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— INTRODUCTION —



> Box: By={-N+1,...,N}

> @ boundary condition:
Qg = {O’ = (Ji)iEZz (= {:t1}zz . VI g BN,O',‘ = 1}
> Hamiltonian: Foro € QF,

Ha(o)=—-B Y oo

{i,j}NBy#2

invj

> Gibbs measure: Probability measure on Qf sit.

° 1 o)
/‘N:ﬁ(o—):%e '

119



> Box: By={-N+1,...,N}

> @ boundary condition:
Qg = {O’ = (Ji)iEZz (= {:t1}zz . VI g BN,O',‘ = 1}
> Hamiltonian: Foro € QF,

Ha(o)=—-B Y oo

{i,j}NBy#2

invj

> Gibbs measure: Probability measure on Qf sit.

(+] _ 1 —S(o
NN;ﬁ(U)*%e R

> Extends straightforwardly to other boundary conditions.

119



> Box: By={-N+1,...,N}

> @ boundary condition:
Qg = {O’ = (Ji)iEZZ (= {:t1}zz . VI g BN,O',‘ = 1}
> Hamiltonian: Foro € QF,

Ha(o)=—-B Y oo

{i,j}NBy#2

invj

> Gibbs measure: Probability measure on Qf sit.

(+] _ 1 —S(o
HN;ﬁ(U)*%e R

> Extends straightforwardly to other boundary conditions.
For instance, the © boundary condition: uﬁﬁ, e
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Phase transition

Let B. = 1 log(1+ V/2). Typical configurations at 3 € [0, c0) for N > No(3):

under M;g

under ;ﬁ;ﬁ
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— |. EQUILIBRIUM CRYSTAL SHAPES —



Equilibrium Crystal Shapes

> Let 3> fe.mp = limy_ 0 ;L‘,\?;ﬁ(ao) > 0 is the spontaneous magnetization.
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Equilibrium Crystal Shapes

> Let 3> fe.mp = limy_ 0 M;,B(Cfo) > 0 is the spontaneous magnetization.

» Consider the measure pf.5(- | > ics, Oi = M[Bw|) with m € (—mj, mp).

» Typical configurations contain a unique macroscopic droplet of & phase, whose
shape becomes deterministic in the continuum limit. Limiting shape is the Wulff shape.

Well understood for the planar Ising model since the 1990s:
[Dobrushin, Kotecky, Shlosman '92], [Pfister '91], [loffe 94, '95], [Pfister, V. '97], [Ioffe,
Schonmann '98], ... 3/19



Equilibrium Crystal Shapes: fluctuations

Fluctuations of large finite droplets have been studied from 2 different points of view
(in slightly simplified settings, but I'll ignore that here):
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Equilibrium Crystal Shapes: fluctuations

Fluctuations of large finite droplets have been studied from 2 different points of view
(in slightly simplified settings, but I'll ignore that here):

» [Dobrushin, Hryniv '97] analyzed the long wavelength fluctuations around the
limiting shape (at very low temperatures) and derived the (Gaussian) process
describing these fluctuations. The latter live at the usual N2 scale.

» [Alexander '01], [Uzun, Alexander '03], [Hammond '11, '12] analyzed the local
roughness, that is, the fluctuations away from its (random) convex hull. These
fluctuations live at the N'/? scale.

Let us discuss the latter in more detail...

4/19



Equilibrium Crystal Shapes: local roughness

Several relevant quantities:

> the maximal and the average length of an affine piece (facet) of the convex hull
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Equilibrium Crystal Shapes: local roughness

Several relevant quantities:

> the maximal and the average length of an affine piece (facet) of the convex hull
> the maximal and the average inward deviation of the droplet
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Equilibrium Crystal Shapes: Rigorous results and conjectures

» Itis proved in [Hammond 11, "12] that

> the maximal length of a facet of the convex hull is © (N*/*(log N)'/?)
> the maximal local roughness is © (N'/*(log N)*/?)
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Equilibrium Crystal Shapes: Rigorous results and conjectures

» Itis proved in [Hammond 11, "12] that

> the maximal length of a facet of the convex hull is © (N*/*(log N)'/?)
> the maximal local roughness is © (N'/*(log N)*/?)

