Arm Exponents for Critical Ising and FK-Ising Model IRS 2017 Random Geometry

Hao Wu

NCCR/SwissMAP, University of Geneva, Switzerland

Hao Wu (NCCR/SwissMAP)

Arm Exponents for Ising and FK-Ising

Outline

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents?

2 SLE and Arm Exponents

Ising and FK-Ising

Table of contents

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents?

2 SLE and Arm Exponents

- Ising and FK-Ising
- 4 Proof
- 5 Further questions

A (10) × A (10) × A (10)

Percolation

Percolation

Site percolation on triangular lattice : each site is chosen independently to be black or white with probability p or 1 - p.

- When p < 1/2, white sites dominate.
- When p > 1/2, black sites dominate.
- When p = 1/2, critical, the system converges to something nontrivial.

Percolation

Percolation

Site percolation on triangular lattice : each site is chosen independently to be black or white with probability p or 1 - p.

- When p < 1/2, white sites dominate.
- When p > 1/2, black sites dominate.
- When p = 1/2, critical, the system converges to something nontrivial.
- Describe the critical percolation via interfaces between black and white.
- The interface converges to SLE(6) as mesh-size goes to zero. (Smirnov)

What are the arm exponents?

Boundary arm exponents

$$p_n^+(r,R) = P\left[\overbrace{(r,R)}^{r}\right] \approx R^{-\alpha_n^+}, \quad R \to \infty$$

Interior arm exponents

$$p_n(r,R) = P\left[\left(\begin{array}{c} & & \\ &$$

イロト イポト イヨト イヨト

What are the arm exponents?

Boundary arm exponents

$$p_n^+(r,R) = P\left[\overbrace{(a_n)}^{r} \overbrace{(a_n)}^{r} = R^{-\alpha_n^+}, \quad R \to \infty\right]$$

Interior arm exponents

$$p_n(r,R) = P\left[\begin{array}{c} \overbrace{}\\ \overbrace{}}\\ \overbrace{}\\ \overbrace{}} \atop \overbrace{a}\\ \overbrace{}\\ \overbrace{}\\ \overbrace{}\\ \overbrace{}} \atop\overbrace{}\\ \overbrace{}} \overbrace{}\\ \overbrace{}\\ \overbrace{}} \overbrace{} \overbrace{}\\ \overbrace{}} \atop\overbrace{}\\ \overbrace{}\\ \overbrace{}} \atop\overbrace{} \atop\overbrace{}} \atop\overbrace{} } \atop\overbrace{} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{} } \atop\overbrace{}} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{a}} \atop\overbrace{} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{a}} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{} \atop\overbrace{a}} \atop\overbrace{}} \atop\overbrace{}} \atop\overbrace{} \atop\overbrace{a}} \atop\overbrace{a}} \atop\overbrace{a} \atop\overbrace{a}} \atop\overbrace{a}} \atop\overbrace{$$

Why we are interested in these arm exponents?

Near critical percolation, Kesten

Correlation length : for p > 1/2, let L(p) be the smallest *n* s.t.

 $\mathbb{P}_{\rho}[\text{crossing of } \Lambda_n] \geq 1 - \delta$

 For *n* below *L*(*p*), we have RSW and thus the situation is almost the same as the critical case. *L*(*p*) → ∞ as *p* → 1/2.

Near critical percolation, Kesten

Correlation length : for p > 1/2, let L(p) be the smallest *n* s.t.

 $\mathbb{P}_{\rho}[\text{crossing of } \Lambda_n] \geq 1 - \delta$

- For *n* below *L*(*p*), we have RSW and thus the situation is almost the same as the critical case. *L*(*p*) → ∞ as *p* → 1/2.
- By Russo's formula, we have

$$(p-1/2)L(p)^2p_4(L(p)) \asymp 1.$$

• Combining with 4-arm exponent $p_4(n) \approx n^{-5/4}$,

we obtain

$$L(p) \approx (p - 1/2)^{-4/3}.$$

Near critical percolation, Kesten

The density of the infinite cluster : for p > 1/2,

 $\theta(\rho) := \mathbb{P}_{\rho}[0 \leftrightarrow \infty], \quad \theta(\rho) \to 0 \text{ as } \rho \to 1/2.$

Near critical percolation, Kesten

The density of the infinite cluster : for p > 1/2,

 $\theta(p) := \mathbb{P}_{p}[0 \leftrightarrow \infty], \quad \theta(p) \to 0 \text{ as } p \to 1/2.$

• Once we arrive at L(p), we are not far from ∞ :

$$\theta(\rho) \asymp \mathbb{P}_{\rho}[0 \leftrightarrow L(\rho)] = \rho_1(L(\rho)).$$

• Combining with 1-arm exponent $p_1(n) \approx n^{-5/48}$,

we obtain

$$\theta(p) \approx (p-1/2)^{5/36}.$$

(日)

How to derive these exponents?

