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1. Fluctuations of elongated 2D fractal paths above an 

impermeable disc and 1D Anderson localization

A. Grosberg, K. Polovnikov, S.N. (2022), in preparation

A. Gorsky, S.N., A. Valov, J. High. Energ. Phys. (2021)

(Scaling approach “à la P.J. de Gennes”)
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We have found scaling dependence

with
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The boundary of a disc is effectively flat 

for a fractal polymer at R>R*, where

Distance                 at g →1 becomes independent on fractal dimension, , providing for 

z the universal value of 1D KPZ dynamic exponent,  z = 3/2.

* ~ zR N
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The inverse Laplace transform gives the Lifshitz tail of 1D Anderson localization
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2. Fluctuations of (1+1)D path above semi-impermeable 

disc and phase transition by dimensional reduction

A. Gorsky, S.N., A. Valov, JETP (2022)
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UMAP (Uniform Manifold Approximation and Projection) 

We have generated 1000 vectors X. Each vector X consists of 120 coordinates of all 

chain monomers at all values of h. Then by UMAP the dimension of X is reduced to 2 

The coordinates in low-dimensional space are the solutions to optimization problem for 

informational functional: Kullback-Leibler divergence for SNE, cross-entropy for UMAP

BBP transition occurs 

when part of path gets 

localized on an extended 

defect at some critical 

coupling between path 

and defect
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Related references:

UMAP: L. McInnes, J. Healy, and J. Melville, UMAP, arXiv:1802.03426 (2018)

BBP: J. Baik, G. Ben-Arous, and S. Péché, Ann. Probab. (2005),

A. Krajenbrink, P. Le Doussal, N. O'Connell, PRE (2020),

G. Barraquand, P. Le Doussal, PRE (2021)



3. Biased tracer diffusion in channel through curved 

bottleneck

S.N., K. Polovnikov, S. Shlosman, A. Vladimirov, A. Valov, Phys. Rev. E (2019); 

A. Valov, V. Avetisov, S.N., G. Oshanin, Polym. Chem. Chem. Phys. (2021)
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Transition point 

“1/2” → “1/3”

(BBP?)

Fluctuations “1/2”

If h is such that the path hits the semicircle is a blue region of length R2/3 , 

there is no “1/3” → “1/2” transition in scaling behavior for fluctuations. 

drift



4. Mean-field approach to random matrices: finite-size 

scaling of Brownian bridges on supetrees

A. Gorsky, S.N, A. Valov, J. High Energ. Phys. (2018); 

A. Valov, A. Gorsky, S.N., Physics of Particles and Nuclei (2021)
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I. Dumitriu and A. Edelman have shown that same distribution appears in ensembles

of symmetric three-diagonal random matrices with independent (but non-identically)

distributed elements [I. Dumitriu and A. Edelman, J. Math. Phys. (2002)]
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