» It is conjectured (see, e.g., [Uzun, Alexander '03]) that

> the average length of a facet of the convex hull is © (N2/3)

> the average local roughness is © (N'/?)
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Equilibrium Crystal Shapes: heuristics behind this scaling

» The main ingredients are:

>

>

>

the diameter of the Wulff shape is ~ N
its curvature is uniformly bounded away from 0 and co
typical distance between successive points of the convex hull = R

diffusive behavior of the droplet boundary on small scales
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Equilibrium Crystal Shapes: heuristics behind this scaling

» The main ingredients are:

>

>

>

>

the diameter of the Wulff shape is ~ N
its curvature is uniformly bounded away from 0 and co
typical distance between successive points of the convex hull = R

diffusive behavior of the droplet boundary on small scales

» Compare the inward deviation ~ /R with the curvature-induced deviation RZ/N.

» We conclude that /R ~ R?/N, that is:

7119



— Il. METASTABILITY —



Metastability: the settings

» Let us consider the model with © boundary condition

but add to the Hamiltonian a magnetic field term

—hZU,‘

i€EBy
with h > 0.
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Metastability: the settings

» Let us consider the model with © boundary condition

but add to the Hamiltonian a magnetic field term
Y
i€EBy
with h > 0.
» This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ~ N effect of the field ~ hN?

competition if h ~ 1/N
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Metastability: typical configurations

» Let h = \/N. [Schonmann and Shlosman 1996] proved: 3A. € (0, o) such that

© phase is metastable @ phase is unstable
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Metastability: typical configurations

» Let h = \/N. [Schonmann and Shlosman 1996] proved: 3A. € (0, o) such that

© phase is metastable @ phase is unstable

» Conjecture: Fluctuations along the walls are of order N'/? and the limiting process
(under (N'/3, N?/?) scaling) is a Ferrari-Spohn diffusion.
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— lIl. CRITICAL PREWETTING —



Critical prewetting: the settings

We consider the boundary condition

with h > 0.
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Critical prewetting: typical configurations

Let 5 > [.. Since h > 0, the layer of — phase becomes unstable:

mesoscopic layer
average width = O(N'/?)
(scaling limit = Brownian excursion)
[loffe, Ott, V., Wachtel '20]
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Critical prewetting: typical configurations

Let 5 > [.. Since h > 0, the layer of — phase becomes unstable:

mesoscopic layer microscopic layer
average width = O(N'/?) average width = ©(1)
(scaling limit = Brownian excursion)
[loffe, Ott, V., Wachtel '20]
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Critical prewetting: layer growth

» The width of the layer diverges as h decreases towards 0:
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Critical prewetting: layer growth

» The width of the layer diverges as h decreases towards 0:

» To get a meaningful scaling limit and mimic the Schonmann-Shlosman setting, we
choose h = h(N) to be of the form

h=2
N

for some A > 0.
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Critical prewetting: earlier rigorous results

» This type of problem was first studied for effective models in

> [Abraham, Smith 1986] specific integrable model: width ~ N'/3, corr. length ~ N?/3
> [Hryniv, V. 2004] general class: width ~ N'/3, correlation length ~ N?/3
> [loffe, Shlosman, V. 2015]  general class: weak convergence to Ferrari-Spohn diffusion

Prob(path) o Can e Probgw(path)
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Critical prewetting: earlier rigorous results

» This type of problem was first studied for effective models in

> [Abraham, Smith 1986] specific integrable model: width ~ N'/3, corr. length ~ N?/3
> [Hryniv, V. 2004] general class: width ~ N'/3, correlation length ~ N?/3
> [loffe, Shlosman, V. 2015]  general class: weak convergence to Ferrari-Spohn diffusion