Boundary arm exponents

Interior arm exponents

$$p_n(r,R) = P\left[\begin{array}{c} \overbrace{} \\ \overbrace{a} \\ \overbrace{} \\ \atop \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{a} } \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{a} } \\ \overbrace{a} } \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} } \\ \atop \atop\overbrace{}$$

Question : $\alpha_n^+ = ?$, $\alpha_n = ?$

イロト イポト イヨト イヨト

How to derive these exponents?

Boundary arm exponents

Interior arm exponents

イロト イヨト イヨト イヨト

Question : $\alpha_n^+ = ?$, $\alpha_n = ?$

How to derive these exponents?

Critical site percolation on triangular lattice. The interface converges to SLE(6). (Smirnov)

Arm exponents for SLE(6). (Lawler, Schramm, Werner)

Conclusion

Arm exponents for critical percolation :

$$\alpha_n^+ = n(n+1)/6, \quad \alpha_n = (n^2 - 1)/12.$$

Quasi-multiplicativity :

$$p_n(r, R') \asymp p_n(r, R)p_n(R, R')$$

Questions

Question 1

Understand the relation between other critical lattice models and SLE

Question 2

Calculate the arm exponents for SLE

Question 3

Derive the arm exponents for the critical lattice models.

Questions

Question 1

Understand the relation between other critical lattice models and SLE

Question 2

Calculate the arm exponents for SLE

Question 3

Derive the arm exponents for the critical lattice models.

Difficult

Hao Wu (NCCR/SwissMAP)

Questions

Question 1

Understand the relation between other critical lattice models and SLE

Question 2

Calculate the arm exponents for SLE

Question 3

Derive the arm exponents for the critical lattice models.

Difficult

Today's topic

Table of contents

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents ?

2 SLE and Arm Exponents

Ising and FK-Ising

4 Proof

5 Further questions

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from *a* to *b*. Candidates for the scaling limit of discrete Statistical Physics models.

Conformal invariance :

If γ is in *D* from *a* to *b*, and $\varphi : D \to \varphi(D)$ conformal map, then $\varphi(\gamma) \stackrel{d}{\sim}$ the one in $\varphi(D)$ from $\varphi(a)$ to $\varphi(b)$.

Domain Markov property : the conditional law of $\gamma[t,\infty)$ given $\gamma[0,t] \stackrel{d}{\sim}$ the one in $D \setminus \gamma[0,t]$ from $\gamma(t)$ to *b*.

Examples of SLE

One parameter family of growing processes SLE_{κ} for $\kappa \ge 0$. Simple, $\kappa \in [0, 4]$; Self-touching, $\kappa \in (4, 8)$; Space-filling, $\kappa \ge 8$.

Courtesy to Tom Kennedy.

• *κ* = 2 : LERW

- $\kappa = 3$: Critical Ising
- $\kappa = 16/3$: FK-Ising (Chelkak, Duminil-Copin, Hongler, Kempainen, Smirnov)

 κ = 6 : Percolation (Camia, Newman, Smirnov)

Arm Exponents of SLE

• For SLE_{κ} with $\kappa \in (0, 8)$,

$$\alpha_{2j-1}^{+} = j(4j+4-\kappa)/\kappa,$$

$$\alpha_{2j}^{+} = j(4j+8-\kappa)/\kappa,$$

$$\alpha_{2j} = \left(16j^{2} - (4-\kappa)^{2}\right)/(8\kappa).$$

SLE_κ with κ ≥ 8.
Some variants of SLE_κ with κ ∈ (4,8).

• $1 - \alpha_1^+$: dimension of the intersection with the boundary. (Alberts, Sheffield)

- 1 α₁⁺: dimension of the intersection with the boundary. (Alberts, Sheffield)
- 2 α_2 : dimension of the trace. (Beffara)
- 2 α_3 : dimension of the frontier. (Duality)

- $1 \alpha_1^+$: dimension of the intersection with the boundary. (Alberts, Sheffield)
- 2 α_2 : dimension of the trace. (Beffara)
- 2 α_3 : dimension of the frontier. (Duality)

< ロ > < 同 > < 回 > < 回 >

 2 - α₄ : dimension of the double point. (Miller, Wu)

- $1 \alpha_1^+$: dimension of the intersection with the boundary. (Alberts, Sheffield)
- 2 α_2 : dimension of the trace. (Beffara)
- 2 α_3 : dimension of the frontier. (Duality)
- 2 α₄ : dimension of the double point. (Miller, Wu)
- $\alpha_6 > 2$ for $\kappa \in (4, 8)$: no triple point.
- α₆ = 2 for κ ≥ 8 : countably many triple points.

