SGD from a random start in high dimensions

Aukosh Jagannath (Waterloo) Joint w/ G Ben Arous (NYU) R Gheissari (UC Berkeley)

Basic setting

Given:

• $(P_x)_{x\in\mathbb{R}^N}$ — Parametric family of distributions

•
$$(Y^\ell)_{\ell=1}^M$$
 —i.i.d. observations from P_{x_0}

Goal: Estimate x₀

Risk minimization

Approach: L(x;Y) — Loss function Population Loss: $\Phi(x) = \mathbb{E}L(x;Y)$ Ideal Estimator: $\hat{x} = \operatorname{argmin}_x \mathbb{E}L(x;Y)$ Issue: Don't have access to "true" distribution

Fix: Empirical Risk Minimization or Stochastic Approximation

Stochastic Approximations

- Sequentially optimize loss on new data points [Robbins-Monro '51]
- Each sample gives approximation to population: $L(x,Y^\ell) = \Phi(x) + H_\ell(x)$

Sample-wise error

Proxy for gradient descent on population

Stochastic gradient descent (SGD)

Algorithm:
Input:
$$X_0$$
, L , $(Y^{\ell})_{\ell=1}^M$, δ
initial guess step-size
Update: $X_{t+1} = X_t + \delta \nabla L(X_t, Y^{t+1})$
New sample
Q: How many samples needed for convergence?
"Sample complexity"

Two phases of stochastic gradient descent

Heurstic picture: [Bottou '99, Mandt-Hoffman-Blei '17]

1. Search phase

- Start in high entropy region
- Fluctuations dominates
- Walker wandering in complex landscape

2. Descent phase

- outperforms a random guess
- Descends to minimum
- Trust region (or at least a "basin"?)

Limit theory (Fixed N)

Stochastic approximation: $\nabla L(x,Y) = \nabla \Phi(x) + \nabla H(x)$

loss population loss fluctuation

Perturbation of gradient flow in infinite size $M \rightarrow \infty$ for fixed N

Limit theory [Robbins-Monro '51, McLeish '76, Ljung '77, Benaïm-Hirsch '96]

- Ignore "burn-in time"
- Convergence to GD for $\Phi(x)$
- Connects to dynamical systems

[credit: J. Le Ny '09]

Toward a high-dimensional theory

- One of go-to methods in modern data science
- Used to tackle extremely complex inference tasks
 - High-dimensional data
 - Complex models
- Performs well in very diverse domains
 - Computer vision/Image processing
 - Prediction
 - Healthcare

Today's talk:

• How many samples needed in high-dim? ($M \approx poly(N)$)

Recent progress in high-dimensions

- Convexity, Quasi-convexity, ... [Bottou '98, Bottou-Le Cun '04, Needel-Srebro-Ward '14, Harvey-Liaw-Plan-Randhawa '19, Dieuleveut-Durmus-Bach '19...]
 - Ignore search and focus on rates assuming shape of basins
- 2. Langevin dynamics or SDE approximations [Raginsky-Rakhlin-Telegarsky '17, Zhang-Liang-Charikar '17, Ma-Chen-Jin-Flammarion-Jordan '19, Cheng-Yin-Bartlett-Jordan '20...]
 - Study an SDE approximation to the dynamics
 - Polynomial mixing time bounds $O(poly(N)e^{LR^2})$
 - Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
 - Fixed domain: B(0,R)
 - Ellipticity, reversibility ...

High-dim statistical models don't fit

Issue: Standard tasks don't fit either setting

- 1. SGD still performs well with non-convex problems
 - Complex data (tensors, neural networks, ...)
- 2. Dimension dependence of Lipschitz constants
 - With high probability in realization Lip $\sim N^{\rm c}$
 - Linear regression, Phase retrieval, Spiked matrix models
 - Normalizing can render invariant measure uninformative

Concentration of measure:

"1-Lipschitz functions of many variables are nearly constant"

Recent progress in high-dimensions

- Convexity, Quasi-convexity, ... [Bottou '98, Bottou-Le Cun '04, Needel-Srebro-Ward '14, Harvey-Liaw-Plan-Randhawa '19, Dieuleveut-Durmus-Bach '19...]
 - Ignore search and focus on rates assuming shape of basins
- 2. Langevin dynamics or SDE approximations [Raginsky-Rakhlin-Telegarsky '17, Zhang-Liang-Charikar '17, Ma-Chen-Jin-Flammarion-Jordan '19, Cheng-Yin-Bartlett-Jordan '20...]
 - Study an SDE approximation to the dynamics
 - Polynomial mixing time bounds $O(poly(N)e^{LR^2})$
 - Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
 - Fixed domain: B(0,R)
 - Ellipticity, reversibility ...
- 3. Scaling limits and bounding flows [Cugliandolo-Kurchan '92, Saad-Solla '95, Ben Arous-Dembo-Guionnet '04, Tan-Vershynin '19⁺, Goldt-Mézard-Krzakala-Zdeborová 20, Ben Arous-Gheissari-J '20-21,...]

