal{V}(d)$ is finite
- the "in-regime": $\mathcal{V}(d)$ is infinite (in which case the complementary of the hull has a finite volume with probability 1)

Let us denote for short $Z(h, g) \equiv Z(h, \alpha, g ; k, d)$ and $n \equiv \mathcal{V}(d)$. Then the quantity of interest in the out-regime is the $N \rightarrow \infty$ behavior of

$$
\sum_{n}\left[g^{N-n} h^{n}\right] Z(h, g) \rho^{n}
$$

Setting as before $g=\frac{1}{12}\left(1-\epsilon^{2}\right)$ we have an expansion

$$
Z(h, g)=\mathfrak{z}_{0}(h)+\mathfrak{z}_{2}(h) \epsilon^{2}+\mathfrak{z}_{3}(h) \epsilon^{3}+O\left(\epsilon^{4}\right)
$$

from which we deduce the large N behavior

$$
\begin{gathered}
{\left[g^{N-n} h^{n}\right] Z(h, g) \underset{N \rightarrow \infty}{\sim}\left[h^{n}\right]_{\mathfrak{z} 3}(h) \times \frac{3}{4} \frac{12^{N-n}}{\sqrt{\pi} N^{5 / 2}}} \\
\sum_{n}\left[g^{N-n} h^{n}\right] Z(h, g) \rho^{n} \underset{N \rightarrow \infty}{\sim} \frac{3}{4} \frac{12^{N}}{\sqrt{\pi} N^{5 / 2}} \sum_{n}\left[h^{n}\right]_{\mathfrak{z} 3}(h) \times\left(\frac{\rho}{12}\right)^{n}
\end{gathered}
$$

Namely:

$$
\sum_{n}\left[g^{N-n} h^{n}\right] Z(h, g) \rho_{N \rightarrow \infty}^{n} \underset{\sim}{\sim} \frac{3}{\sqrt{\pi} N^{5 / 2}} \mathfrak{z} 3\left(\frac{\rho}{12}\right)
$$

and upon normalization

$$
E\left[\rho^{\mathcal{V}(d)} \alpha^{\mathcal{L}(d)} \mathbf{1}_{\mathcal{V}(d) \text { finite }}\right]=\frac{\mathfrak{z 3}\left(\frac{\rho}{12}, \alpha ; k, d\right)}{\mathfrak{w}_{3}(k)}
$$

Similarly, for the in-regime, we consider the small η expansion

$$
Z(h, g)=\mathfrak{j}_{0}(g)+\mathfrak{j}_{2}(g) \eta+\mathfrak{j}_{3}(g) \eta^{3}+O\left(\eta^{4}\right)
$$

where η is defined via $h=\frac{1}{12}\left(1-\eta^{2}\right)$
(i.e. $y=1-\sqrt{6} \eta+\cdots$)

This yields
and

$$
\sum_{n}\left[g^{m} h^{N-m}\right] Z(h, g) \underset{N \rightarrow \infty}{\sim} \frac{3}{4} \frac{12^{N}}{\sqrt{\pi} N^{5 / 2}} \mathrm{j}_{3}\left(\frac{1}{12}\right)
$$

$$
E\left[\alpha^{\mathcal{L}(d)} \mathbf{1}_{\mathcal{V}(d) \text { infinite }}\right]=\frac{\mathfrak{j}_{3}\left(\frac{1}{12}, \alpha ; k, d\right)}{\mathfrak{w}_{3}(k)}
$$

The probability to be in the out- or in the in-regime
We find that the probability to be in the out- or in-regime are respectively
$E\left[\mathbf{1}_{\mathcal{V}(d) \text { finite }}\right]=\frac{1}{\mathfrak{w}_{3}(k)} \times$
$\left(\frac{1}{105(2 d+3)(k+1)^{2}(k+2)^{2}} \times\left((2 d+3)(k-1)(k+1)(k+2)(k+4)\left(15 k^{4}+90 k^{3}+237 k^{2}+306 k+140\right)\right.\right.$

$$
-(2 k+3)(d-1)(d+1)(d+2)(d+4)\left(15 d^{4}+90 d^{3}+237 d^{2}+306 d+140\right)
$$

$$
-\frac{1}{105(2 d+1) k^{2}(k+1)^{2}} \times\left((2 d+1)(k-2) k(k+1)(k+3)\left(15 k^{4}+30 k^{3}+57 k^{2}+42 k-4\right)\right.
$$

$$
\left.\left.-(2 k+1)(d-2) d(d+1)(d+3)\left(15 d^{4}+30 d^{3}+57 d^{2}+42 d-4\right)\right)\right)
$$

