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Biased Card Shuffling

a < b 1 ≥ p > q ≥ 0 p + q = 1.



Biased Card Shuffling

a < b , p = 1, q = 0.

Continuous time: Updates happen according to independent
Poisson processes on R≥0 attached to each pair of neighboring
positions.
Question: When the sorting stops?



Multispecies TASEP on an interval

Interval {1, 2, . . . ,N}. Symmetric group SN .

Each transposition (i , i + 1) has independent exponential
clock.

When the clock rings, we swap particles at i and i + 1, but
only if it will increase the number of color-position inversions.
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Angel-Holroyd-Romik-08: What’s happening as N becomes large?
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Fig. 1. An illustration of an oriented swap process with n= 5. Trajectories are shown
by lines.

Our first result states that the trajectories converge to a certain family
of random curves. The limiting curve for a particle at a given location is
deterministic, once a random initial speed has been chosen, and is smooth,
except at two points. Define the scaled trajectory T n

k = Tk : [0,∞)→ [0,1] of
particle k by

T n
k (s) :=

(ηnns)
−1(k)

n
.

(a)

(b) (c)

Fig. 2. (a) Selected particle trajectories in a simulated oriented swap process with
n= 1000; (b) selected possible limiting trajectories for particle ⌊3n/10⌋; (c) selected lim-
iting trajectories (see Theorem 1.1).
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Theorem. [Angel-Holroyd-Romik] Set γy = 1 + 2
√

y(1− y).
If UN(k) is the last time the swap (k, k + 1) happens, then

UN(k)− Nγk/N

N1/3(γk/N)2/3
(
k
N (1− k

N )
)−1/6 d−−−−→

N→∞
F2, (Tracy-Widom distribution)

Proof is based on coupling with TASEP with step initial condition
and the result of Johansson’00.
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Question. Set TOSP
N — the time when the systems stops

[AHR-08]: We have TOSP
N ≈ 2N. What are the fluctuations?

Theorem. Bufetov-Gorin-Romik’20

TOSP
N − 2N

21/3N1/3

d−−−−→
N→∞

F1,

where F1 is another Tracy-Widom distribution.
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Question. Set TOSP
N — the time when the systems stops

Theorem. (Bufetov-Gorin-Romik-20)

TOSP
N − 2N

21/3N1/3

d−−−−→
N→∞

F1,

Proof is based on symmetries of interacting particle systems
Borodin-Gorin-Wheeler’19, Galashin’20; also we prove some of
conjectures from Bisi-Cunden-Gibbons-Romik’20.



Biased Card Shuffling

a < b 1 ≥ p > q ≥ 0 p + q = 1.



ASEP on a finite interval

ASEP = Asymmetric Simple Exclusion Process.

There are kN particles on Z̃N = {1, 2, . . . ,N} which evolve in time.
There are two Poisson processes of rates p and q < p associated
with each particle, p + q = 1.

Each particle jumps one step to the right with rate p, and jumps
one step to the left with rate q, if the neighboring positions are
vacant. If the position is occupied by another particle, the jump
does not happen.

All Poisson processes are independent.



−2 −1 0 1 2 · · ·· · ·

q = 0 (totally asymmetric simple exclusion process = TASEP).

Consider a standard (two-color = particles and holes) TASEP
started with the step initial condition. Let htasep(x , t) be the
number of particles that are to the right of x at time t.

Johansson’00

htasep (0, t)− t/4

−t1/32−4/3
d−−−→

t→∞
F2,

where in the right-hand side stands the F2 Tracy-Widom
distribution.
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Theorem. [Angel-Holroyd-Romik] Set γy = 1 + 2
√

y(1− y).
If UN(k) is the last time the swap (k, k + 1) happens, then

UN(k)− Nγk/N

N1/3(γk/N)2/3
(
k
N (1− k

N )
)−1/6 d−−−−→

N→∞
F2, (Tracy-Widom distribution)

Proof is based on coupling with TASEP with step initial condition
and the result of Johansson’00.
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Connection with last passage percolation

Flat initial condition: Baik-Rains’99, Sasamoto’05,
Borodin-Ferrari-Prahofer-Sasamoto’07

x0 (t)− t/4

−22/3t1/3
d−−−→

t→∞
F1,

It turns out that there exist exact distribution identities which
relate this single-species problem with a multi-species problem.
They exist due to inherent algebraic structure behind the model.



