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The hull: a heuristic presentation

Consider:
- a planar map, say a quadrangulation, i.e.
a connected graph embedded on the sphere
whose all faces have degree 4

- with two marked vertices x0 et x1 at
graph distance

d(x0, x1) = k

Pour d < k:
∃ a closed line “at distance” d from x0 and
separating x0 from x1

The hull at distance d is the part of the map lying on the same side as x0
from this separating line (here denoted by Hd)
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More precisely, we shall work in the ensemble
Qk,N of quadrangulations with N faces,
with two marked vertices x0 et x1 at graph
distance d(x0, x1) = k
and (this simplifies the combinatorics) with a
marked edge from x1 to a vertex at
distance k − 1 from x0 (such an edge always

exists)

k

x1

x0

d−1
d

k−1

Hd

The dividing line will be chosen as a simple closed curve following edges of
the map and visiting alternately vertices at distance d and d− 1 from x0

Quantities of interest

Hull perimeter: L(d) = length (number of edges) of the separating line
Hull volume: V(d) = area (number of faces) of the hull

What is the statistics L(d) and V(d) in the ensemble Qk,N for a given
d < k ?
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The coding of maps by slices

Upon cutting the map along the leftmost shortest path from x1 to x0
(taking the marked edge k → k − 1 as first step), we transform it into a so-called
k-slice

k k−1
k

x1

x0

distance
k−1

x0

x1

k-slice
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k-slice = “quadrangulation with a boundary” of total length 2k

apex x0

k-slice

right boundary:left boundary:

x1

� unique shortest

path between

and x0

� of length k−1

� shortest path
between x1

� of length k

and x0

The coding is one-to-one and the distances from x0 are preserved.
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A construction of the hull on the k-slice

k

d−2
d

d−1

k−1

d

d−1

d–1
d–2

d

d–1

d–1

d

d–1

x1

k

x1

x0

x0

d−1

Hd

separating line

d
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Slice generating functions (let N be unfixed)

Tk ≡ Tk(g): generating function for `-slices with 2 ≤ ` ≤ k
with a weight g per face

→ cut the `-slice along the separating line at distance `− 1
(i.e. visiting vertices at distance `− 2 and `− 1)

Upon defining

K(T ) ≡ K(T ; g) =
∑
i≥2

K2i(g)T
i−2

where K2i(g) enumerates particular
quadrangulations with a boundary of
length 2i, then we have the
recursion:

Tk = K(Tk−1)
2 ≤ ` ≤ k

`−2

`−2

by Tk−1

`−1

Tk−1

K2i where
2i = 4 + 2# subslices

`–1
`–1

`–1 `–1

`–1

enumerated
subslices
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Explicit form of K(T )

K(T ) =
∑
i≥2

K2i(g)T
i−2

where K2ienumerates quadrangulations with a boundary of length 2i with
some constraints

K2i

2i

x1
idem Tutte (1962)
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Explicit form of K(T )
Introducing the parametrization

g = g(x) =
x(1 + x+ x2)

(1 + 4x+ x2)2
T∞ = T∞(x) =

x(1 + 4x+ x2)

(1 + x+ x2)2

with 0 ≤ x ≤ 1, we find that K(T ) = T∞ × κ
(
T

T∞

)
where

κ(τ)= 1
2x(1+x(x+τ))

{
x(1−3x+x2−x3)+x(1+6x+x2+x3)τ−x2τ2}

−(1−τ)
(
1−
√

(1+x+x2+x3+x4)2−2x2(1+3x+5x2+3x3+x4)τ+x4τ2
)}

so that we have for any (small enough) U :

K
(
T∞

(1− U x−1)(1− U x4)
(1− U x)(1− U x2)

)
= T∞

(1− U)(1− U x5)
(1− U x2)(1− U x3)
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Solution of the recursion

K
(
T∞

(1− U x−1)(1− U x4)
(1− U x)(1− U x2)

)
= T∞

(1− U)(1− U x5)
(1− U x2)(1− U x3)

Setting

Tk = T∞
(1− Uk)(1− Uk x5)

(1− Uk x2)(1− Uk x3)
we may reformulate the recursion as

Tk = K(Tk−1)⇒ Uk = xUk−1

with initial condition U1 = 1 (since T1 = 0) ⇒ Uk = xk−1

Tk(g) = T∞(x)
(1− xk−1)(1− xk+4)

(1− xk+1)(1− xk+2)
with x s.t. g = g(x)