$E\left[\mathbf{1}_{\mathcal{V}(d) \text { infinite }}\right]=\frac{1}{\mathfrak{w}_{3}(k)}\left(\frac{(2 k+3)(d-1)(d+1)(d+2)(d+4)\left(15 d^{4}+90 d^{3}+237 d^{2}+306 d+140\right)}{105(2 d+3)(k+1)^{2}(k+2)^{2}}\right)$

$$
\left.-\frac{(2 k+1)(d-2) d(d+1)(d+3)\left(15 d^{4}+30 d^{3}+57 d^{2}+42 d-4\right)}{105(2 d+1) k^{2}(k+1)^{2}}\right)
$$

For k and d large, with $u=d / k$ fixed, we get

$$
\begin{aligned}
& p^{\text {out }}(u) \equiv E\left[\mathbf{1}_{\mathcal{V}(d)} \text { finite }\right]=\frac{1}{4}\left(4-7 u^{6}+3 u^{7}\right) \\
& p^{\text {in }}(u) \equiv E\left[\mathbf{1}_{\mathcal{V}(d) \text { infinite }}\right]=\frac{1}{4}(7-3 u) u^{6}
\end{aligned}
$$

Universality: same expression for other families of maps (triangulations, Eulerian triangulations)

For $u \rightarrow 0$, i.e. $k \gg d, x_{1}$ lies in the infinite outgrowth at distance $>d$ with probability 1
For $u \rightarrow 1$, i.e. $k \sim d, x_{1}$ lies just below the boundary of some outgrowth at distance $>d$ but this is the infinite one with a probability which tends to 0 since the length of the boundary of this infinite outgrowth $\left(\sim d^{2}\right)$ is negligible w.r.t. the total length of all the boundaries of all the outgrowths at distance $>d\left(\sim d^{3}\right)$

Universality: same expression for other families of maps (triangulations, Eulerian triangulations)

Laws for the hull perimeter $\mathcal{L}(d)$

We can get similarly $E\left[\alpha^{\mathcal{L}(d)} \mathbf{1}_{\mathcal{V}(d)}\right.$ finite $]$ and $E\left[\alpha^{\mathcal{L}(d)} \mathbf{1}_{\mathcal{V}_{(d)} \text { infinite }}\right]$
For large d and $k, \mathcal{L}(d)$ scale as d^{2} so we set

$$
L(d) \equiv \frac{\mathcal{L}(d)}{d^{2}}
$$

Setting $\alpha=e^{-\tau / d^{2}}$, and performing an inverse Laplace transform w.r.t. τ, we deduce the large d and k conditional probability densities:

$$
\begin{aligned}
& D^{\text {out }}(L, u) \equiv \frac{1}{d L} \frac{E\left[\mathbf{1}_{L \leq L(d)<L+d L} \mathbf{1}_{\mathcal{V}(d) \text { finite }}\right]}{E\left[\mathbf{1}_{\mathcal{V}(d)} \text { finite }\right]} \\
& D^{\text {in }}(L, u)\left.\equiv \frac{1}{d L} \frac{E\left[\mathbf{1}_{L \leq L(d)<L+d L}\right.}{} \mathbf{1}_{\mathcal{V}(d) \text { infinite }}\right] \\
& E\left[\mathbf{1}_{\mathcal{V}(d) \text { infinite }}\right]
\end{aligned}
$$

we find

$$
\begin{aligned}
& \begin{aligned}
& D^{\text {out }}(L, u)=\frac{2(1-u)^{4}}{c \sqrt{\pi} u} \frac{e^{-B X}}{4-7 u^{6}+3 u^{7}}(-2 \sqrt{X}((X-10) X-2) \\
&\left.\quad+e^{X} \sqrt{\pi} X(X(2 X-5)+6)(1-\operatorname{erf}(\sqrt{X}))\right)
\end{aligned} \\
& \begin{aligned}
D^{\text {in }}(L, u)=\frac{2}{c \sqrt{\pi}(1-u)^{2}} \frac{e^{-B X}}{u(7-3 u)}(B X+2)\left(2 \sqrt{X}(X+1)-e^{X} \sqrt{\pi} X(2 X+3)(1-\operatorname{erf}(\sqrt{X}))\right)
\end{aligned} \\
& \text { where } X=\frac{L}{c B}, \quad B=\frac{(1-u)^{2}}{u^{2}}
\end{aligned}
$$

and with $c=1 / 3$ for quadrangulations.

