SGD from a random start in high dimensions

Aukosh Jagannath (Waterloo)
Joint w/ G Ben Arous (NYU) R Gheissari (UC Berkeley)

Basic setting

Given:

- $\left(P_{x}\right)_{x \in \mathbb{R}^{N}} \quad$-Parametric family of distributions
- $\left(Y^{\ell}\right)_{\ell=1}^{M} \quad$ - i.i.d. observations from $\quad P_{x_{0}}$

Goal: Estimate x_{0}

Risk minimization

Approach: $L(x ; Y)$ - Loss function
Population Loss: $\Phi(x)=\mathbb{E} L(x ; Y)$
Ideal Estimator: $\hat{x}=\operatorname{argmin}_{x} \mathbb{E} L(x ; Y)$
Issue: Don't have access to "true" distribution
Fix: Empirical Risk Minimization or Stochastic Approximation

Stochastic Approximations

- Sequentially optimize loss on new data points [RobbinsMonro '51]
- Each sample gives approximation to population:

$$
L\left(x, Y^{\ell}\right)=\Phi(x)+\underbrace{H_{\ell}}(x)
$$

Sample-wise error

- Proxy for gradient descent on population

Stochastic gradient descent (SGD)

Algorithm:
Input: ${\underset{\zeta}{X}}_{X_{0}}, L,\left(Y^{\ell}\right)_{\ell=1}^{M}, \underbrace{\delta}$ initial guess step-size
Update: $X_{t+1}=X_{t}+\delta \nabla L(X_{t}, \underbrace{Y^{t+1}})$
Output: X_{M}
new sample
Q: How many samples needed for convergence? "Sample complexity"

Two phases of stochastic gradient descent

Heurstic picture: [Bottou '99, Mandt-Hoffman-Blei '17]

1. Search phase

- Start in high entropy region
- Fluctuations dominates
- Walker wandering in complex landscape

2. Descent phase

- outperforms a random guess
- Descends to minimum
- Trust region (or at least a "basin"?)

Limit theory (Fixed N)

Stochastic approximation:
$\underbrace{\nabla L}(x, Y)=\underbrace{\nabla \Phi(x)}_{\checkmark}+\underbrace{\nabla H}(x)$
loss population loss fluctuation

Perturbation of gradient flow in infinite size $M \rightarrow \infty$ for fixed N

Limit theory [Robbins-Monro '51, McLeish '76, Ljung '77, Benaïm-Hirsch '96]

- Ignore "burn-in time"
- Convergence to GD for $\Phi(x)$
- Connects to dynamical systems

[credit: J. Le Ny '09]

Toward a high-dimensional theory

- One of go-to methods in modern data science
- Used to tackle extremely complex inference tasks
- High-dimensional data
- Complex models
- Performs well in very diverse domains
- Computer vision/Image processing
- Prediction
- Healthcare

Today's talk:

- How many samples needed in high-dim? $(\mathrm{M}=\operatorname{poly}(N))$

Recent progress in high-dimensions

1. Convexity, Quasi-convexity, ... [Bottou '98, Bottou-Le Cun '04, Needel-Srebro-Ward '14, Harvey-Liaw-Plan-Randhawa '19, Dieuleveut-Durmus-Bach '19...]

- Ignore search and focus on rates assuming shape of basins

2. Langevin dynamics or SDE approximations [Raginsky-Rakhlin-Telegarsky '17, Zhang-Liang-Charikar '17, Ma-Chen-Jin-Flammarion-Jordan '19, Cheng-Yin-Bartlett-Jordan '20...]

- Study an SDE approximation to the dynamics
- Polynomial mixing time bounds $O\left(\operatorname{poly}(N) e^{L R^{2}}\right)$
- Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
- Fixed domain: B(O,R)
- Ellipticity, reversibility ...

High-dim statistical models don't fit

Issue: Standard tasks don't fit either setting

1. SGD still performs well with non-convex problems

- Complex data (tensors, neural networks, ...)

2. Dimension dependence of Lipschitz constants

- With high probability in realization Lip ~ Nc
- Linear regression, Phase retrieval, Spiked matrix models
- Normalizing can render invariant measure uninformative

Concentration of measure:

" 1 -Lipschitz functions of many variables are nearly constant"

Recent progress in high-dimensions

1. Convexity, Quasi-convexity, ... [Bottou '98, Bottou-Le Cun '04, Needel-Srebro-Ward '14, Harvey-Liaw-Plan-Randhawa '19, Dieuleveut-Durmus-Bach '19...]

