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1. The exclusion process: some basics



TASEP: a model in the KPZ class 2

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations

η = {ηj}j∈Z, ηj =

{
1, if j is occupied,
0, if j is empty.

Dynamics
Independently, particles jump on the right site
with rate 1, provided the right is empty:

Lf(η) =
∑
j∈Z

ηj(1− ηj+1)[f(η
j,j+1)− f(η)].

Ordering is preserved: if particles are initially
at · · ·x2(0) < x1(0) < · · · , then at any later
times · · ·x2(t) < x1(t) < · · · .



TASEP height function 3

Height function associated with TASEP particles

(a) h(0, 0) = 0,

(b) h(j, t)− h(j − 1, t) = 1− 2ηj(t)



Shocks in TASEP: macroscopic 4

Hydrodynamic scaling: hma(ξ, τ) := limε→0 εh(ε
−1ξ, ε−1τ).

Macroscopic density: ∂
∂ξhma(ξ, τ) =: 1− 2ρ(ξ, τ).

Burgers equation: ∂
∂τ ρ+

∂
∂ξρ(1− ρ) = 0.

ρ+

ρ−

ξ

ρ

ρ(ξ, τ)

ρ(ξ, 0)

(1− ρ− − ρ+)τ

Shock

Example: ρ(ξ, 0) =

{
ρ− if ξ < 0,
ρ+ if ξ ≥ 0,

with ρ− < ρ+.

Then

ρ(ξ, τ) =

{
ρ− if ξ < (1− ρ− − ρ+)τ,
ρ+ if ξ ≥ (1− ρ− − ρ+)τ.

The discontinuity in the density is called a shock.



Characteristic lines 5

Macroscopic slope: u(ξ, τ) = ∂
∂ξhma(ξ, τ).

Macroscopic speed of growth: v(u).

PDE for u:

∂

∂τ
u+ a(u)

∂

∂ξ
u = 0 with a(u) = − ∂

∂u
v(u).

The characteristic lines are solutions of the PDE which satisfy

∂ξ

∂τ
= a(u) and

∂u

∂τ
= 0.

Example: TASEP has v(u) = 1
2(1− u

2) form which a(u) = u,
so the characteristic lines for initial condition with density ρ
has speed a(u) = u = 1− 2ρ:

ξ(τ) = ξ(0) + uτ = ξ(0) + (1− 2ρ)τ.



Characteristic lines for ρ− − ρ+ initial conditions 6

Let ρ− < ρ+. The shock position is the intersection of the
characteristic lines.



Space-time correlations 7

TASEP with stationary initial condition: Bernoulli-ρ.

Two-point function

S(j, t) := E(ηj(t)η0(0))− ρ2

Second class particle: let Z(t) be the position of a second
class particle starting at 0. Then

P(Z(t) = j) = χ−1S(j, t) with χ = ρ(1− ρ).

Second class particle is a microscopic version of the shock.

Scaling function: Prähofer,Spohn’02

S(j, t) ' χ

4

1

2χ1/3t2/3
fKPZ

(
(j − (1− 2ρ)t)

2χ1/3t2/3

)
.

Space-time correlations are non-trivial in a t2/3-neighborhood
of characteristic lines.



Slow-decorrelations along characteristic lines 8

Along characteristic lines, decorrelation is over time of O(t).
Example: TASEP with density ρ (stationary or deterministic).

In terms of height function we have:

Theorem (Corwin,Ferrari,Péché’10)

Let us fix ν < 1. Then, for any ε > 0,

lim
t→∞

P
(∣∣∣h((1−2ρ)t,t)−h((1−2ρ)(t−tν),(t−tν))−C(ρ)tν

t1/3

∣∣∣ ≥ ε) = 0.

In terms of particle positions, a similar argument gives:

Theorem (Ferrari,Nejjar’19)

Let us fix ν < 1. Then, for any ε > 0,

lim
t→∞

P
(∣∣∣∣xρ2t(t)−xρ2(t−tν )(t−tν)−(1−2ρ)tνt1/3

∣∣∣∣ ≥ ε) = 0.
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2. Particle fluctuations around the shocks



KPZ fluctuations away from shocks 10

Step initial conditions: xn(0) = −n+ 1, n ≥ 0. For any
α ∈ (0, 1): Johansson’00

lim
t→∞

P
(
xαt(t)− (1− 2

√
α)t

−σ(α)t1/3
≤ s
)

= FGUE(s).