Today's talk

Focus for today's talk:

Regimes relevant to high-dimensional statistics Uninformed initializations

- 1. How many samples do you need? (sample complexity)
- 2. How much time does it take to beat a random guess?
- 3. What are the fundamental properties of a problem that govern the answer to these questions?

Model and assumptions

A simple class of models

Assumptions:

Population

- Population loss: $\Phi(x) = \mathbb{E}L(x;Y)$
- (Non-linear) function of distance to ground truth
- Bounded domain + fixed noise level \rightarrow know norm **Parameter space:** S^{N-1} unit sphere in R^N

loss:
$$\Phi(x) = \phi(m(x, x_0))$$
$$m(x) = x \cdot x_0$$

 x_0 – parameter to be inferred

Stochastic gradient descent

Output: X_M

Assumption A: Regularity

$$\nabla L(x,Y) = \nabla \Phi(x) + \nabla H(x)$$

Sample-wise error

Naively: Worst case if error term is "completely random" **Idea:** gradient of error no worse than *i.i.d.* vector with a few moments

Def: A sequence of data distributions and losses, (P_N, L_N) satisfies **Assumption A** if the sample-wise error satisfies the following norm bounds:

$$\sup_{x \in \mathbb{S}^{N-1}} \mathbb{E}[(\nabla H(x) \cdot x_0)^2] \le C$$

 $\sup_{x \in \mathbb{S}^{N-1}} \mathbb{E}[\|\nabla H(x)\|^{4+\epsilon}] \le CN^{\frac{4+\epsilon}{2}}$

 x_0 – parameter to be inferred

Assumption B: Fisher-type consistency

Fisher consistency: estimator correct given population.

- Gradient descent on ϕ consistent with random start
- ϕ even \rightarrow can only determine up to a sign
- Random start is on upper half sphere with prob $\frac{1}{2}$

Def: A population loss satisfies **Assumption B** if: $\phi'(t) < 0$ for $t \in (0,1)$

Information exponent

Examples

k = 1:

- Linear regression with random covariates
- Generalized linear models with random covariates
- Asymmetric two component Gaussian mixture

k = 2:

- Symmetric Gaussian mixture
- Phase retrieval
- Online PCA
- Spiked Wigner models

k ≥ 3:

• Tensor PCA

Variable:

• Single-layer networks (exponent depends on activation)

Performance guarantee

Initialization: μ_N^+ uniform measure conditioned on upper-half sphere

<u>Thm 1</u>: Suppose Assumptions **A** and **B** hold. For information exponent **k**, if $M = \alpha_N N$ has

1. (k=1)
$$\alpha_N >> 1 = \alpha_C(N,1)$$

- 2. (k=2) $\alpha_N >> \log(N)^2 = \alpha_c(N,2) \log(N)$
- 3. (k≥3) $\alpha_N >> N^{k-1}\log(N)^2 = \alpha_C(N,k) \log(N)^2$,

then SGD started from μ_N^+ with step size $\delta_N \sim \alpha_N^{-1+\varepsilon}$ produces a consistent estimator:

 $m(X_M) \rightarrow 1$ in probability.

Critical sample complexity: $\alpha_c(N,k) = \begin{cases} 1 & k = 1 \\ \log N & k = 2 \\ N^{k-2} & k \ge 3 \end{cases}$

Refutation

Initialization: μ_N^+ uniform measure conditioned on upper-half sphere

<u>Thm 2</u>: Suppose Assumptions **A** and **B** hold. For information exponent **k**, if $M = \alpha_N N$ has

. (k=1)
$$\alpha_N \ll \alpha_c(N,1)$$
 and $\delta_N = O(1)$

2. $(\mathbf{k} \ge 2) \alpha_N \ll \alpha_c(N,2)$ and $\delta_N = O(\alpha_N^{-1/2+\varepsilon})$ then SGD started from μ_N^+ does not corellate: $m(X_M) \to 0$ in probability.

Critical sample complexity: $\alpha_c(N,k) = \begin{cases} 1 & k = 1 \\ \log N & k = 2 \\ N^{k-2} & k \ge 3 \end{cases}$

Rapid descent

• τ_{ϵ} - first hitting time for $\{m(x) = \epsilon\}$

<u>Thm 3</u>: Suppose Assumptions **A** and **B** hold. For information exponent $\mathbf{k} \ge \mathbf{2}$, if $M = \alpha_N N$ as in Theorem 1, then for any $\epsilon > 0$, the first hitting time for latitude ϵ and $1 - \epsilon$ satisfy $|\tau_{\epsilon} - \tau_{1-\epsilon}| = O(N)$. Furthermore, $m(X_t) > 1 - 2\epsilon$ for $t > \tau_{1-\epsilon}$.

