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— Introduction —



Ising model

▷ Box: BN = {−N+ 1, . . . ,N}2

▷ boundary condition:

ΩN = {σ = (σi)i∈Z2 ∈ {±1}Z
2
: ∀i ̸∈ BN, σi = 1}

▷ Hamiltonian: For σ ∈ ΩN ,

HN(σ) = −β
∑

{i,j}∩BN ̸=∅
i∼j

σiσj

▷ Gibbs measure: Probability measure on ΩN s.t.

µN;β(σ) =
1

ZN;β
e−HN(σ)

▷ Extends straightforwardly to other boundary conditions.
For instance, the boundary condition: µN;β , . . .
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Phase transition

Let βc =
1
2 log(1 +

√
2). Typical configurations at β ∈ [0,∞) for N > N0(β):

β < βc β > βc

under µN;β

under µN;β
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— I. Equilibrium Crystal Shapes —



Equilibrium Crystal Shapes

▶ Let β > βc. m∗
β = limN→∞ µN;β(σ0) > 0 is the spontaneous magnetization.

▶ Consider the measure µN;β(· |
∑

i∈BN
σi = m|BN|) with m ∈ (−m∗

β ,m
∗
β).

▶ Typical configurations contain a unique macroscopic droplet of phase, whose
shape becomes deterministic in the continuum limit.

Limiting shape is the Wulff shape.

Well understood for the planar Ising model since the 1990s:
[Dobrushin, Kotecký, Shlosman ’92], [Pfister ’91], [Ioffe ’94, ’95], [Pfister, V. ’97], [Ioffe,
Schonmann ’98], . . .
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Equilibrium Crystal Shapes: fluctuations

Fluctuations of large finite droplets have been studied from 2 different points of view
(in slightly simplified settings, but I’ll ignore that here):

▶ [Dobrushin, Hryniv ’97] analyzed the long wavelength fluctuations around the
limiting shape (at very low temperatures) and derived the (Gaussian) process
describing these fluctuations. The latter live at the usual N1/2 scale.

▶ [Alexander ’01], [Uzun, Alexander ’03], [Hammond ’11, ’12] analyzed the local
roughness, that is, the fluctuations away from its (random) convex hull. These
fluctuations live at the N1/3 scale.

Let us discuss the latter in more detail...
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Equilibrium Crystal Shapes: local roughness

Several relevant quantities:

▷ the maximal and the average length of an affine piece (facet) of the convex hull

▷ the maximal and the average inward deviation of the droplet
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Equilibrium Crystal Shapes: Rigorous results and conjectures

▶ It is proved in [Hammond ’11, ’12] that

▷ the maximal length of a facet of the convex hull is Θ
(
N2/3(log N)1/3)

▷ the maximal local roughness is Θ
(
N1/3(log N)2/3)

▶ It is conjectured (see, e.g., [Uzun, Alexander ’03]) that

▷ the average length of a facet of the convex hull is Θ
(
N2/3)

▷ the average local roughness is Θ
(
N1/3)
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Equilibrium Crystal Shapes: heuristics behind this scaling

▶ The main ingredients are:

▷ the diameter of the Wulff shape is ∼ N

▷ its curvature is uniformly bounded away from 0 and ∞

▷ typical distance between successive points of the convex hull = R

▷ diffusive behavior of the droplet boundary on small scales

▶ Compare the inward deviation ∼
√
R with the curvature-induced deviation R2/N.

▶ We conclude that
√
R ∼ R2/N, that is: R ∼ N2/3
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— II. Metastability —



Metastability: the settings

▶ Let us consider the model with boundary condition

but add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.

▶ This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ∼ N effect of the field ∼ hN2

competition if h ∼ 1/N
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Metastability: typical configurations

▶ Let h = λ/N. [Schonmann and Shlosman 1996] proved: ∃λc ∈ (0,∞) such that

λ < λc

phase is metastable

λ > λc

phase is unstable

▶ Conjecture: Fluctuations along the walls are of order N1/3 and the limiting process
(under (N1/3,N2/3) scaling) is a Ferrari–Spohn diffusion.
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— III. Critical prewetting —



Critical prewetting: the settings

We consider the boundary condition

but add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.
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Critical prewetting: typical configurations

Let β > βc. Since h > 0, the layer of − phase becomes unstable:

h = 0

mesoscopic layer
average width = Θ(N1/2)

(scaling limit = Brownian excursion)
[Ioffe, Ott, V., Wachtel ’20]

h > 0

microscopic layer
average width = Θ(1)
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Critical prewetting: layer growth

▶ The width of the layer diverges as h decreases towards 0:

▶ To get a meaningful scaling limit and mimic the Schonmann–Shlosman setting, we
choose h = h(N) to be of the form

h =
λ

N
for some λ > 0.
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Critical prewetting: earlier rigorous results

▶ This type of problem was first studied for effective models in

▷ [Abraham, Smith 1986] specific integrable model: width ∼ N1/3, corr. length ∼ N2/3

▷ [Hryniv, V. 2004] general class: width ∼ N1/3, correlation length ∼ N2/3

▷ [Ioffe, Shlosman, V. 2015] general class: weak convergence to Ferrari–Spohn diffusion

N−N
Prob(path) ∝ e−λ

N Area ProbRW(path)

▶ Results for the 2d Ising model were obtained in
▷ [V. 2004] width ∼ N1/3+o(1)

▷ [Ganguly, Gheissari 2021] width ∼ N1/3 (and various other global estimates)
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Critical prewetting: the Ferrari–Spohn diffusion

▶ The relevant Ferrari–Spohn diffusion in the present context is the diffusion on
(0,∞) with generator

Lβ =
1
2

d
dr2 +

φ′
0

φ0

d
dr

and Dirichlet boundary condition at 0.

▶ Above, φ0(r) = Ai
(
(4λm∗

β
√
χβ)

1/3 r − ω1
)

, where Ai is the Airy function and −ω1

its first zero.

▶ The quantities appearing above are:

▷ m∗
β is the spontaneous magnetization

▷ χβ is the curvature of the Wulff shape at its apex.
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Critical prewetting: main result

▶ The following is proved in [Ioffe, Ott, Shlosman, V. 2021]:

▷ Consider the Ising model on Z2.

▷ Fix β > βc and λ > 0.

▷ Rescale the interface

◦ horizontally by N−2/3

◦ vertically by χ−1/2
β · N−1/3

▷ Then, as N → ∞, its distribution converges weakly to that of the trajectories the
stationary Ferrari–Spohn diffusion introduced in the previous slide.
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Critical prewetting: Heuristic argument

Let us conclude this part with a heuristic explanation of the origin of the N1/3 scaling
in the effective model.

▶ Consider a path staying in the tube [−N,N]× [H, 3H] for some fixed H > 0.

N−N

3H

H

▶ Remember that Prob(path) ∝ e−λ
N Area ProbRW(path)

▷ Energetic cost =
λ

N
· Area ∼ λ

N
· NH ∼ λH

▷ Entropic cost = − log ProbRW
(
∀k ∈ {−N, . . . ,N}, H ≤ Xk ≤ 3H

)
∼ N/H2

▷ These two costs are of the same order when λH ∼ NH−2, that is

H ∼ λ−1/3N1/3

▶ This argument can be turned into a rigorous proof (for effective models).
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— IV. Inverse correlation length —



Inverse correlation length: the settings

▶ Denote by µβ,h the weak limit of the finite-volume measures µN;β,h as N → ∞.

▶ We are interested in the truncated 2-point function

⟨σ0;σx⟩β,h = ⟨σ0σx⟩β,h − ⟨σ0⟩β,h⟨σx⟩β,h

and, more specifically, in the associated inverse correlation length

νβ,h(x̂) = − lim
n→∞

1
n
log⟨σ0;σ[nx̂]⟩β,h,

where x̂ ∈ S1 and [(x1, x2)] = (⌊x1⌋, ⌊x2⌋).

▶ It is known that νβ,h > 0 if and only if (β, h) ̸= (βc, 0).
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Inverse correlation length: non-analytic behavior as h ↓ 0

▶ Work in progress [Ott, V.]: For all β > βc, as h ↓ 0,

νβ,h(x̂) = νβ,0(x̂) + Θ(h2/3).

▶ This is supported by (exact, but nonrigorous) computations by [McCoy, Wu ’78].

▶ It is expected that νβ,h(x̂) is analytic in h for all β < βc.

▶ It is the only case in this talk for which planarity is expected to be essential: for a
non-planar two-dimensional system (or when d ≥ 3), it is expected that, for all
β > βc as h ↓ 0,

νβ,h(x̂) = νβ,0(x̂) + Θ(h).
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Inverse correlation length: heuristics

▶ The main contribution to the covariance between the spins at 0 and [nx̂] is due to
the presence of a large contour surrounding both vertices.

0

[nx̂]

▶ For the same reason as in the previous part (prewetting), the typical width of the
contour is of order h−1/3.

▶ This leads to a magnetic-field cost of order h · h−1/3n ∼ h2/3n.

▶ This picture can be made precise, for instance, in the random-current
representation of the model.
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Thank you for your attention!

19/19


