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Basic setting

Given:

. (PCU)$ERN — Parametric family of distributions

: (Ye)é\il — i.i.d. observations from PSBO

Goal: Estimate x,



Risk minimization

Approach: L(Qj’ Y) — Loss function

Population Loss: (I)(;U) — *'1L(£E; Y)

Ideal Estimator: o — argmin,, ‘LL(ZE; Y)
Issue: Don’'t have access to "frue™ distribution

Fix: Empirical Risk Minimization or Stochastic Approximation



Stochastic Approximations

Sequentially optimize loss on new data points [Robbins-
Monro ‘51]

Each sample gives approximation to population:

L(z,Y") = ®(z) + H(x)
\_'_’

Sample-wise error

Proxy for gradient descent on population



Stochastic gradient descent (SGD)

Algorithm:
Input: XO, L, ( )g 1, 0
\_'_I
initial guess s’rep—mze

t+1
Update: X¢11 = Xt + OVL(X,Y 0 )
l_'_l
|
Output: X ps LA
Q: How many samples heeded for convergence?
“Sample complexity”



Two phases of stochastic gradient descent

Heurstic picture: [Bottou ‘99, Mandt-Hoffman-Blei *17]

Search phase
 Start in high entropy region
 Fluctuations dominates
« Walker wandering in complex landscape

Descent phase
« outperforms a random guess
* Descends to minimum
 Trust region (or at least a “basin”<¢)



Limit theory (Fixed N)

Stochastic approximation:
VL@ Y) = Y&x) + VH (@)

loss population loss  fluctuation

Perturbation of gradient flow in
infinite size M — o for fixed N

Limit ’rheory [Robbins-Monro '51,
MclLeish ‘76, Ljung ‘77, Benaim-Hirsch ‘96]

 Ignore “burn-in time”
+ Convergence to GD for &(x) [credit: J. Le Ny *09]
« Connects to dynamical systems




Toward a high-dimensional theory

+ One of go-to methods in modern data science

» Used to tackle extremely complex inference tasks
« High-dimensional data
« Complex models

» Performs well in very diverse domains
« Computer vision/Image processing

* Prediction
« Healthcare

Today’s talk:
« How many samples needed in high-dime (M = poly(N))



Recent progress in high-dimensions

Convexity, Quasi-convexity, ... [Bottou ‘98, Bottou-Le Cun
‘04, Needel-Srebro-Ward ‘14, Harvey-Liaw-Plan-Randhawa '19,
Dieuleveut-Durmus-Bach "19... ]

lgnore search and focus on rates assuming shape of basins

Langevin dynamics or SDE approximations [Raginsky-
Rakhlin-Telegarsky ‘17, Zhang-Liang-Charikar ‘17, Ma-Chen-Jin-
Flammarion-Jordan ‘19, Cheng-Yin-Bartlett-Jordan '20...]

Study an SDE approximation to the dynamics

Polynomial mixing time bounds 0 (poly(N)elR*)
« Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
» Fixed domain: B(O,R)
* Ellipticity, reversibility ...



High-dim statistical models don’t fit

Issue: Standard tasks don't fit either setting
SGD still performs well with non-convex problems
- Complex data (tensors, neural networks, ...)

Dimension dependence of Lipschitz constants
« With high probability in realization Lip ~ N¢
Linear regression, Phase retrieval, Spiked matrix models
- Normalizing can render invariant measure uninformative

Concentration of measure:
“1-Lipschitz functions of many variables are nearly constant”



Recent progress in high-dimensions

Convexity, Quasi-convexity, ... [Bottou ‘98, Bottou-Le Cun ‘04,
Needel-Srebro-Ward ‘14, Harvey-Liaw-Plan-Randhawa 19, Dieuleveut-
Durmus-Bach '19... ]

Ignore search and focus on rates assuming shape of basins

Langevin dynamics or SDE approximations [Raginsky-
Rakhlin-Telegarsky ‘17, Zhang-Liang-Charikar ‘17, Ma-Chen-Jin-
Flammarion-Jordan ‘19, Cheng-Yin-Bartlett-Jordan '20...]