If we wish to enumerate quadrangulations with d(x0, x1) = k, we must fix
` = k and the desired g.f. is

W (g; k) = Tk(g)− Tk−1(g)
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Slice generating functions controlling the hull geometry

Tk(g) enumerates `-slices with
2 ≤ ` ≤ k and satisfies

Tk(g) = K (Tk−1(g))

(2 ≤ ` ≤ k)

`−2

`−1

`−1 `–1

`−2
K(Tk−1(g))

x0

x1 `

Tk−1(g)
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Slice generating functions controlling the hull geometry

Tk(g) enumerates `-slices with
2 ≤ ` ≤ k and satisfies

Tk(g) = K (K (Tk−2(g)))

(2 ≤ ` ≤ k)

`−2

Tk−2(g)

`−1

`−1

`–3

`−3
`–2

`–1

`–3

K(Tk−2(g))

`−2

`−3

K(K(Tk−2(g)))

x0

x1 `
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Slice generating functions controlling the hull geometry

To enumerate `-slices with 2 ≤ ` ≤ k
with an extra weight

ρV(`−2) αL(`−2)

we simply have to consider

K
(
K
(
α2 Tk−2(h)

))
where

h = ρ g

NB: here K(T ) ≡ K(T ; g) depends
on g only

(2 ≤ ` ≤ k)

`−2

Tk−2(h)

`−1

`−1

`–3

`−3
`–2

`–1

`–3
α

ααααα

K(α2Tk−2(h))

`−2

`−3

K(K(α2Tk−2(h)))

x0

x1 `

g

h
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More generally, if we wish to enumerate `-slices with 2 ≤ ` ≤ k, and for
1 ≤ m ≤ k − 1 a weight

ρV(`−m) αL(`−m)

we simply have to consider

K
(
· · ·
(
K
(︸ ︷︷ ︸

m times

α2 Tk−m(h)
)))

NB: with the convention V(`−m) = L(`−m) = 0 if ` ≤ m

If we wish to enumerate quadrangulations with d(x0, x1) = k and a weight
ρV(d) αL(d), we must fix ` = k and m = k − d

The desired generating function is (setting h = ρ g)

Z(h, α, g; d, k) ≡ K
(
· · ·
(
K
(︸ ︷︷ ︸

k−d times

α2 Td(h)
)))
−K

(
· · ·
(
K
(︸ ︷︷ ︸

k−d times

α2 Td−1(h)
)))
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Using

K
(
· · ·
(
K
(︸ ︷︷ ︸

k−d times

T∞
(1−U x−1)(1−U x4)
(1−U x)(1−U x2)

)))
= T∞

(1−U xk−d−1)(1−U xk−d+4)

(1−U xk−d+1)(1−U xk−d+2)

we get K
(
· · ·
(
K
(︸ ︷︷ ︸

k−d times

α2 Td(h)
)))

= T∞
(1−Ud xk−1)(1−Ud xk+4)

(1−Ud xk+1)(1−Ud xk+2)

where Ud = Ud(x, y, α) is defined via

T∞(x)
(1−Ud xd−1)(1−Ud xd+4)

(1−Ud xd+1)(1−Ud xd+2)
=α2 Td(h)=α

2 T∞(y)
(1−yd−1)(1−yd+4)

(1−yd+1)(1−yd+2)

where x and y satisfy g(x) = g and g(y) = h. Finally

Z(h, α, g; d, k) =T∞(x)

(
(1−Ud xk−1)(1−Ud xk+4)

(1−Ud xk+1)(1−Ud xk+2)

−(1−Ud−1 xk−2)(1−Ud−1 xk+3)

(1−Ud−1 xk)(1−Ud−1 xk+1)

)
Emmanuel Guitter (IPhT, CEA Saclay) Universal laws for hulls in large planar maps 13 / 36



Universal laws for large maps
Recall that our aim is the statistics of the hull at distance d in the
ensemble Qk,N of quadrangulations with N faces, with two marked
vertices x0 et x1 at graph distance d(x0, x1) = k (and a marked edge

k → k − 1)

To obtain universal laws for the hull geometry, we will in practice study
this statistics only in the limit of infinitely large maps. More precisely:

• we first let N →∞

• in a second step, we then let k and d become large with a fixed ratio

u = d/k , 0 ≤ u ≤ 1

NB: we will not consider here the statistics obtained in another interesting universal

regime where N , k and d tend simultaneously to ∞ with d/k and k/N1/4 fixed
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The N →∞ limit
Consider the generating function W (g; k) for quadrangulations with two
marked vertices at distance k (and a marked edge k → k − 1). It encodes the
number of maps in the ensemble Qk,N , given by

