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1. The exclusion process: some basics




TASEP: a model in the KPZ class 2

@ TASEP: Totally Asymmetric Simple Exclusion Process

e Configurations
1, if j is occupied,

n=A{njtjez, n; = { 0, if jis empty. o+~ 7

@ Dynamics 1001 7
Independently, particles jump on the right site
with rate 1, provided the right is empty: rate 1
SN
Lfm) =" ni—ni)lf (P — fn)]. @
= A

@ Ordering is preserved: if particles are initially @ @ -
at ---22(0) < 21(0) < ---, then at any later
times -+ - xo(t) < z1(t) < ---.



TASEP height function 3

@ Height function associated with TASEP particles
(a) h(0,0) =0,
(0) h(j,t) —h(j —1,t) =1 = 2n;(t)

oao




Shocks in TASEP: macroscopic 4

e Hydrodynamic scaling: huya(€,7) :=lim._,och(e 1€, e717).
@ Macroscopic density: (%hma(f,T) =1-2p(, 7).

@ Burgers equation: a%p + a%p(l —p)=0.

AP

------------ P+

|
>
I
|
>
+
3
el

e Example: p(&,0) = { p— HE<0, with p_ < p;.

P+ lff > 07
Then
_ - HE<(A—po—py)T,
P& { p+ HE=(1—p- —py)T.

@ The discontinuity in the density is called a shock.



Characteristic lines 5

@ Macroscopic slope: u(§, 1) = a%hma(f,T).
@ Macroscopic speed of growth: v(u).

o PDE for u:
0
;_u—l- a(u )ggu =0 with a(u) = —%v( u).
@ The characteristic lines are solutions of the PDE which satisfy
o€ ou
5= a(u) and 5 = =0.
o Example: TASEP has v(u) = 3(1 — u?) form which a(u) = u,

so the characteristic lines for initial condition with density p
has speed a(u) =u =1 — 2p:

(1) = &(0) + ur = £(0) + (1 — 2p)7.



Characteristic lines for p_ — p. initial conditions

@ Let p_ < p1. The shock position is the intersection of the

characteristic lines.
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Space-time correlations 7

@ TASEP with stationary initial condition: Bernoulli-p.

@ Two-point function

S(j,t) = E(n;(t)m(0)) — p*

@ Second class particle: let Z(t) be the position of a second
class particle starting at 0. Then

P(Z(t) = j) = x"'S(j,t)  with x = p(1 — p).
@ Second class particle is a microscopic version of the shock.
@ Scaling function: Prihofer,Spohn’02

v 1 (j - (1—2p)0)

@ Space-time correlations are non-trivial in a ¢2/3-neighborhood
of characteristic lines.



Slow-decorrelations along characteristic lines 8

@ Along characteristic lines, decorrelation is over time of O(t).
e Example: TASEP with density p (stationary or deterministic).
@ In terms of height function we have:

Theorem (Corwin,Ferrari,Péché'10)

Let us fix v < 1. Then, for any € > 0,

lim P (‘ h((l—ZP)tvt)—h((l—ZP)(t—t”),(t—t”))—C(p)t”‘ > 5) —0.

t—00 t1/3

@ In terms of particle positions, a similar argument gives:

Theorem (Ferrari,Nejjar'19)
Let us fix v < 1. Then, for any € > 0,

lim P < > 6) =0.
t—o0

Tp2¢ (t)_xPZ (t—t¥) (t—t")—(1—2p)t"
t1/3




2. Particle fluctuations around the shocks




KPZ fluctuations away from shocks

@ Step initial conditions: z,(0) = —n 4+ 1, n > 0. For any

a € (0,1): Johansson’00
. xat(t) — (1 — 2\@#
< = s).
A F ( ol = 8) = Harl)

e Flat initial conditions: z,(0) = —2n, n € Z.