Study an SDE approximation to the dynamics
Polynomial mixing time bounds 0 (poly(N)elR")
« Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
» Fixed domain: B(O,R)
« Ellipticity, reversibility ...
Scaling limits and bounding flows [Cugliandolo-Kurchan ‘92,

Saad-Solla ‘95, Ben Arous-Dembo-Guionnet ‘04, Tan-Vershynin ‘197,
Goldt-Mézard-Krzakala-Zdeborova 20, Ben Arous-Gheissari-J '20-21,...]



Today’s talk

Focus for today'’s talk:

Regimes relevant to high-dimensional statistics
Uninformed initializations

1. How many samples do you need?¢ (sample complexity)
2. How much time does it take to beat a random guess?

3. What are the fundamental properties of a problem that
govern the answer to these questions?



Model and assumptions




A simple class of models

Assumptions:
Population loss: ®(x) = EL(x;Y)
(Non-linear) function of distance to ground truth
Bounded domain + fixed noise level > know norm
Parameter space: SN-! unit sphere in RN

Population loss: P (QZ) = ¢((ﬂl(@jv)¢ 0 ))
m(z) =z - 20

X, — parameter to be inferred



Stochastic gradient descent

Algorithm:
Input: Xy, L, ( )E o )
- -
initial guess step-size
Updq’re: <(Xt—|—1 == Xt —|—§ZVL(Yt+1’ Xt)
\Xt—l—l % \/NIIXZEII <& projection

Output: X 5/



Assumption A: Regularity

VIL(z,Y)=Vd(z)+ VH(z)
\_'_I

Sample-wise error

Naively: Worst case if error term is “completely random”
Idea: gradient of error no worse than i.i.d. vector with a few moments

Def: A sequence of data distributions and losses, (Py, Ly)
safisfies Assumption A if the sample-wise error satisfies the
following norm bounds:

sup E[(VH(z) - 0)*] < C

xeSN—1

sup E[|VH(z)|[*] < CN =

X, — parameter to be inferred




Assumption B: Fisher-type consistency

Fisher consistency: estimator correct given population.
« Gradient descent on ¢ consistent with random start
* ¢ even - can only determine up to a sign

« Random start is on upper half sphere with prob

Def: A population loss saftisfies Assumption B if:
¢’'(t) < O0forte (0,1)




Sample complexity




Information exponent

Def: A population loss @y has information exponent k
if € C**1([-1,1]) and

[ #e60) =0 (<k-1

\ diik ¢(O) G

€1

Recal: ®Pn(x) =ELN(Y;2) = on(m(x)) -1
Typical start: q:]f ~ (1/\/N)k




Examples

k=1:
 Linear regression with random covariates
« Generalized linear models with random covariates
« Asymmetric two component Gaussian mixture
k = 2:
« Symmetric Gaussian mixture

* Phase retrieval
« Online PCA
« Spiked Wigner models

k 2 3:
 Tensor PCA

Variable:
« Single-layer networks (exponent depends on activation)



Performance guarantee

Initialization: u5, uniform measure conditioned on upper-half sphere

Thm 1: Suppose Assumptions A and B hold.
For information exponent k, it M = ayN has
1. (k=1) ay>>1=a.(N,1)
2. (k=2) ay>>log(N)?2= a.(N,2) log(N)
3. (k23) ay>> N<log(N)2= a (Nk) log(N)2,
then SGD started from uj; with step size 6y~ay'™®
produces a consistent estimator:

m((Xy) — 1 In probability.

(1 k=1
Critical sample complexity: a.(N,k) =< log N k=2
ARG 2




Refutation

Initialization: u5, uniform measure conditioned on upper-half sphere

Thm 2: Suppose Assumptions A and B hold.
For information exponent k, it M = ayN has
1. (k=1) ay << a.(N,1) and §y= O(1)
2. (k22)ay<<ac(N,2) and 8y = O(ay"/**)
then SGD started from uy, does not corellate:
m(Xy) — 0 In probability.

/

1 =1 |
Critical sample complexity: a.(N,k) =< log N k=2
WA TaP 2




Rapid descent

T~ first hitting fime for {m(x) = €}

Thm 3: Suppose Assumptions A and B hold.
For information exponent k2 2, if M = ayN as in

Theorem 1, then for any € > 0, the first hitfing time for
latitude € and 1 — e satisty |t — 11_¢| = O(N).
Furthermore, m(X;) > 1 — 2e fort > 74 _,.




