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SGD from a random start in high 
dimensions



Basic setting

Given: 

• — Parametric family of distributions

• — i.i.d. observations from 

Goal: Estimate x0  

(Px)x2RN

(Y `)M`=1 Px0



Risk minimization

Approach:                       — Loss function

Population Loss:

Ideal Estimator: 

Issue: Don’t have access to ”true” distribution

Fix: Empirical Risk Minimization or Stochastic Approximation

x̂ = argminx EL(x;Y )

L(x;Y )

�(x) = EL(x;Y )



Stochastic Approximations

• Sequentially optimize loss on new data points [Robbins-
Monro ‘51]

• Each sample gives approximation to population:

• Proxy for gradient descent on population

Sample-wise error

L(x, Y `) = �(x) +H`(x)



Stochastic gradient descent (SGD)

Algorithm:
Input:

initial guess step-size

Update:

Output: 
Q: How many samples needed for convergence?

“Sample complexity”

XM

X0, L, (Y
`)M`=1, �

Xt+1 = Xt + �rL(Xt, Y
t+1)

new sample



Two phases of stochastic gradient descent

Heurstic picture: [Bottou ‘99, Mandt-Hoffman-Blei ‘17]

1. Search phase
• Start in high entropy region 
• Fluctuations dominates
• Walker wandering in complex landscape

2. Descent phase
• outperforms a random guess
• Descends to minimum
• Trust region (or at least a “basin”?)



Limit theory (Fixed N)

Stochastic approximation: 

loss         population loss    fluctuation

Perturbation of gradient flow in 
infinite size 𝑀 → ∞ for fixed N

Limit theory [Robbins-Monro ’51, 
McLeish ‘76, Ljung ‘77, Benaïm-Hirsch ‘96]
• Ignore “burn-in time”
• Convergence to GD for
• Connects to dynamical systems

[credit: J. Le Ny ‘09]<latexit sha1_base64="pKjSCrPE7pizO0+N60JkHwm0fTg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9ci1EbF6wHHC/YgOlAgFo2ilVrc+FJWns16p7FbdGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6R5XvUuq979Rbl2k8dRgGM4gQp4cAU1uIM6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz+Jdo8M</latexit>

�(x)

rL(x, Y ) = r�(x) +rH(x)



Toward a high-dimensional theory

• One of go-to methods in modern data science
• Used to tackle extremely complex inference tasks
• High-dimensional data
• Complex models 

• Performs well in very diverse domains
• Computer vision/Image processing
• Prediction
• Healthcare

Today’s talk:
• How many samples needed in high-dim? (M ≍ 𝑝𝑜𝑙𝑦(𝑁))



Recent progress in high-dimensions

1. Convexity, Quasi-convexity, … [Bottou ‘98, Bottou-Le Cun
‘04, Needel-Srebro-Ward ‘14, Harvey-Liaw-Plan-Randhawa ’19, 
Dieuleveut-Durmus-Bach ’19… ] 
• Ignore search and focus on rates assuming shape of basins

2. Langevin dynamics or SDE approximations [Raginsky-
Rakhlin-Telegarsky ‘17, Zhang-Liang-Charikar ‘17, Ma-Chen-Jin-
Flammarion-Jordan ‘19, Cheng-Yin-Bartlett-Jordan ’20…] 
• Study an SDE approximation to the dynamics
• Polynomial mixing time bounds 𝑂(𝑝𝑜𝑙𝑦 𝑁 𝑒!"!)

• Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz) 
• Fixed domain: B(0,R)
• Ellipticity, reversibility …



High-dim statistical models don’t fit

Issue: Standard tasks don’t fit either setting
1. SGD still performs well with non-convex problems
• Complex data (tensors, neural networks, …)

2. Dimension dependence of Lipschitz constants
• With high probability in realization Lip ~ Nc 

• Linear regression, Phase retrieval, Spiked matrix models
• Normalizing can render invariant measure uninformative

Concentration of measure: 
“1-Lipschitz functions of many variables are nearly constant”



Recent progress in high-dimensions

1. Convexity, Quasi-convexity, … [Bottou ‘98, Bottou-Le Cun ‘04, 
Needel-Srebro-Ward ‘14, Harvey-Liaw-Plan-Randhawa ’19, Dieuleveut-
Durmus-Bach ’19… ] 
• Ignore search and focus on rates assuming shape of basins

2. Langevin dynamics or SDE approximations [Raginsky-
Rakhlin-Telegarsky ‘17, Zhang-Liang-Charikar ‘17, Ma-Chen-Jin-
Flammarion-Jordan ‘19, Cheng-Yin-Bartlett-Jordan ’20…] 
• Study an SDE approximation to the dynamics
• Polynomial mixing time bounds 𝑂(𝑝𝑜𝑙𝑦 𝑁 𝑒!"!)

• Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz) 
• Fixed domain: B(0,R)
• Ellipticity, reversibility …

3. Scaling limits and bounding flows [Cugliandolo-Kurchan ‘92, 
Saad-Solla ‘95, Ben Arous-Dembo-Guionnet ‘04, Tan-Vershynin ‘19+,
Goldt-Mézard-Krzakala-Zdeborová 20, Ben Arous-Gheissari-J ’20-21,…] 



Today’s talk

Focus for today’s talk:  
Regimes relevant to high-dimensional statistics 
Uninformed initializations

1. How many samples do you need? (sample complexity)

2. How much time does it take to beat a random guess?

3. What are the fundamental properties of a problem that 
govern the answer to these questions?



Model and assumptions



A simple class of models 

Assumptions: 
• Population loss: 
• (Non-linear) function of distance to ground truth
• Bounded domain + fixed noise level à know norm
Parameter space: SN-1 unit sphere in RN

Population loss: �(x) = �(d(x, x0))�(x) = �(m(x))

m(x) = x · x0

𝑥# – parameter to be inferred

�(x) = EL(x;Y )



Stochastic gradient descent

Algorithm:
Input:

initial guess step-size

Update:
ß projection 

Output: XM

X0, L, (Y
`)M`=1, �

(
X̃t+1 = Xt + �rL(Y t+1, Xt)

Xt+1 =
p
N X̃t+1

kXt+1k



Assumption A: Regularity

Def: A sequence of data distributions and losses, (𝑃!, 𝐿!)
satisfies Assumption A if the sample-wise error satisfies the 
following norm bounds:

Naively: Worst case if error term is “completely random”
Idea: gradient of error no worse than  i.i.d. vector with a few moments 

Sample-wise error

𝑥# – parameter to be inferred

sup
x2SN�1

E[(rH(x) · x0)
2]  C

sup
x2SN�1

E[krH(x)k4+✏]  CN
4+✏
2

rL(x, Y ) = r�(x) +rH(x)



Assumption B: Fisher-type consistency 

Def: A population loss satisfies Assumption B if:
𝜙’(𝑡) < 0 for 𝑡 ∈ (0,1)

Fisher consistency: estimator correct given population.
• Gradient descent on 𝜙 consistent with random start
• 𝜙 even à can only determine up to a sign
• Random start is on upper half sphere with prob ½



Sample complexity



Information exponent

Def: A population loss Φ+ has information exponent k  
if 𝜙 ∈ 𝐶,-.( −1,1 ) and

Recall:

Typical start: 

�N (x) = ELN (Y ;x) = �N (m(x))

(
d`

dm`�(0) = 0 `  k � 1
dk

dmk�(0) < �c

xk
1 ' (1/

p
N)k



Examples

k = 1: 
• Linear regression with random covariates
• Generalized linear models with random covariates
• Asymmetric two component Gaussian mixture

k = 2:
• Symmetric Gaussian mixture
• Phase retrieval
• Online PCA
• Spiked Wigner models

k ≥ 3:
• Tensor PCA

Variable:
• Single-layer networks (exponent depends on activation)



Performance guarantee

Thm 1: Suppose Assumptions A and B hold.
For information exponent k, if  M = 𝛼NN has

1. (k=1) 𝛼N >> 1 = 𝛼c(N,1) 
2. (k=2) 𝛼N >> log(N)2 = 𝛼c(N,2) log(N) 
3. (k≥3) 𝛼N >> Nk-1log(N)2 = 𝛼c(N,k) log(N)2,

then SGD started from 𝜇+- with step size  𝛿N~𝛼+/.-0
produces a consistent estimator:

𝑚(𝑋1) → 1 in probability. 

Critical sample complexity:

Initialization: 𝜇$% uniform measure conditioned on upper-half sphere

↵c(N, k) =

8
><

>:

1 k = 1

logN k = 2

Nk�2 k � 3



Refutation

Thm 2: Suppose Assumptions A and B hold.
For information exponent k, if  M = 𝛼NN has

1. (k=1) 𝛼N <<  𝛼c(N,1) and 𝛿N = O(1)

2. (k ≥ 2) 𝛼N << 𝛼c(N,2)  and 𝛿N = O(𝛼!
"#/%&')

then SGD started from 𝜇+- does not corellate:
𝑚(𝑋1) → 0 in probability. 

Critical sample complexity:

Initialization: 𝜇$% uniform measure conditioned on upper-half sphere

↵c(N, k) =

8
><

>:

1 k = 1

logN k = 2

Nk�2 k � 3



Rapid descent

• 𝜏3- first hitting time for {𝑚 𝑥 = 𝜖}

Thm 3: Suppose Assumptions A and B hold.
For information exponent k ≥ 2, if  M = 𝛼NN as in 
Theorem 1, then for any 𝜖 > 0, the first hitting time for 
latitude 𝜖 and 1 − 𝜖 satisfy 𝜏3 − 𝜏./3 = 𝑂(𝑁). 
Furthermore, 𝑚(X4) > 1 − 2𝜖 for t > 𝜏./3.