Summary

- For random initializations there are three regimes:
 - 1. Linear (k = 1): needs linear in N samples
 - 2. Quasi-linear (k = 2): needs \geq N log(N) and \leq N log(N)²
 - 3. Polynomial ($k \ge 3$): needs $\sim N^{k-1}$ samples
- Critical sample complexity:

$$\alpha_c(N,k) = \begin{cases} 1 & k = 1\\ \log N & k = 2\\ N^{k-2} & k \ge 3 \end{cases}$$

- Once at latitude ϵ :
 - can get to 1ϵ in linear time.
 - Law of large numbers (back to finite dim story)

Examples

Linear (k = 1):

- Linear regression with random covariates
- Generalized linear models with random covariates
- asymmetric two component Gaussian mixture

Quasilinear (k = 2):

- symmetric Gaussian mixture
- phase retrieval
- Online PCA
- spiked Wigner models

Polynomial ($k \ge 3$):

• Tensor PCA

Variable:

• Single-layer networks (exponent depends on activation)

Some Insights

A motivating example

Task: supervised learning with one-layer networks

• Teacher-Student networks, single-index or non-linear factor model, perceptron, generalized phase retrieval (GLM)...

Given:

- Activation function: f
- (Random) feature vectors: (a^{ℓ})
- M i.i.d. non-linear measurements of unknown unit N-vector

 $y^{\ell} = f(a^{\ell} \cdot x_0) + \varepsilon^{\ell}$

Goal: Estimate optimal weight $x_0 \in \mathbb{R}^N$

Approach: SGD on ℓ_2 loss from a random start

• Spectral initializations: Candès-Li-Soltanolkotabi '15, Li-Lu '20, Mondelli-Montanari '18, Maillard-Krzakala-Lu-Zdeborová '21

Supervised learning with Gaussian features

- i.i.d. Standard gaussian features (a^{ℓ})
- i.i.d. centered errors (ε^{ℓ}) with finite 4⁺ moment **Population loss:** (let $u_i(f) = j^{\text{th}}$ Hermite coefficient)

$$\Phi(x) = 2\sum_{j=1}^{\infty} u_j(f)^2 (1 - m(x)^j) + c$$

Information Exponent:

index of first nonzero Hermite coefficient

Examples

Linear (k = 1):

- Adaline (f(x) = x) has exponent 1
- Sigmoid $(f(x) = (1+exp(-x))^{-1})$ has exponent 1
- ReLu (f(x) = max(x,0)) has exponent 1

Quasi-linear (k = 2):

- Phase retrieval $f(x) = x^2$ or |x| has exponent 2
- Monomial $f(x) = x^k$ has exponent 1 or 2 depending on parity

Polynomial ($k \ge 3$):

- Hermite polynomials: $f(x) = h_k(x)$ has exponent k
- Activations in subspace spanned by Hermite polynomials of degree at least 3.

How much data for search phase?

Search v.s. descent trade-off

Q: How much data do I spend in the "burn-in"

- Total amount of data for estimation
 - Exponent = $1 \rightarrow N$ samples
 - Exponent $\geq 2 \rightarrow$ needs at least N log N samples
- Amount of data used in "descent"
 - Once at latitude ϵ , can get to 1ϵ in O(N) time

Most of time spent/data used is for search phase!

Most of data spent in search phase

Once correlated all problems in "easy phase" Pathwise LLN once warm

Impact of activation on run-time

Small changes to activation can dramatically change runtime!

cubic (x³) vs quadratic (x²) vs 3rd hermite (x³-3x)

Summary

- Stochastic gradient descent for "rank 1" models
- Sample complexity determined by information exponent ${\bf k}$
- For random initializations there are **three regimes**:
 - 1. Linear (k = 1): needs N samples
 - 2. Quasi-linear (k = 2): needs $\ge N \cdot \log(N)$ and $\le N \cdot \log(N)^2$
 - 3. Polynomial ($k \ge 3$): needs $\sim N^{k-1}$ samples

Take away's:

- 1. Many classical tasks have $k \le 2$
- 2. If $k \ge 2 \rightarrow$ most of data used in search phase.
- 3. Performance depends dramatically on activation/loss (misspecification can cause major issues!)

Proof techniques

- Consider population dynamics $m_t \approx m_{t-1} + \frac{\delta}{N} cm^{k-1}$
- Direct analysis of difference equation if $m_0 \sim N^{-\zeta}$
 - 1. k < 2: needs time $\delta^{-1}N$
 - 2. k = 2: needs time $\delta^{-1} N \log N$
 - 3. k > 2: needs time $\delta^{-1}N^{1+\zeta(k-2)}$
- One idea: send N to infinity and step-size to zero first
- Issue: nontrivial fixed point at 0
- Most time spent on microscopic scales
- Instead use bounding flows approach of [Ben Arous-Gheissari-J '20]
- Due to martingale can avoid control of initialization

Thanks for listening!

References:

- G. Ben Arous, R. Gheissari, A.J., "Online stochastic gradient descent on non-convex losses from high-dimensional inference", *Jour. Mach. Learn. Res.* 2021
- G. Ben Arous, R. Gheissari, A.J., "Algorithmic thresholds for Tensor PCA", Ann. Probab 2020
- G. Ben Arous, R. Gheissari, A.J., "Bounding flows for spherical spin glass dynamics", Commun. Math. Phys. 2020

Cette recherche a été financée par CRSNG. This research was supported by NSERC.