[gN ]W (g; k)

The large N limit of this number is easily obtained from the singular
behavior of W (g; k), which occurs when x→ 1, i.e for g → g(1) = 1

12 .
Setting

g =
1

12

(
1− ε2

)
we find an expansion of the form

W (g; k) = w0(k) +w2(k)ε
2 +w3(k)ε

3 +O(ε4)

so that
W (g; k)|sing. = w3(k) (1− 12 g)3/2

and

[gN ]W (g; k) ∼ 3

4

12N

N5/2
×w3(k)
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From our explicit form of W (g; k), we easily obtain

w3(k) =
4
(
k2 + 2k − 1

) (
5k4 + 20k3 + 27k2 + 14k + 4

)
35k(k + 1)(k + 2)

.

In particular for large k,

w3(k) ∼
k→∞

4

7
k3
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The out- and the in-regime
For N →∞, the volume of the hull may itself be infinite !

• the “out-regime”: V(d) is finite

• the “in-regime”: V(d) is infinite (in which case the complementary of the hull

has a finite volume with probability 1)

x0

x1

gr
ap
h
di
st
an
ce

d

0

k

x0

x1

out-regime in-regime

Emmanuel Guitter (IPhT, CEA Saclay) Universal laws for hulls in large planar maps 17 / 36



Let us denote for short Z(h, g) ≡ Z (h, α, g; k, d) and n ≡ V(d). Then the
quantity of interest in the out-regime is the N →∞ behavior of∑

n

[gN−nhn]Z(h, g) ρn

Setting as before g = 1
12

(
1− ε2

)
we have an expansion

Z(h, g) = z0(h) + z2(h)ε
2 + z3(h)ε

3 +O(ε4)

from which we deduce the large N behavior

[gN−nhn]Z(h, g) ∼
N→∞

[hn]z3(h)×
3

4

12N−n√
πN5/2

∑
n

[gN−nhn]Z(h, g) ρn ∼
N→∞

3

4

12N√
πN5/2

∑
n

[hn]z3(h)×
( ρ
12

)n
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Namely: ∑
n

[gN−nhn]Z(h, g) ρn ∼
N→∞

3

4

12N√
πN5/2

z3

( ρ
12

)
and upon normalization

E
[
ρV(d) αL(d) 1V(d) finite

]
=

z3
( ρ
12 , α; k, d

)
w3(k)

Similarly, for the in-regime, we consider the small η expansion

Z(h, g) = j0(g) + j2(g)η + j3(g)η
3 +O(η4)

where η is defined via h = 1
12

(
1− η2

)
(i.e. y = 1−

√
6η + · · · )

This yields ∑
n

[gmhN−m]Z(h, g) ∼
N→∞

3

4

12N√
πN5/2

j3

(
1

12

)
and

E
[
αL(d) 1V(d) infinite

]
=

j3
(

1
12 , α; k, d

)
w3(k)
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The probability to be in the out- or in the in-regime
We find that the probability to be in the out- or in-regime are respectively

E
[
1V(d) finite

]
=

1

w3(k)
×(

1
105(2d+3)(k+1)2(k+2)2

×
(
(2d+3)(k−1)(k+1)(k+2)(k+4)(15k4+90k3+237k2+306k+140)

−(2k+3)(d−1)(d+1)(d+2)(d+4)(15d4+90d3+237d2+306d+140)
)

− 1
105(2d+1)k2(k+1)2

×
(
(2d+1)(k−2)k(k+1)(k+3)(15k4+30k3+57k2+42k−4)

−(2k+1)(d−2)d(d+1)(d+3)(15d4+30d3+57d2+42d−4)
))

E
[
1V(d) infinite

]
=

1

w3(k)

(
(2k+3)(d−1)(d+1)(d+2)(d+4)(15d4+90d3+237d2+306d+140)