Sasamoto’05;Borodin,Ferrari,Prdhofer,Sasamoto’07

lim P <$O(t)_t/4 < ) = FGOoE(S).

it \ “o—2/31/3 = °

@ Fuug and Fgog are the Tracy-Widom distribution function
arising as limiting distribution of the largest eigenvalue in the
Gaussian Unitary / Orthogonal Ensemble of random matrices.
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Particle fluctuations around shocks: non-random IC 12

@ The influence of the shock on the particle fluctuation is of
O(t'/3).

=Y

| 145
P= 5

—pt Bt
Theorem (Ferrari-Nejjar'13)

Fix g € (0,1), £,(0) = —n — |Bt]| forn > 1 and x,,(0) = —n for
—|Bt] <n <0. Then, forv=(1-B)%/4,

Jim (2,4 ¢1/5(8) 2 —st'/?) = Faup (#) Four < _£/p2>

for explicit constants p1, p2,01,02.

@ Note the product form of the distribution function.



Shock collisions with non-random initial conditions 13

@ Let p1 < pa < p3 be three densities and T a large parameter.
Consider the initial condition

7Ln/plj7 for n > 0,
xn(o) - _Ln/p2J? for — LPQTJ <n< -1,
T—(n+ [paT)/ps), forn < |paT].
A
P1 r s
T -

@ The two shocks have trajectories
s1(t) = (1= p1—p2)t, s2(t) =T+ (1= p2 — p3)t
which merge at time
t=T/(ps — p1)-



Characteristic lines for p1, p2, p3 initial conditions
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Fluctuations at the collision of two shocks

@ Scaling around the shock:
o timet= —L
pP3—p

o position X = d=pi=p2)T
P3—pP1

o particle label N = P;P2T +uT'/3,

Theorem (Ferrari-Nejjar'19)

With the above notations,

Jim P(207X <) = [ Foop (*testizrdr)
ke{1,2,3}

for some explicit constants o1, 09,03.

e For a time span of order T''/3 the fluctuations is a product of
three Fgog distributions.

@ Before and after that, the fluctuations are a product of two
FooE distributions.



Heuristic explanation

@ Decomposition on sub-problems: one shows Seppéalédinen’ 98

en(t) = min{z{ (8), 29 (), P (1))

where :vg\l,) (0), x%) (0), :vgg) (0) , have initial density:
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Heuristic explanation

@ Decomposition on sub-problems: one shows Seppaldinen’98
oy (1) = minf{ay) (1), 27 (8), 2 (1))
where :1:5\1,) (0), :1:5\2,) (0), :1:53) (0)
o Slow-decorrelation for v € (2/3,1): for some Ny, ¢y,
2 (t) = &l (t = T") + T + o(T?).

(€) (

@ Localization: zy, (t— T") for £ = 1,2,3 are asymptotically

independent: correlations only in C; of width O(T%/3).




3. Shock (second class particle) fluctuations




Shock fluctuations: random initial conditions

e Initial condition: Bernoulli(p_)-Bernoulli(p4) product
measure with

oy oy o= if <0,

Theorem (Ferrari-Fontes'94)

Fluctuations of the second class particle Z(t) starting at 0: for
P— < P+,

lim P (Z(t) —(A=p—pt s) _ 1 / =20
t—00 O’(p_,p+)t1/2 \/27T —00

for some explicit constant o.

@ Speed of the shock is 1 — p_ — p4.

@ The t'/2 (and Gaussian nature) is actually coming from the
Brownian scaling of the initial conditions, not of the KPZ-type
dynamics of TASEP.



Shock fluctuations: non-random initial conditions

@ For non-random initial conditions, the fluctuations are reduced
to a t1/3 scale.

@ Initial condition: particles with density p_ on Z_ and p4 on
Z+:
xn(0) = —|n/p—] for n >0
xn(0) = —|n/p4] for n <0,

and put a second class particle at the origin: Z(0) = 0.