Table of contents

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents?

2 SLE and Arm Exponents

Ising and FK-Ising

4 Proof

5 Further questions

Random cluster model

Random cluster on \mathbb{Z}^2 with edge-weight $p \in [0, 1]$ and cluster-weight q > 0 is the probability measure given by

$$\phi_{p,q}(\omega) \propto p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega)}$$

At critical $p = p_c(q)$, the system converges to something nontrivial.

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE_{16/3} (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE_{16/3} (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

Arm exponents for $SLE_{16/3}$.

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE_{16/3} (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

・ロト ・帰り ・ヨト ・ヨ)

Arm exponents for $SLE_{16/3}$.

Quasi-multiplicativity (Chelkak, Duminil-Copin, Hongler).

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE_{16/3} (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

Arm exponents for $SLE_{16/3}$.

Quasi-multiplicativity (Chelkak, Duminil-Copin, Hongler).

Conclusion

Arm exponents for Critical FK-Ising.

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101) yellow : (1100), (110100), (11010100)

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101) yellow : (1100), (110100), (11010100)

Universal arm exponents for RCM

$$\alpha_5 = 2, \quad \kappa \in (4, 8).$$

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101) yellow : (1100), (110100), (11010100)

Universal arm exponents for RCM

$$\alpha_5 = 2, \quad \kappa \in (4, 8).$$

Question : Why they are monotone in κ ?

Ising and FK-Ising

Ising model

Spin Ising model on \mathbb{Z}^2 : Each vertex *x* has a spin $\sigma_x \in \{-1, +1\}$, inverse temperature $\beta > 0$, the probability measure given by

$$\mu_eta(\sigma) \propto \exp(eta \sum_{x \sim y} \sigma_x \sigma_y) \ \propto \exp(-2eta \# {\sf disagree}$$

At critical $\beta = \beta_c$, the system converges to something nontrivial.

Hao Wu (NCCR/SwissMAP)

Arm Exponents for Ising and FK-Ising

Critical Ising model on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE₃ (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

• • • • • • • • • • • •

courtesy to Smirnov.

Critical Ising model on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE₃ (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

• • • • • • • • • • • •

Arm exponents for SLE₃.

courtesy to Smirnov.

Critical Ising model on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE₃ (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

• • • • • • • • • • • •

Arm exponents for SLE₃.

courtesy to Smirnov.

Quasi-multiplicativity (Chelkak, Duminil-Copin, Hongler).

Critical Ising model on \mathbb{Z}^2 with Dobrushin boundary condition. The interface converges to SLE₃ (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

Arm exponents for SLE₃.

courtesy to Smirnov.

Quasi-multiplicativity (Chelkak, Duminil-Copin, Hongler).

Conclusion

Arm exponents for critical Ising with Dobrushin boundary condition.

Critical Ising model, free boundary condition

Critical Ising model on \mathbb{Z}^2 with free boundary condition. The interface converges to $SLE_3(-3/2; -3/2)$ (Hongler, Kytölä, Izyurov).

Arm exponents for $SLE_3(-3/2; -3/2)$.

courtesy to Smirnov.

Quasi-multiplicativity (Chelkak, Duminil-Copin, Hongler).

Conclusion

Arm exponents for critical Ising with free boundary condition

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2j} = (16j^2 - 1)/24$. Boundary arm exponents : 6 patterns

э

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2j} = (16j^2 - 1)/24$. Boundary arm exponents : 6 patterns

The asymptotic of the arm exponents is uniform over b.c. :

$$\alpha_j^+, \beta_j^+, \gamma_j^+ \approx j^2/\kappa, \quad \forall \kappa.$$

Critical Ising model, Cardy's formula

(Benoist, Duminil-Copin, Hongler)

- It converges to $f(\Omega, a, b, c, d)$.
- It is conformal invariant.
- Thus, it only depends on the extremal length *L*.

• • • • • • • • • • • • •

• But *f*(*L*) =?

Critical Ising model, Cardy's formula

(Benoist, Duminil-Copin, Hongler)

- It converges to $f(\Omega, a, b, c, d)$.
- It is conformal invariant.
- Thus, it only depends on the extremal length *L*.