Hecke algebra

W = Sn, si = (i , i + 1).

L(w) := number of inversions in w ∈W .

Hecke algebra: {Tw}w∈W — linear basis

{
TsTw = Tsw , if L(sw) = L(w) + 1

TsTw = (1− q)Tw + qTsw , if L(sw) = L(w)− 1.

The linear map I : H → H

I :
∑
w

awTw →
∑
w

awTw−1

satisfies

I (hrhr−1 . . . h2h1) = I (h1) I (h2) . . . I (hr ) , hi ∈ H.



Random walk on Hecke algebra

Generators {G1, . . . ,Gk}, each of these generators has an
independent exponential clock. When the clock s rings, we
multiply Gs to the current position of the random walk P ∈ H —
our new position is GsP. This is a random walk on Hecke algebra.

An element of Hecke algebra

h :=
∑
w

κwTw , κw ≥ 0,
∑
w

κw = 1,

can be interpreted as a random element of W . Random walk on
Hecke algebra generates the random walk on W .



Multi-species ASEP

1

0

q

1-q

1

0

q

1-q

We consider particles of various types (=classes, colors, species).

Set of types is linearly ordered, and a particle of a smaller type
interacts with a particle of a larger type as a particle with a hole.

Particular case: configurations are given by permutations
π : Zn → Zn, where π(j) is encoding the type of a particle
standing at j .



Multi-species ASEP / Hecke algebra

W = Sn, generators: {Tsi}n−1i=1 . Equivalent language for the
description of ASEP: Vocabulary

Random multi-species configuration — element of Hecke
algebra

Update —- multiplication by Ts

ASEP evolution — element of Sn generated by random walk
on Hecke algebra

Projection to fewer colors — projection to cosets of parabolic
subgroups

Class-position symmetry — involution I swaps w and w−1.

Other Coxeter groups generate ASEP with a source
(hyperoctahedral group), ASEP on a ring (affine Weyl group Ãn).



Multi-species ASEP / Hecke algebra

W = Sn, generators: {Tsi}n−1i=1 . Equivalent language for the
description of ASEP.

Multi-species ASEP is generated by Hecke algebra:
Alcaraz-Rittenberg’93, Alcaraz-Droz-Henkel-Rittenberg’93, ...,
Lam’11 , Cantini-de Gier-Wheeler’15, ...

Color-position symmetry and applications for asymptotic
analysis: Angel-Holroyd-Romik’08 (TASEP, q = 0),
Amir-Angel-Valko’08 (ASEP), Borodin-Bufetov’19
(inhomogeneous stochastic six vertex model).
Explanation through Hecke algebra: Bufetov’20, Galashin’20;
a closely related proof Kuan’20.

Hidden symmetries: Borodin-Gorin-Wheeler’19, Galashin’20,
Bisi-Cunden-Gibbons-Romik’20, Dauvergne’20,
Bufetov-Korotkikh’20, Zhang’21.



Amir-Angel-Valko’08: Joint distribution of second class
particles started with step initial condition in multispecies
TASEP.

Borodin-Bufetov’19: second class particle in multispecies
ASEP with deformed initial condition.
Bufetov-P. L. Ferrari’20: second class particle in the TASEP
shock under a variety of scalings.

Other generators of a random walk on Hecke algebra
Bufetov’20. Asymptotic behavior of second class particle in
multispecies q-TAZRP with deformed initial conditions.
Second-class particle in ASEP with a source and deformed
initial condition (comes from BC-Hecke algebra).

The results about limit behavior of second class particles continue
the line of research from P. A. Ferrari-Kipnis’95,
P. A. Ferrari-Goncalves- Martin’08 (results about limit behavior of
second class particle started from a particular initial condition,
ASEP), Cator-Pimentel’13 (second class particle started from
arbitrary initial condition, TASEP).



Amir-Angel-Valko’08: Joint distribution of second class
particles started with step initial condition in multispecies
TASEP.

Borodin-Bufetov’19: second class particle in multispecies
ASEP with deformed initial condition.
Bufetov-P. L. Ferrari’20: second class particle in the TASEP
shock under a variety of scalings.