- Ignore search and focus on rates assuming shape of basins

2. Langevin dynamics or SDE approximations [Raginsky-Rakhlin-Telegarsky '17, Zhang-Liang-Charikar '17, Ma-Chen-Jin-Flammarion-Jordan '19, Cheng-Yin-Bartlett-Jordan '20...]

- Study an SDE approximation to the dynamics
- Polynomial mixing time bounds $O\left(\right.$ poly $\left.(N) e^{L R^{2}}\right)$
- Empirical risk is L-Lipschitz, K-smoothness (gradient is K-lipschitz)
- Fixed domain: $B(0, R)$
- Ellipticity, reversibility

3. Scaling limits and bounding flows [Cugliandolo-Kurchan '92, Saad-Solla '95, Ben Arous-Dembo-Guionnet '04, Tan-Vershynin '19+, Goldt-Mézard-Krzakala-Zdeborová 20, Ben Arous-Gheissari-J '20-21,...]

Today's talk

Focus for today's talk: Regimes relevant to high-dimensional statistics Uninformed initializations

1. How many samples do you need? (sample complexity)
2. How much time does it take to beat a random guess?
3. What are the fundamental properties of a problem that govern the answer to these questions?

Model and assumptions

A simple class of models

Assumptions:

- Population loss: $\Phi(x)=\mathbb{E} L(x ; Y)$
- (Non-linear) function of distance to ground truth
- Bounded domain + fixed noise level \rightarrow know norm

Parameter space: $\mathrm{S}^{\mathrm{N}-1}$ unit sphere in R^{N}
Population loss: $\Phi(x)=\phi\left(\left(x h b\left((x,) x_{0}\right)\right)\right.$

$$
m(x)=x \cdot x_{0}
$$

x_{0} - parameter to be inferred

Stochastic gradient descent

Algorithm:

Input: $\underbrace{X_{0}}_{\text {initial guess }}, L,\left(Y^{\ell}\right)_{\ell=1}^{M}, \underbrace{\delta}_{\text {step-size }}$
Update: $\left\{\begin{array}{l}\tilde{X}_{t+1}=X_{t}+\delta \nabla L\left(Y^{t+1}, X_{t}\right) \\ X_{t+1}=\sqrt{N} \frac{\tilde{X}_{t+1}}{\left\|X_{t+1}\right\|} \leqslant \text { projection }\end{array}\right.$
Output: X_{M}

Assumption A: Regularity

$$
\nabla L(x, Y)=\nabla \Phi(x)+\underbrace{\nabla H}(x)
$$

Sample-wise error
Naively: Worst case if error term is "completely random" Idea: gradient of error no worse than i.i.d. vector with a few moments
Def: A sequence of data distributions and losses, $\left(P_{N}, L_{N}\right)$ satisfies Assumption A if the sample-wise error satisfies the following norm bounds:

$$
\begin{aligned}
& \sup _{x \in \mathbb{S}^{N-1}} \mathbb{E}\left[\left(\nabla H(x) \cdot x_{0}\right)^{2}\right] \leq C \\
& \sup _{x \in \mathbb{S}^{N-1}} \mathbb{E}\left[\|\nabla H(x)\|^{4+\epsilon}\right] \leq C N^{\frac{4+\epsilon}{2}}
\end{aligned}
$$

x_{0} - parameter to be inferred

Assumption B: Fisher-type consistency

Fisher consistency: estimator correct given population.

- Gradient descent on ϕ consistent with random start
- ϕ even \rightarrow can only determine up to a sign
- Random start is on upper half sphere with prob $1 / 2$

Def: A population loss satisfies Assumption B if:

$$
\phi^{\prime}(t)<0 \text { for } t \in(0,1)
$$

Sample complexity

Information exponent

Def: A population loss Φ_{N} has information exponent k if $\phi \in C^{k+1}([-1,1])$ and

$$
\left\{\begin{array}{l}
\frac{d^{\ell}}{d m^{\ell}} \phi(0)=0 \quad \ell \leq k-1 \\
\frac{d^{k}}{d m^{k}} \phi(0)<-c
\end{array}\right.
$$

Recall: $\Phi_{N}(x)=\mathbb{E} L_{N}(Y ; x)=\phi_{N}(m(x))$
Typical start: $\quad x_{1}^{k} \simeq(1 / \sqrt{N})^{k}$

Examples

$\mathrm{k}=1$:

- Linear regression with random covariates
- Generalized linear models with random covariates
- Asymmetric two component Gaussian mixture
$\mathrm{k}=2$:
- Symmetric Gaussian mixture
- Phase retrieval
- Online PCA
- Spiked Wigner models
$k \geq 3$:
- Tensor PCA