105(2d+3)(k+1)2(k+2)2

)
−

(2k+1)(d−2)d(d+1)(d+3)(15d4+30d3+57d2+42d−4)
105(2d+1)k2(k+1)2

)
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For k and d large, with u = d/k fixed, we get

pout(u) ≡ E
[
1V(d) finite

]
=

1

4

(
4− 7u6 + 3u7

)
pin(u) ≡ E

[
1V(d) infinite

]
=

1

4
(7− 3u)u6

pout(u)

pin(u)
u0

Universality: same expression for other families of maps (triangulations,
Eulerian triangulations)
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For u→ 0, i.e. k � d, x1 lies in the infinite outgrowth at distance > d
with probability 1
For u→ 1, i.e. k ∼ d, x1 lies just below the boundary of some outgrowth
at distance > d but this is the infinite one with a probability which tends
to 0 since the length of the boundary of this infinite outgrowth (∼ d2) is negligible

w.r.t. the total length of all the boundaries of all the outgrowths at distance > d (∼ d3)

pout(u)

pin(u)
u0

Universality: same expression for other families of maps (triangulations,
Eulerian triangulations)
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Laws for the hull perimeter L(d)

We can get similarly E
[
αL(d) 1V(d) finite

]
and E

[
αL(d) 1V(d) infinite

]
For large d and k, L(d) scale as d2 so we set

L(d) ≡ L(d)
d2

Setting α = e−τ/d
2
, and performing an inverse Laplace transform w.r.t. τ ,

we deduce the large d and k conditional probability densities:

Dout(L, u) ≡ 1

dL

E[1L≤L(d)<L+dL 1V(d) finite]

E[1V(d) finite]

Din(L, u) ≡ 1

dL

E[1L≤L(d)<L+dL 1V(d) infinite]

E[1V(d) infinite]
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we find

Dout(L, u) = 2(1−u)4
c
√
πu

e−BX
4−7u6+3u7

(−2
√
X((X−10)X−2)

+eX
√
πX(X(2X−5)+6)(1−erf(

√
X)))

Din(L, u) = 2
c
√
π(1−u)2

e−BX
u(7−3u)

(BX+2)(2
√
X(X+1)−eX

√
πX(2X+3)(1−erf(

√
X)))

where X =
L

c B
, B =

(1− u)2
u2

and with c = 1/3 for quadrangulations.

Universality: same expression for other families of maps up to the global
normalization c.
We find c = 1/2 for triangulations and c = 1/4 for Eulerian triangulations.
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The out-regime

u → 0

u → 1

L

Dout(L, u)

lim
u→0

Dout(L, u) = 2
√
L

e−
L
c

c3/2
√
π

lim
u→1

Dout(L, u) =
4

3
(
√
L)3

e−
L
c

c5/2
√
π
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For u→ 0, i.e. k � d, we recover the probability density for the length at
distance d separating a marked vertex (x0) from infinity in infinitely large
vertex-pointed quadrangulations, see Krikun (2005), Curien & Le Gall
(2014).

For u→ 1, i.e. k ' d, the marked vertex x1 must be “just below” this line
separating x0 from infinity and the number of acceptable positions being
proportional to L, we have:

lim
u→1

Dout(L, u) ∝ L× lim
u→0

Dout(L, u)

which fixes the expression of lim
u→1

Dout(L, u) by normalization.
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The in-regime

u → 0

L

Din(L, u)

lim
u→0

Din(L, u) =
4

7

√
L (2c+ L)

e−
L
c

c5/2
√
π

x1 lies in a very long “finger”. Explanation for this simple formula ?
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u → 1

X

cBDin(cB X, u)

4
8

1
8

7
8

6
8

5
8

3
8

2
8

X(k, d) ≡ L(d)

cB
with B =

(1− u)2
u2

, namely X(k, d) =
L(d)

c (k2 − d2)

lim
u→1

cB Din(cB X, u) =
2
√
X(X + 1)− eX√πX(2X + 3)

(
1− erf

(√
X
))

√
π

.

NB: all the moments of this distribution are infinite
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The relative contributions of the out- and in-regimes to the
total probability density for L

u = 4
8

u = 7
8

u = 5
8

u = 6
8

out

out + in

in

L

L

L

L

L

Dtot(L, u) = pout(u)Dout(L, u) + pin(u)Din(L, u)
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Probability to be in the out- or in-regime, knowing
u = d/k and L = L(d)/d2
as a function of u

L = 0.125
L → 0

L = 0.375L = 0.250

out

in

u

u

u

u

L

out

For L→ 0, the probability to be in the out-regime, knowing u, tends to

(1− u)6
(1− 2u+ 2u2) (1− 4u+ 5u2 − 2u3 + u4)
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as a function of L

u = 5
8u = 4

8

u → 1u = 6
8

out

in

L

L

L

L

L

For u→ 1, the probability to be in the out-regime, knowing L, tends to

28L3

6c3 + 3Lc2 + 28L3
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Joint law forV(d) and L(d) in the out-regime
We can now compute E