Theorem (Ferrari,Ghosal,Nejjar'17)

For some explicit constants cy,ca of p_, p4,

Z(t)—(1—p-—ps)t D 2
173 - leéc)m - CZféé)E

lim
t—o0

where €30, and €5, are independent GOE Tracy-Widom
distributed random variables.
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The GUE-GUE shock

e Initial condition: TASEP particles at (—oo, —M_) U [1, M]
Second class particle Z(¢) initially at 0.

Y[

M 0 M,

@ Macroscopic picture: let 0 < a < b < 1 and set M = at,
M_=1bt




Characteristic lines for the GUE-GUE shock

time




Second class particle for the GUE-GUE shock

@ We have a variety of scaling, depending on how the sizes M _
and M, depend on the observation time ¢.

o Case 1: let M, = at, M_ = bt for some a,b € (0,1).

(a=b)(atb=2)

@ Speed of shock: v = 2(atb)

Theorem (Bufetov,Ferrari'20)

Assume that 2 — a — 2\/a < b < 2y/a — a. Then, for some explicit
constants ci, ¢,

t—o00

) Z(t) — vt D 1 2
lim P <tl/3 < 5> = Clgé}l)jE - C2£é}I)JE

where fg%E and fg%E are two independent GUE Tracy-Widom
distributed random variables.




Second class particle for the GUE-GUE shock

o Cases 2-3: let M, = at®, M_ = bt° for some a,b > 0.

Theorem (Bufetov,Ferrari'20)

Case 2: If § € (2/3,1), with X; = {“=kt + 25247 Then for some

explicit constant cs,

. Z(t)-X D 1 2
Jim P (2025 < 5) 2 ey — €50)

where 58%]3 and §g%E are two independent GUE Tracy-Widom.
Case 3: If 0 € (0,2/3), let v = 922 Then

lim P (Zt?_’;? < 8) EN (0’ %)

t—o00

where N'(0,02) is a centered normal distributed random variable

with variance o2. )




Second class particle for the GUE-GUE shock

o Case 4: let M, = M_ = a2'/3t?/3 for some a > 0.

Theorem (Borodin,Bufetov'19)
Then

e \ 9B =

lim P < Z2(t) < s> =P (Az(a —s) — Az2(—a — s) > 4as)

where Ay is the Airys process.

o Asa— 0: As(a —s) — Az(—a — s) ~ v/2B(2a)
(B is standard Brownian motion).

e As a — oot Az(a — s) and Az(—a — s) becomes independent
Faug random variables.



4, A few more words on the methods




Used methods
@ For all cases we use slow-decorrelation and localization

@ For the first mentioned results, we used the link to last
passage percolation.

@ For the more recent results like the shock collision, we made
working directly in the space-time picture.

@ For the last results with Alexey, we used multi-colored
(multi-type) TASEP and a symmetry theorem by
Borodin-Bufetov, allowing to link the position of the second
class particle in terms of various height TASEP functions
without second class particles.
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first class @ = second class



The backwards paths

@ For particle N at time t, we construct the backwards path
T @) (u), u:t— 0 (analogue of geodesics for LPP). The
label N(u) satisfies:

e N(t)=N,
e N(u) = N(u)—1is at time u a jump of particle N(u) is
suppressed.

@ At any time u € [0, t], resetting the system to a step-initial
condition at position () (u) leads to the same position of
particle N at time t.




Localization: use of backwards paths

@ As input we need estimates on the tails of the distribution
functions of x,(t)

@ We show that with high probability backwards paths are
localized in a O(t*/3) region around the characteristic lines.
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Gaussian fluctuations

For the results of Gaussian fluctuations, we use comparison to
stationarity, the analogue in LPP by Cator,Pimentel’15.

Backwards paths of x,y with initial configuration 1: 71z, 714
Backwards paths of x,y with initial configuration 2: 7 ,, T2,
If T,z N T2,y 7é @, then h2(y7 t) - hQ(xvt) > hl(y7 t) - hl(x7 t)

Strategy: sandwich the backwards paths for step-initial
condition (or other) between two stationary ones, which under
scaling converges to the same Brownian law.