Universality: same expression for other families of maps up to the global normalization c.
We find $c=1 / 2$ for triangulations and $c=1 / 4$ for Eulerian triangulations.

The out-regime

$\lim _{u \rightarrow 0} D^{\text {out }}(L, u)=2 \sqrt{L} \frac{e^{-\frac{L}{c}}}{c^{3 / 2} \sqrt{\pi}}$
$\lim _{u \rightarrow 1} D^{\text {out }}(L, u)=\frac{4}{3}(\sqrt{L})^{3} \frac{e^{-\frac{L}{c}}}{c^{5 / 2} \sqrt{\pi}}$

For $u \rightarrow 0$, i.e. $k \gg d$, we recover the probability density for the length at distance d separating a marked vertex $\left(x_{0}\right)$ from infinity in infinitely large vertex-pointed quadrangulations, see Krikun (2005), Curien \& Le Gall (2014).

For $u \rightarrow 1$, i.e. $k \simeq d$, the marked vertex x_{1} must be "just below" this line separating x_{0} from infinity and the number of acceptable positions being proportional to L, we have:

$$
\lim _{u \rightarrow 1} D^{\text {out }}(L, u) \propto L \times \lim _{u \rightarrow 0} D^{\text {out }}(L, u)
$$

which fixes the expression of $\lim _{u \rightarrow 1} D^{\text {out }}(L, u)$ by normalization.

The in-regime

$$
\lim _{u \rightarrow 0} D^{\mathrm{in}}\left(L, u_{5}^{\mathrm{in}}(L, u)=\frac{4}{7} \sqrt{L}(2 c+L) \frac{e^{-\frac{L}{c}}}{c^{5 / 2} \sqrt{\pi}}\right.
$$

x_{1} lies in a very long "finger". Explanation for this simple formula ?
$c B D^{\mathrm{in}}(c B X, u)$

$X(k, d) \equiv \frac{L(d)}{c B}$ with $B=\frac{(1-u)^{2}}{u^{2}}$, namely $X(k, d)=\frac{\mathcal{L}(d)}{c\left(k^{2}-d^{2}\right)}$

NB: all the moments of this distribution are infinite

The relative contributions of the out- and in-regimes to the total probability density for L

$$
D^{\mathrm{tot}}(L, u)=p^{\text {out }}(u) D^{\mathrm{out}}(L, u)+p^{\text {in }}(u) D^{\text {in }}(L, u)
$$

Probability to be in the out- or in-regime, knowing $u=d / k$ and $L=\mathcal{L}(d) / d^{2}$
as a function of u

For $L \rightarrow 0$, the probability to be in the out-regime, knowing u, tends to

$$
\frac{(1-u)^{6}}{\left(1-2 u+2 u^{2}\right)\left(1-4 u+5 u^{2}-2 u^{3}+u^{4}\right)}
$$

as a function of L

For $u \rightarrow 1$, the probability to be in the out-regime, knowing L, tends to

$$
\frac{28 L^{3}}{6 c^{3}+3 L c^{2}+28 L^{3}}
$$

Joint law for $\mathcal{V}(d)$ and $\mathcal{L}(d)$ in the out-regime We can now compute $E\left[\rho^{\mathcal{V}(d)} \alpha^{\mathcal{L}(d)} \mathbf{1}_{\mathcal{V}(d)}\right.$ finite $]$

For large d and $k, \mathcal{V}(d)$ scale as d^{4} so we set $V(d) \equiv \frac{\mathcal{V}(d)}{d^{4}}$ Setting $\alpha=e^{-\tau / d^{2}}$ and $\rho=e^{-\sigma / d^{4}}$, we get, for large d and k :

$$
\left.\begin{array}{l}
E\left[e^{-\sigma V(d)-\tau L(d)} \mathbf{1}_{\mathcal{V}(d)} \text { finite }\right]=\frac{(1-u)^{6}}{u^{3}} \times \frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)} \\
\times M(\mu(\sigma, \tau, u))
\end{array}\right] \begin{aligned}
& \times M+\frac{4 \mu^{5}+16 \mu^{4}-7 \mu^{2}-40 \mu-24}{\left.4(1+\mu)^{5 / 2}\right)} \\
& \text { where } M(\mu)=\frac{1}{\mu^{4}}\left(3 \mu^{2}-5 \mu+6+\frac{(1-u)^{2}}{u^{2}}\left(c \tau+\frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)\right)-1\right.
\end{aligned}
$$

with $f=36$ (quandrangulations), 192 (triangulations), 16 (Eulerian triangulations)