< 6 b

$$\approx \exp(-L/6)$$

Relation to KPZ formula

 $SLE_{\kappa} \leftrightarrow \gamma$ -Liouville Quantum Gravity with $\kappa = \gamma^2$. KPZ formula

$$x = \frac{\gamma^2}{4}\Delta^2 + \left(1 - \frac{\gamma^2}{4}\right)\Delta.$$

э

Relation to KPZ formula

 $SLE_{\kappa} \leftrightarrow \gamma$ -Liouville Quantum Gravity with $\kappa = \gamma^2$. KPZ formula

$$x = \frac{\gamma^2}{4}\Delta^2 + \left(1 - \frac{\gamma^2}{4}\right)\Delta.$$

Euclidean Exponents :

$$x_{2j}^b = rac{j(4j+4-\kappa)}{\kappa}, \quad x_{2j}^i = rac{16j^2 - (\kappa - 4)^2}{16\kappa}$$

Quantum Exponents :

$$\Delta^{b}_{2j} = rac{4j}{\kappa}, \qquad \Delta^{i}_{2j} = rac{1}{2}\left(\Delta^{b}_{2j} + rac{\kappa-4}{\kappa}
ight)$$

イロト イヨト イヨト イヨト

Table of contents

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents ?

2 SLE and Arm Exponents

Ising and FK-Ising

4 Proof

5 Further questions

< ロ > < 同 > < 回 > < 回 >

Reduce from 2n + 1 to 2n

Proof

 $\mathbb{P}[(2n+1) \text{ arms}] \approx \mathbb{E}[(g_{\tau_{\epsilon}}'(1)\epsilon)^{\alpha_{2n}^+}], \quad \alpha_{2n+1}^+ = u_1(\alpha_{2n}^+) + \alpha_{2n}^+.$

Reduce from 2n to 2n - 1

 $\mathbb{P}[2n \text{ arms}] \approx \mathbb{E}[(g'_{\sigma}(\epsilon)\epsilon)^{\alpha_{2n-1}^+}], \quad \alpha_{2n}^+ = u_2(\alpha_{2n-1}^+) + \alpha_{2n-1}^+.$

<ロ> <四> <四> <四> <四> <四</p>

Reduce from 2n + 1 to 2n

Proof

 $\mathbb{P}[(2n+1) \text{ arms}] \approx \mathbb{E}[(g_{\tau_{\epsilon}}'(1)\epsilon)^{\alpha_{2n}^+}], \quad \alpha_{2n+1}^+ = u_1(\alpha_{2n}^+) + \alpha_{2n}^+.$

Reduce from 2n to 2n-1

 $\mathbb{P}[2n \text{ arms}] \approx \mathbb{E}[(g'_{\sigma}(\epsilon)\epsilon)^{\alpha_{2n-1}^+}], \quad \alpha_{2n}^+ = u_2(\alpha_{2n-1}^+) + \alpha_{2n-1}^+.$

Difficulty 1 : Only for well-oriented crossings. Solved by RSW. Difficulty 2 : Need a strong one-point estimate.

Hao Wu (NCCR/SwissMAP)

Table of contents

Percolation

- What are the arm exponents?
- Why we are interested in the arm exponents?
- How to derive these exponents ?

2 SLE and Arm Exponents

Ising and FK-Ising

4 Proof

5 Further questions

< ロ > < 同 > < 回 > < 回 >

Further questions—Monochromatic?

Question

The arm exponents we obtained are "alternating" arm exponents. What are the other patterns of arm exponents?

Further questions—Monochromatic?

Question

The arm exponents we obtained are "alternating" arm exponents. What are the other patterns of arm exponents?

Percolation

What are the monochromatic arm exponents for critical percolation? By simulations, they are close to $(4n^2 + 1)/48$.

< ロ > < 同 > < 回 > < 回 >

Further questions—Monochromatic?

Question

The arm exponents we obtained are "alternating" arm exponents. What are the other patterns of arm exponents?

Percolation

What are the monochromatic arm exponents for critical percolation? By simulations, they are close to $(4n^2 + 1)/48$.

One arm exponent

For general $\kappa \in (4, 8)$, we know that

$$\tilde{\alpha}_1 = (8 - \kappa)(3\kappa - 8)/(32\kappa).$$

Percolation : $\kappa = 6$, $\tilde{\alpha}_1 = 5/48$. FK-lsing : $\kappa = 16/3$, $\tilde{\alpha}_1 = 1/8$.

Thanks!

References

Critical percolation

- Scaling relations for 2D percolation, Kesten
- Critical exponents for 2D percolation, Smirnov, Werner
- One-arm exponent for critical 2D percolation, Lawler, Schramm, Werner

Ising and FK-Ising

- Convergence of Ising interfaces to SLE, Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov
- Ising interfaces and free boundary conditions, Hongler, Kytola
- Crossing probabilities in topological rectangles for the critical planar *FK-Ising model*, Chelkak, Duminil-Copin, Hongler

Arm exponents

- Polychromatic arm exponents for the critical planar FK-Ising model, Wu
- Alternating arm exponents for the critical planar Ising model, Wu
- Boundary arm exponents for SLE, Wu, Zhan

3

< 日 > < 同 > < 回 > < 回 > < □ > <