Variable:

- Single-layer networks (exponent depends on activation)

Performance guarantee

Initialization: μ_{N}^{+}uniform measure conditioned on upper-half sphere
Thm 1: Suppose Assumptions \mathbf{A} and \mathbf{B} hold.
For information exponent \mathbf{k}, if $\mathrm{M}=\alpha_{N} \mathrm{~N}$ has

1. $\mathbf{(k = 1)} \alpha_{N} \gg 1=\alpha_{C}(N, 1)$
2. $(\mathbf{k}=2) \alpha_{N} \gg \log (N)^{2}=\alpha_{c}(N, 2) \log (N)$
3. $(k \geq 3) \alpha_{N} \gg N^{k-1} \log (N)^{2}=\alpha_{c}(N, k) \log (N)^{2}$,
then SGD started from μ_{N}^{+}with step size $\delta_{N} \sim \alpha_{N}^{-1+\varepsilon}$ produces a consistent estimator:

$$
m\left(X_{M}\right) \rightarrow 1 \text { in probability. }
$$

Critical sample complexity: $\alpha_{c}(N, k)= \begin{cases}1 & k=1 \\ \log N & k=2 \\ N^{k-2} & k \geq 3\end{cases}$

Refutation

Initialization: μ_{N}^{+}uniform measure conditioned on upper-half sphere
Thm 2: Suppose Assumptions \mathbf{A} and \mathbf{B} hold.
For information exponent \mathbf{k}, if $\mathrm{M}=\alpha_{N} \mathrm{~N}$ has

1. $(\mathbf{k}=1) \alpha_{\mathrm{N}} \ll \alpha_{\mathrm{C}}(\mathrm{N}, 1)$ and $\delta_{\mathrm{N}}=\mathrm{O}(1)$
2. $(\mathbf{k} \geq 2) \alpha_{N} \ll \alpha_{\mathrm{c}}(\mathrm{N}, 2)$ and $\delta_{\mathrm{N}}=O\left(\alpha_{N}^{-1 / 2+\varepsilon}\right)$
then SGD started from μ_{N}^{+}does not corellate:

$$
m\left(X_{M}\right) \rightarrow 0 \text { in probability. }
$$

Critical sample complexity: $\alpha_{c}(N, k)= \begin{cases}1 & k=1 \\ \log N & k=2 \\ N^{k-2} & k \geq 3\end{cases}$

Rapid descent

- τ_{ϵ} - first hitting time for $\{m(x)=\epsilon\}$

Thm 3: Suppose Assumptions \mathbf{A} and \mathbf{B} hold.
For information exponent $\mathbf{k} \geq \mathbf{2}$, if $\mathrm{M}=\alpha_{N} \mathrm{~N}$ as in Theorem 1, then for any $\epsilon>0$, the first hitting time for latitude ϵ and $1-\epsilon$ satisfy $\left|\tau_{\epsilon}-\tau_{1-\epsilon}\right|=O(N)$. Furthermore, $m\left(\mathrm{X}_{t}\right)>1-2 \epsilon$ for $\mathrm{t}>\tau_{1-\epsilon}$.

Summary

- For random initializations there are three regimes:

1. Linear $(k=1)$: needs linear in N samples
2. Quasi-linear $(k=2)$: $n e e d s \geq N \log (N)$ and $\leq N \log (N)^{2}$
3. Polynomial $(k \geq 3)$: needs $\sim N^{k-1}$ samples

- Critical sample complexity:

$$
\alpha_{c}(N, k)= \begin{cases}1 & k=1 \\ \log N & k=2 \\ N^{k-2} & k \geq 3\end{cases}
$$

- Once at latitude ϵ :
- can get to $1-\epsilon$ in linear time.
- Law of large numbers (back to finite dim story)

Examples

Linear ($k=1$):

- Linear regression with random covariates
- Generalized linear models with random covariates
- asymmetric two component Gaussian mixture

Quasilinear ($k=2$):

- symmetric Gaussian mixture
- phase retrieval
- Online PCA
- spiked Wigner models

Polynomial ($\mathbf{k} \geq 3$):

- Tensor PCA

Variable:

- Single-layer networks (exponent depends on activation)

Some Insights

A motivating example

Task: supervised learning with one-layer networks

- Teacher-Student networks, single-index or non-linear factor model, perceptron, generalized phase retrieval (GLM)...