[
ρV(d) αL(d) 1V(d) finite

]
For large d and k, V(d) scale as d4 so we set V (d) ≡ V(d)

d4

Setting α = e−τ/d
2

and ρ = e−σ/d
4
, we get, for large d and k:

E
[
e−σ V (d)−τ L(d) 1V(d) finite

]
=

(1− u)6
u3

× (fσ)3/4 cosh
(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
)

×M
(
µ(σ, τ, u)

)
where M(µ) =

1

µ4

(
3µ2 − 5µ+ 6 +

4µ5 + 16µ4 − 7µ2 − 40µ− 24

4(1 + µ)5/2

)
and µ(σ, τ, u) =

(1− u)2
u2

(
c τ +

√
fσ

4

(
coth2

(
1

2
(fσ)1/4

)
− 2

3

))
− 1

with f = 36 (quandrangulations), 192 (triangulations), 16 (Eulerian
triangulations)
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Define Eout
[
e−σ V (d)−τ L(d)

]
≡
E
[
e−σ V (d)−τ L(d) 1V(d) finite

]
E
[
1V(d) finite

]
lim
u→0

Eout
[
e−σ V (d)−τ L(d)

]
=

(fσ)3/4 cosh
(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
) (
c τ +

√
fσ
4

(
coth2

(
1
2(fσ)

1/4
)
− 2

3

))3/2
We recover a result by Curien and Le Gall (2014)

lim
u→1

Eout
[
e−σ V (d)−τ L(d)

]
=

(fσ)3/4 cosh
(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
) (
c τ +

√
fσ
4

(
coth2

(
1
2(fσ)

1/4
)
− 2

3

))5/2 .
= lim

u→0
Eout

[
L(d) e−σ V (d)−τ L(d)] /Eout[L(d)]
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The law for the volume V (d), knowing the value of L(d)

Eout
[
e−σ V (d)

∣∣∣L(d) = L
]

=
(fσ)3/4 cosh

(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
) e

−L
c

(√
fσ
4 (coth2( 1

2
(fσ)1/4)− 2

3)−1
)

Note that this quantity is independent of u and reproduces, for any u, the
expression found by Ménard (2016)
We have in particular

Eout
[
V(d)

∣∣∣L(d) = L] = f(c d4 + L d2)
240c
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Simple explanation:

d

x0

x0

d−1

Hd
d

L
d–1d–1

d–1

d–1
dd

d
d–1

Td TdTdTd

L/2 slices

enumerated by (Td(h))
L
2 − (Td−1(h))

L
2 .

For N →∞, the hull faces receive a weight h = 1
12e
−σ/d4 , i.e. we have

y ' 1− (fσ)1/4/d (with f = 36). For large d:

Td(h) '
2

3

(
1− 6

√
fσ

4

(
coth2

(
1

2
(fσ)1/4

)
− 2

3

)
1

d2

)
Emmanuel Guitter (IPhT, CEA Saclay) Universal laws for hulls in large planar maps 34 / 36



and therefore:

(Td(h))
L
2 '

(
2

3

)L
2

e−3L
√
fσ
4 (coth2( 1

2
(fσ)1/4)− 2

3)

We also have the large d behavior:

Td(h)− Td−1(h) '
8

d3
(fσ)3/4 cosh

(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
)

and eventually:

T
L
2
d −T

L
2
d−1 '

(
2

3

)L
2 6L

d

(fσ)3/4 cosh
(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
) e−3L

√
fσ
4 (coth2( 1

2
(fσ)1/4)− 2

3)

Normalization (divide by the value at σ = 0):

→ (fσ)3/4 cosh
(
1
2(fσ)

1/4
)

8 sinh3
(
1
2(fσ)

1/4
) e

−3L
(√

fσ
4 (coth2( 1

2
(fσ)1/4)− 2

3)−1
)
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Conclusion

For any T , we now how to evaluate

K
(
· · ·
(
K
(︸ ︷︷ ︸

k−d times

T
)))

→ allows to ”decouple” the blue part
(encoded in T ) from the gray part (encoded in

the (k − d) operators K).

By changing T , one could in principle
”dress” the hull with additional degrees of
freedom (or additional constraints).

k

x1

x0

d−1
d

k−1

Hd

At large N , two regimes according to which of the blue or gray part
in infinite → two sets of universal laws depending on the ratio d/k
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