Other generators of a random walk on Hecke algebra
Bufetov’20. Asymptotic behavior of second class particle in
multispecies q-TAZRP with deformed initial conditions.
Second-class particle in ASEP with a source and deformed
initial condition (comes from BC-Hecke algebra).

Bufetov-Nejjar’20: Cutoff profile for a single-species ASEP on
segment.
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ASEP on a finite interval

There are kN particles on Z̃N = {1, 2, . . . ,N} which evolve in time.
There are two Poisson processes of rates p and q < p associated
with each particle, p + q = 1.

Each particle jumps one step to the right with rate p, and jumps
one step to the left with rate q, if the neighboring positions are
vacant. If the position is occupied by another particle, the jump
does not happen.

All Poisson processes are independent.



Cutoff

Ergodic Markov chain with finitely many states. S— state space, ξ
— initial configuration, Qξ

t — the distribution of the Markov chain
started from ξ at time t.

There is a unique stationary distribution π. We measure the total
variance distance:

||Qξ
t − π||TV :=

1

2

∑
w∈S
|Qξ

t (w)− π(w)| = max
A⊂S
|Qξ

t (A)− π(A)|.

d(t) := max
ξ∈S
||Qξ

t − π||TV

Mixing time:
Tmix(ε) := inf{t : d(t) ≤ ε}.



Cutoff

A sequence of Markov chains depending on N.

Cutoff: for any ε > 0:

lim
N→∞

Tmix
N (ε)− Tmix

N (1− ε)

Tmix
N (1/4)

= 0.

Pre-cutoff:

sup
ε

lim sup
N→∞

Tmix
N (ε)− Tmix

N (1− ε)

Tmix
N (1/4)

<∞.



Cutoff profile

A sequence of Markov chains exhibits a cutoff at time f (N) with
window of order g(N) if

lim
c→+∞

lim sup
N→∞

dN(f (N) + cg(N)) = 0,

lim
c→−∞

lim inf
N→∞

dN(f (N) + cg(N)) = 1,

(for g(N) << f (N)).

This cutoff has profile F(c) if

lim
N→∞

dN(f (N) + cg(N)) = F(c).



ASEP on a finite interval

There is a unique stationary measure for ASEP on a finite interval.



Previous results

Diaconis-Ram’00: a discrete time ASEP (systematic scan
Methropolis algorithm; colored vertex model) exhibits a
pre-cutoff. Method: representations of Hecke algebra.

Benjamini-Berger-Hoffman-Mossel’02: continuous time ASEP
(as defined above) exhibits a pre-cutoff. Method: link with
ASEP on an infinite lattice. Hydrodynamics.

Labbe-Lacoin’16: continuous time ASEP exhibits cutoff.
Method: link with ASEP on an infinite lattice.
Hydrodynamics.



Cutoff profile for ASEP

Theorem (Bufetov-Nejjar’20)

For ASEP on an interval of length N with kN particles, assume
that kN/N → α ∈ (0; 1), as N →∞. We have

lim
N→∞

dN

N
(

1 + 2
√
α(1− α)

)
+ cN1/3

p − q

 = 1− FGUE (cf (α)) ,

where

f (α) :=
(α(1− α))1/6(√
α +
√

1− α
)4/3 .

and FGUE is a distribution function of the (GUE) Tracy-Widom
distribution.
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0

Let us start with this initial condition. Let S1(t) be the position of
the second class particle at time t.

Asymptotics of S1(t) ?



0

Let us start with this initial condition. Let S1(t) be the position of
the second class particle at time t.

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) =

1

2

(
1 +

x

1− q

)
.

Uniform distribution on [−(1− q); (1− q)].

P.A. Ferrari-Kipnis’95, P.A. Ferrari-Goncalves-Martin’08.
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The asymptotic distribution of the second class particle ?
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(Borodin-Bufetov’19) The asymptotic distribution of the second
class particle

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) + (1− q)d(−x)(1− d(−x)).

Note the nontrivial dependence on q.
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(Borodin-Bufetov’19) The asymptotic distribution of the second
class particle

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) + (1− q)d(−x)(1− d(−x)).

Note the nontrivial dependence on q.

q = 0: TASEP, Cator-Pimentel’13: for general initial
conditions.

for a class of initial configurations and general q:
Borodin-Bufetov’19

Bufetov’20: Similar results for a second class particle for
half-line ASEP with a source, and a second class particle in
q-TAZRP.
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