Prob(path) o Can e Probgw(path)

» Results for the 2d Ising model were obtained in
> [V. 2004] width ~ N'/3*e()
> [Ganguly, Gheissari 2021]  width ~ N'/* (and various other global estimates)
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Critical prewetting: the Ferrari-Spohn diffusion

» The relevant Ferrari-Spohn diffusion in the present context is the diffusion on

(0, 00) with generator
1d g d
lg=-— + 22—
2 dr? ©o dr

and Dirichlet boundary condition at 0.
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» The quantities appearing above are:

> mj is the spontaneous magnetization
v

> xg is the curvature of the Wulff shape at its apex. O
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Critical prewetting: main result

» The following is proved in [loffe, Ott, Shlosman, V. 2021]:

> Consider the Ising model on Z2.
> Fix 8 > B.and A > 0.
> Rescale the interface

o horizontally by N—2/3

o vertically by x;/z SNT/3

> Then,as N — oo, its distribution converges weakly to that of the trajectories the
stationary Ferrari-Spohn diffusion introduced in the previous slide.
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Critical prewetting: Heuristic argument

Let us conclude this part with a heuristic explanation of the origin of the N'/3 scaling
in the effective model.

» Consider a path staying in the tube [—N, N] X [H, 3H] for some fixed H > 0.
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Critical prewetting: Heuristic argument

Let us conclude this part with a heuristic explanation of the origin of the N'/* scaling
in the effective model.

» Consider a path staying in the tube [—N, N] X [H, 3H] for some fixed H > 0.

A
» Remember that Prob(path) oc e~ ¥ ™ Probgy(path)
. A A
> Energetic cost = e Area ~ Tk NH ~ AH
> Entropic cost = — log Probgy (Vk € {—N,...,N}, H < X¢ < 3H) ~ N/H
> These two costs are of the same order when A\H ~ NH ™2, that is

» This argument can be turned into a rigorous proof (for effective models).
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— IV. INVERSE CORRELATION LENGTH —



Inverse correlation length: the settings

» Denote by ;i , the weak limit of the finite-volume measures y.5 , as N — oc.
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» Denote by ;i , the weak limit of the finite-volume measures y.5 , as N — oc.
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Inverse correlation length: the settings

» Denote by ;i , the weak limit of the finite-volume measures y.5 , as N — oc.
» We are interested in the truncated 2-point function

(00; o) 50 = (000050 — (00)51{03) 5

and, more specifically, in the associated inverse correlation length
" . 1 . ©
ven(%) = — lim - log(oo; opns)) 5.,
where % € S"and [(x1,x.)] = (|x], [x2])-

» It is known that vz, > 0if and only if (3, h) # (Bc, 0).
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Inverse correlation length: non-analytic behavioras h | 0

» Work in progress [Ott, V.I: Forall 5 > (.,as h | 0,

vs.n(R) = vs.0(%) + O(h*).
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Inverse correlation length: non-analytic behavioras h | 0

» Work in progress [Ott, V.I: Forall 5 > (.,as h | 0,

vs.n(R) = vs.0(%) + O(h*).

» This is supported by (exact, but nonrigorous) computations by [McCoy, Wu '78].
» It is expected that v »(X) is analytic in h for all 8 < f..

» It is the only case in this talk for which planarity is expected to be essential: for a
non-planar two-dimensional system (or when d > 3), it is expected that, for all
B> fB.ashl o0,

vg.n(R) = vp,0(%) + ©(h).
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Inverse correlation length: heuristics

» The main contribution to the covariance between the spins at 0 and [nX] is due to
the presence of a large contour surrounding both vertices.

» For the same reason as in the previous part (prewetting), the typical width of the
contour is of order h~'/3,

» This leads to a magnetic-field cost of order h - h~/3n ~ h?/°n.

» This picture can be made precise, for instance, in the random-current
representation of the model.
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Thank you for your attention!