Define $\quad E^{\text {out }}\left[e^{-\sigma V(d)-\tau L(d)}\right] \equiv \frac{E\left[e^{-\sigma V(d)-\tau L(d)} \mathbf{1}_{\mathcal{V}(d)} \text { finite }\right]}{E\left[\mathbf{1}_{\mathcal{V}(d)} \text { finite }\right]}$

$$
\begin{aligned}
& \lim _{u \rightarrow 0} E^{\text {out }}\left[e^{-\sigma V(d)-\tau L(d)}\right] \\
&=\frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)\left(c \tau+\frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)\right)^{3 / 2}}
\end{aligned}
$$

We recover a result by Curien and Le Gall (2014)

$$
\begin{aligned}
& \lim _{u \rightarrow 1} E^{\text {out }}\left[e^{-\sigma V(d)-\tau L(d)}\right] \\
&=\frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)\left(c \tau+\frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)\right)^{5 / 2}}
\end{aligned}
$$

$$
=\lim _{u \rightarrow 0} E^{\text {out }}\left[L(d) e^{-\sigma V(d)-\tau L(d)}\right] / E^{\mathrm{out}}[L(d)]
$$

The law for the volume $V(d)$, knowing the value of $L(d)$

$$
\begin{aligned}
E^{\text {out }} & {\left[e^{-\sigma V(d)} \mid L(d)=L\right] } \\
& =\frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)} e^{-\frac{L}{c}\left(\frac{\sqrt{ } \sigma}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)-1\right)}
\end{aligned}
$$

Note that this quantity is independent of u and reproduces, for any u, the expression found by Ménard (2016)
We have in particular

$$
E^{\text {out }}[\mathcal{V}(d) \mid \mathcal{L}(d)=\mathcal{L}]=\frac{f\left(c d^{4}+\mathcal{L} d^{2}\right)}{240 c}
$$

Simple explanation:

enumerated by $\left(T_{d}(h)\right)^{\frac{\mathcal{L}}{2}}-\left(T_{d-1}(h)\right)^{\frac{\mathcal{L}}{2}}$.
For $N \rightarrow \infty$, the hull faces receive a weight $h=\frac{1}{12} e^{-\sigma / d^{4}}$, i.e. we have $y \simeq 1-(f \sigma)^{1 / 4} / d$ (with $f=36$). For large d :

$$
T_{d}(h) \simeq \frac{2}{3}\left(1-6 \frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right) \frac{1}{d^{2}}\right)
$$

and therefore:

$$
\left(T_{d}(h)\right)^{\frac{\mathcal{L}}{2}} \simeq\left(\frac{2}{3}\right)^{\frac{\mathcal{L}}{2}} e^{-3 L \frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)}
$$

We also have the large d behavior:

$$
T_{d}(h)-T_{d-1}(h) \simeq \frac{8}{d^{3}} \frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}
$$

and eventually:
$T_{d}^{\frac{\mathcal{L}}{2}}-T_{d-1}^{\frac{\mathcal{L}}{2}} \simeq\left(\frac{2}{3}\right)^{\frac{\mathcal{L}}{2}} \frac{6 L}{d} \frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)} e^{-3 L \frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)}$

Normalization (divide by the value at $\sigma=0$):

$$
\rightarrow \quad \frac{(f \sigma)^{3 / 4} \cosh \left(\frac{1}{2}(f \sigma)^{1 / 4}\right)}{8 \sinh ^{3}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)} e^{-3 L\left(\frac{\sqrt{f \sigma}}{4}\left(\operatorname{coth}^{2}\left(\frac{1}{2}(f \sigma)^{1 / 4}\right)-\frac{2}{3}\right)-1\right)}
$$

Conclusion

- For any T, we now how to evaluate

$$
\underbrace{\mathcal{K}(\cdots(\mathcal{K}(T)))}_{k-d \text { times }}
$$

\rightarrow allows to "decouple" the blue part (encoded in T) from the gray part (encoded in the $(k-d)$ operators $\mathcal{K})$.

By changing T, one could in principle "dress" the hull with additional degrees of freedom (or additional constraints).

- At large N, two regimes according to which of the blue or gray part in infinite \rightarrow two sets of universal laws depending on the ratio d / k