Flat initial conditions: xn(0) = −2n, n ∈ Z.
Sasamoto’05;Borodin,Ferrari,Prähofer,Sasamoto’07

lim
t→∞

P
(
x0(t)− t/4
−2−2/3t1/3

≤ s
)

= FGOE(s).

FGUE and FGOE are the Tracy-Widom distribution function
arising as limiting distribution of the largest eigenvalue in the
Gaussian Unitary / Orthogonal Ensemble of random matrices.



Densities of FGUE and FGOE 11



Particle fluctuations around shocks: non-random IC 12

The influence of the shock on the particle fluctuation is of
O(t1/3).

Theorem (Ferrari-Nejjar’13)

Fix β ∈ (0, 1), xn(0) = −n− bβtc for n ≥ 1 and xn(0) = −n for
−bβtc ≤ n ≤ 0. Then, for ν = (1− β)2/4,

lim
t→∞

P(xνt+ξt1/3(t) ≥ −st
1/3) = FGUE

(
s−ξ/ρ1
σ1

)
FGUE

(
s−ξ/ρ2
σ2

)
for explicit constants ρ1, ρ2, σ1, σ2.

Note the product form of the distribution function.



Shock collisions with non-random initial conditions 13

Let ρ1 < ρ2 < ρ3 be three densities and T a large parameter.
Consider the initial condition

xn(0) =


−bn/ρ1c, for n ≥ 0,
−bn/ρ2c, for − bρ2T c ≤ n ≤ −1,
T − b(n+ bρ2T c)/ρ3c, for n < bρ2T c.

The two shocks have trajectories

s1(t) = (1− ρ1 − ρ2)t, s2(t) = T + (1− ρ2 − ρ3)t

which merge at time

t = T/(ρ3 − ρ1).



Characteristic lines for ρ1, ρ2, ρ3 initial conditions 14



Fluctuations at the collision of two shocks 15

Scaling around the shock:
time t = T

ρ3−ρ1 + τT 1/3

position X = (1−ρ1−ρ2)T
ρ3−ρ1

particle label N = ρ1ρ2T
ρ3−ρ1 + uT 1/3.

Theorem (Ferrari-Nejjar’19)

With the above notations,

lim
T→∞

P
(
xN (t)−X
−T 1/3 ≤ s

)
=

∏
k∈{1,2,3}

FGOE

(
s−u/ρk+(1−ρk)τ

σk

)
for some explicit constants σ1, σ2, σ3.

For a time span of order T 1/3 the fluctuations is a product of
three FGOE distributions.

Before and after that, the fluctuations are a product of two
FGOE distributions.



Heuristic explanation 16

Decomposition on sub-problems: one shows Seppäläinen’98

xN (t) = min{x(1)N (t), x
(2)
N (t), x

(3)
N (t)}

where x
(1)
N (0), x

(2)
N (0), x

(3)
N (0) , have initial density:

Slow-decorrelation for ν ∈ (2/3, 1): for some N`, c`,

x
(`)
N (t) = x

(`)
N`
(t− T ν) + c`T

ν + o(T 1/3).

Localization: x
(`)
N`
(t− T ν) for ` = 1, 2, 3 are asymptotically

independent: correlations only in C` of width O(T 2/3).
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3. Shock (second class particle) fluctuations



Shock fluctuations: random initial conditions 18

Initial condition: Bernoulli(ρ−)-Bernoulli(ρ+) product
measure with

P(ηj(0) = 1) =

{
ρ− if j < 0,
ρ+ if j ≥ 0.

Theorem (Ferrari-Fontes’94)

Fluctuations of the second class particle Z(t) starting at 0: for
ρ− < ρ+,

lim
t→∞

P
(
Z(t)− (1− ρ− − ρ+)t

σ(ρ−, ρ+)t1/2
≤ s
)

=
1√
2π

∫ s

−∞
e−x

2/2dx

for some explicit constant σ.

Speed of the shock is 1− ρ− − ρ+.
The t1/2 (and Gaussian nature) is actually coming from the
Brownian scaling of the initial conditions, not of the KPZ-type
dynamics of TASEP.



Shock fluctuations: non-random initial conditions 19

For non-random initial conditions, the fluctuations are reduced
to a t1/3 scale.

Initial condition: particles with density ρ− on Z− and ρ+ on
Z+:

xn(0) = −bn/ρ−c for n > 0

xn(0) = −bn/ρ+c for n < 0,

and put a second class particle at the origin: Z(0) = 0.