Given:

- Activation function: f
- (Random) feature vectors: (a^{ℓ})
- Mi.i.d. non-linear measurements of unknown unit N -vector

$$
y^{\ell}=f\left(a^{\ell} \cdot x_{0}\right)+\varepsilon^{\ell}
$$

Goal: Estimate optimal weight $x_{0} \in R^{N}$
Approach: SGD on ℓ_{2} loss from a random start

- Spectral initializations: Candès-Li-Soltanolkotabi '15, Li-Lu '20, Mondelli-

Montanari '18, Maillard-Krzakala-Lu-Zdeborová '21

Supervised learning with Gaussian features

- i.i.d. Standard gaussian features (a^{ℓ})
- i.i.d. centered errors $\left(\varepsilon^{\ell}\right)$ with finite 4^{+}moment

Population loss: (let $u_{j}(f)=j^{\text {th }}$ Hermite coefficient)

$$
\Phi(x)=2 \sum_{j=1}^{\infty} u_{j}(f)^{2}\left(1-m(x)^{j}\right)+c
$$

Information Exponent:
index of first nonzero Hermite coefficient

Examples

Linear ($k=1$):

- Adaline $(f(x)=x)$ has exponent 1
- Sigmoid $\left(f(x)=(1+\exp (-x))^{-1}\right)$ has exponent 1
- ReLu $(f(x)=\max (x, 0))$ has exponent 1

Quasi-linear ($k=2$):

- Phase retrieval $f(x)=x^{2}$ or $|x|$ has exponent 2
- Monomial $f(x)=x^{k}$ has exponent 1 or 2 depending on parity

Polynomial ($\mathrm{k} \geq 3$):

- Hermite polynomials: $f(x)=h_{k}(x)$ has exponent k
- Activations in subspace spanned by Hermite polynomials of degree at least 3.

How much data for search phase?

Search v.s. descent trade-off

Q: How much data do I spend in the "burn-in"

- Total amount of data for estimation
- Exponent $=1 \rightarrow N$ samples
- Exponent $\geq 2 \rightarrow$ needs at least N log N samples
- Amount of data used in "descent"
- Once at latitude ϵ, can get to $1-\epsilon$ in $O(N)$ time

Most of time spent/data used is for search phase!

Most of data spent in search phase

Warm start
Phase Retrieval x^{2}

Hermite:
$x^{3}-3 x$

Random initialization

Once correlated all problems in "easy phase"
Pathwise LLN once warm

Impact of activation on run-time

Small changes to activation can dramatically change runtime!

$$
N=3000, M=90,000,000
$$

cubic (x^{3}) vs quadratic (x^{2}) vs 3 rd hermite ($\left(x^{3}-3 x\right.$)

Summary

- Stochastic gradient descent for "rank 1" models
- Sample complexity determined by information exponent \mathbf{k}
- For random initializations there are three regimes:

1. Linear $(k=1)$: needs N samples
2. Quasi-linear ($\mathrm{k}=2$): needs $\geq N \cdot \log (N)$ and $\leq N \cdot \log (N)^{2}$
3. Polynomial $(k \geq 3)$: needs $\sim N^{k-1}$ samples

Take away's:

1. Many classical tasks have $\mathrm{k} \leq 2$
2. If $k \geq 2 \rightarrow$ most of data used in search phase.
3. Performance depends dramatically on activation/loss (misspecification can cause major issues!)

Proof techniques

- Consider population dynamics $m_{t} \approx m_{t-1}+\frac{\delta}{N} \mathrm{~cm}^{k-1}$
- Direct analysis of difference equation if $m_{0} \sim N^{-\zeta}$

1. $\mathrm{k}<2$: needs time $\delta^{-1} N$
2. $\mathrm{k}=2$: needs time $\delta^{-1} N \log N$
3. $k>2$: needs time $\delta^{-1} N^{1+\zeta(k-2)}$

- One idea: send N to infinity and step-size to zero first
- Issue: nontrivial fixed point at 0
- Most time spent on microscopic scales
- Instead use bounding flows approach of [Ben Arous-Gheissari-s '20]
- Due to martingale can avoid control of initialization

Thanks for listening!

References:

- G. Ben Arous, R. Gheissari, A.J., "Online stochastic gradient descent on non-convex losses from high-dimensional inference", Jour. Mach. Learn. Res. 2021
- G. Ben Arous, R. Gheissari, A.J., "Algorithmic thresholds for Tensor PCA", Ann. Probab 2020
- G. Ben Arous, R. Gheissari, A.J., "Bounding flows for spherical spin glass dynamics", Commun. Math. Phys. 2020

Cette recherche a été financée par CRSNG. This research was supported by NSERC.