Summary

For random initializations there are three regimes:
1. Linear (k =1): needs linear in N samples
2. Quasi-linear (k =2): needs = N log(N) and £ N log(N)?2
3. Polynomial (k = 3): needs ~Nk! samples

Critical sample compl

ac(N, k) = <

exity:

fii k=1
logN k=2
Oy =

Once aft latitude e:

« can getto1—einlineartime.
« Law of large numbers (back to finite dim story)



Examples

Linear (k = 1):
 Linear regression with random covariates
« Generalized linear models with random covariates
« asymmetric two component Gaussian mixture
Quasilinear (k = 2):
« symmetric Gaussian mixture
* phase retrieval

* Online PCA

« spiked Wigner models
Polynomial (k 2 3):

« Tensor PCA

Variable:
« Single-layer networks (exponent depends on activation)



Some Insights




A motivating example

Task: supervised learning with one-layer networks

« Teacher-Student networks, single-index or non-linear factor
model, percepiron, generalized phase retrieval (GLM)...

Given:
« Activation function: f
- (Random) feature vectors: (a?)
« M ii.d. non-linear measurements of unknown unit N-vector
Vi f(af-xo) + &
Goal: Estimate optimal weight x, € RY
Approach: SGD on #,loss from a random start

- Spectral initializations: Candés-Li-Soltanolkotabi ‘15, Li-Lu '20, Mondelli-
Montanari ‘18, Maillard-Krzakala-Lu-Zdeborova '21



Supervised learning with Gaussian features

.i.d. Standard gaussian features (a?)

.i.d. centered errors (&) with finite 4" moment
Population loss: (let u;(f) = j" Hermite coefficient)

B(o) =2 ) us (N1~ m(@)) + ¢

Information Exponent:
Index of first nonzero Hermite coefficient



Examples

Linear (k = 1):

« Adaline (f(x) = x) has exponent 1

« Sigmoid (f(x) = (1+exp(-X))") has exponent 1

* Relu (f(x) = max(x,0)) has exponent 1
Quasi-linear (k = 2):

* Phase retrieval f(x) = x2or | x| has exponent 2

- Monomial f(x) = xk has exponent 1 or 2 depending on parity
Polynomial (k 2 3):

« Hermite polynomials: f(x) = h (x) has exponent k

« Acftivations in subspace spanned by Hermite polynomials of
degree at least 3.



How much data for search phase?




Search v.s. descent trade-off

Q: How much data do | spend in the “burn-in”

Total amount of data for estimation
« Exponent =1 2> N samples
* Exponent =2 - needs at least N log N samples

Amount of data used in “descent”
 Once atf lafitude ¢, can getto 1 —ein O(N) time

Most of time spent/data used is for search phase!



Most of data spent in search phase

Warm start Random initialization

Phase
Retrieval
X2

Hermite:
X3-3x

Once correlated all problems in “easy phase”
Pathwise LLN once warm



Impact of activation on run-time

Small changes to activation can dramatically change runtimel

N=3000, M = 90,000,000
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cubic (x3) vs quadratic (x2) vs 39 hermite (x3-3x)



Summary

Stochastic gradient descent for “rank 1" models

Sample complexity determined by information
exponent k

For random initializations there are three regimes:
I. Linear (k= 1): needs N samples
2. Quasi-linear (k=2): needs >N -log(N) and £ N - log(N)?
3. Polynomial (k = 3): needs ~N*~1 samples

Take away’s:
1. Many classical tasks have k <2
2. If k=2 2> most of data used in search phase.

3. Performance depends dramatically on activation/loss
(misspecification can cause major issuesl)



Proof techniques

0 k—1

» Consider population dynamics m: = m¢—1 + wzcm

- Direct analysis of difference equation if mg ~ N~¢

1. k<2:needstime sy
2. k=2:needstime 6 'NlogN
3. k>2:needs time 6 'N1He(k=2)

* One idea: send N to infinity and step-size to zero first
* Issue: nontrivial fixed point at O
* Most fime spent on microscopic scales

* Instead use bounding flows approach of [Ben Arous-
Gheissari-J ‘20]

» Due to martingale can avoid control of initialization



Thanks for listening!
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