Theorem (Ferrari,Ghosal,Nejjar’17)

For some explicit constants c1, c2 of ρ−, ρ+,

lim
t→∞

Z(t)− (1− ρ− − ρ+)t
t1/3

D
= c1ξ

(1)
GOE − c2ξ

(2)
GOE

where ξ
(1)
GOE and ξ

(2)
GOE are independent GOE Tracy-Widom

distributed random variables.



The GUE-GUE shock 20

Initial condition: TASEP particles at (−∞,−M−) ∪ [1,M+]
Second class particle Z(t) initially at 0.

Macroscopic picture: let 0 < a < b < 1 and set M+ = at,
M− = bt



Characteristic lines for the GUE-GUE shock 21



Second class particle for the GUE-GUE shock 22

We have a variety of scaling, depending on how the sizes M−
and M+ depend on the observation time t.

Case 1: let M+ = at, M− = bt for some a, b ∈ (0, 1).

Speed of shock: v = (a−b)(a+b−2)
2(a+b) .

Theorem (Bufetov,Ferrari’20)

Assume that 2− a− 2
√
a < b < 2

√
a− a. Then, for some explicit

constants c1, c2,

lim
t→∞

P
(
Z(t)− vt
t1/3

≤ s
)
D
= c1ξ

(1)
GUE − c2ξ

(2)
GUE

where ξ
(1)
GUE and ξ

(2)
GUE are two independent GUE Tracy-Widom

distributed random variables.



Second class particle for the GUE-GUE shock 23

Cases 2-3: let M+ = atδ, M− = btδ for some a, b > 0.

Theorem (Bufetov,Ferrari’20)

Case 2: If δ ∈ (2/3, 1), with Xt =
(a−b)
(a+b) t+

a+b
2 tδ. Then for some

explicit constant c3,

lim
t→∞

P
(
Z(t)−Xt
t4/3−δ

≤ s
)
D
= c3(ξ

(1)
GUE − ξ

(2)
GUE)

where ξ
(1)
GUE and ξ

(2)
GUE are two independent GUE Tracy-Widom.

Case 3: If δ ∈ (0, 2/3), let v = a−b
a+b . Then

lim
t→∞

P
(
Z(t)−vt
t1−δ/2

≤ s
)
D
= N

(
0, 4ab

(a+b)3

)
where N (0, σ2) is a centered normal distributed random variable
with variance σ2.



Second class particle for the GUE-GUE shock 24

Case 4: let M+ =M− = a21/3t2/3 for some a > 0.

Theorem (Borodin,Bufetov’19)

Then

lim
t→∞

P
(

Z(t)

21/3t2/3
≤ s
)

= P (A2(a− s)−A2(−a− s) ≥ 4as)

where A2 is the Airy2 process.

As a→ 0: A2(a− s)−A2(−a− s) ∼
√
2B(2a)

(B is standard Brownian motion).

As a→∞: A2(a− s) and A2(−a− s) becomes independent
FGUE random variables.
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4. A few more words on the methods



Used methods 26

For all cases we use slow-decorrelation and localization

For the first mentioned results, we used the link to last
passage percolation.

For the more recent results like the shock collision, we made
working directly in the space-time picture.

For the last results with Alexey, we used multi-colored
(multi-type) TASEP and a symmetry theorem by
Borodin-Bufetov, allowing to link the position of the second
class particle in terms of various height TASEP functions
without second class particles.



The backwards paths 27

For particle N at time t, we construct the backwards path
xN(u)(u), u : t→ 0 (analogue of geodesics for LPP). The
label N(u) satisfies:

N(t) = N ,
N(u)→ N(u)− 1 is at time u a jump of particle N(u) is
suppressed.

At any time u ∈ [0, t], resetting the system to a step-initial
condition at position xN(u)(u) leads to the same position of
particle N at time t.



Localization: use of backwards paths 28

As input we need estimates on the tails of the distribution
functions of xn(t)

We show that with high probability backwards paths are
localized in a O(t2/3) region around the characteristic lines.



Gaussian fluctuations 29

For the results of Gaussian fluctuations, we use comparison to
stationarity, the analogue in LPP by Cator,Pimentel’15.

Backwards paths of x, y with initial configuration 1: π1,x, π1,y

Backwards paths of x, y with initial configuration 2: π2,x, π2,y

If π1,x ∩ π2,y 6= ∅, then h2(y, t)− h2(x, t) ≥ h1(y, t)− h1(x, t)
Strategy: sandwich the backwards paths for step-initial
condition (or other) between two stationary ones, which under
scaling converges to the same Brownian law.