Summary

• For random initializations there are three regimes:
1. Linear (k =1): needs linear in N samples
2. Quasi-linear (k = 2): needs ≥  N log(N) and ≤  N log(N)2

3. Polynomial (k ≥ 3): needs ~Nk-1 samples
• Critical sample complexity:

• Once at latitude 𝜖:
• can get to 1 − 𝜖 in linear time.
• Law of large numbers (back to finite dim story) 

↵c(N, k) =

8
><

>:

1 k = 1

logN k = 2

Nk�2 k � 3



Examples

Linear (k = 1): 
• Linear regression with random covariates
• Generalized linear models with random covariates
• asymmetric two component Gaussian mixture

Quasilinear (k = 2):
• symmetric Gaussian mixture
• phase retrieval
• Online PCA
• spiked Wigner models

Polynomial (k ≥ 3):
• Tensor PCA

Variable:
• Single-layer networks (exponent depends on activation)



Some Insights



Task: supervised learning with one-layer networks
• Teacher-Student networks, single-index or non-linear factor 

model, perceptron, generalized phase retrieval (GLM)…
Given: 
• Activation function: 𝑓
• (Random) feature vectors: (𝑎ℓ)
• M i.i.d. non-linear measurements of unknown unit N-vector

𝑦ℓ = 𝑓 𝑎ℓ ⋅ 𝑥# + 𝜀ℓ

Goal: Estimate optimal weight 𝑥; ∈ 𝑅+

Approach: SGD on ℓ2 loss from a random start
• Spectral initializations: Candès-Li-Soltanolkotabi ‘15, Li-Lu ’20,  Mondelli-

Montanari ‘18, Maillard-Krzakala-Lu-Zdeborová ’21

A motivating example



Supervised learning with Gaussian features

• i.i.d. Standard gaussian  features 𝑎ℓ

• i.i.d. centered errors 𝜀ℓ with finite 4+ moment
Population loss: (let  𝑢=(𝑓) = jth Hermite coefficient)

Information Exponent:
index of first nonzero Hermite coefficient

�(x) = 2
1X

j=1

uj(f)
2(1�m(x)j) + c



Examples

Linear (k = 1):
• Adaline (f(x) = x) has exponent 1
• Sigmoid (f(x) = (1+exp(-x))-1) has exponent 1
• ReLu (f(x) = max(x,0)) has exponent 1

Quasi-linear (k = 2):
• Phase retrieval f(x) = x2 or |x| has exponent 2 
• Monomial f(x) = xk has exponent 1 or 2 depending on parity

Polynomial (k ≥ 3):
• Hermite polynomials: f(x) = hk(x) has exponent k
• Activations in subspace spanned by Hermite polynomials of 

degree at least 3.



How much data for search phase?



Search v.s. descent trade-off

Q: How much data do I spend in the “burn-in”

• Total amount of data for estimation
• Exponent = 1 à N samples
• Exponent ≥ 2 à needs at least N log N samples 

• Amount of data used in “descent”
• Once at latitude 𝜖, can get to 1 − 𝜖 in 𝑂(𝑁) time

Most of time spent/data used is for search phase!



Most of data spent in search phase

Warm start Random initialization

Once correlated all problems in “easy phase”
Pathwise LLN once warm

Phase
Retrieval
x2

Hermite:
x3-3x



Impact of activation on run-time

cubic (x3) vs quadratic (x2)  vs  3rd hermite (x3-3x) 

Small changes to activation can dramatically change runtime!

N=3000, M = 90,000,000



Summary

• Stochastic gradient descent for “rank 1” models
• Sample complexity determined by information 

exponent k
• For random initializations there are three regimes:

1. Linear (k = 1): needs N samples 
2. Quasi-linear (k = 2): needs ≥ 𝑁 ⋅ log 𝑁 and ≤ 𝑁 ⋅ log 𝑁 %

3. Polynomial (k ≥ 3): needs ~𝑁)"# samples
Take away’s:

1. Many classical tasks have k ≤ 2
2. If k ≥ 2 à most of data used in search phase.
3. Performance depends dramatically on activation/loss 

(misspecification can cause major issues!)



Proof techniques

• Consider population dynamics 
• Direct analysis of difference equation if

1. k < 2: needs time
2. k = 2: needs time
3. k > 2: needs time

• One idea: send N to infinity and step-size to zero first
• Issue: nontrivial fixed point at 0
• Most time spent on microscopic scales
• Instead use bounding flows approach of [Ben Arous-

Gheissari-J ‘20] 
• Due to martingale can avoid control of initialization

mt ⇡ mt�1 +
�

N
cmk�1

m0 ⇠ N�⇣

��1N logN

��1N

��1N1+⇣(k�2)



Thanks for listening!
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