
Free Probability and Free Cumulants

Something Old and Something New

Roland Speicher
Universität des Saarlandes

Saarbrücken

Roland Speicher Free Probability and Free Cumulants 1 / 43



Free Probability and Free Cumulants
Something Old and Something New

Roland Speicher
Universität des Saarlandes

Saarbrücken

Roland Speicher Free Probability and Free Cumulants 1 / 43



Freeness

Section 1

Freeness
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Freeness

Some history
1985 Voiculescu introduces "freeness" in the context of isomorphism

problem of free group factors

1991 Voiculescu discovers relation with random matrices (which leads,
among others, to deep results on free group factors)

1994 Speicher and Nica develop a combinatorial theory of freeness, based
on the notion of “free cumulants”

later ... many new results on operator algebras, eigenvalue distribution of
random matrices, and much more ....
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Freeness

Definition of freeness

Definition
Let (A, ϕ) be non-commutative probability space, i.e., A is a unital
algebra and ϕ : A → C is unital linear functional (i.e., ϕ(1) = 1)

Unital subalgebras Ai (i ∈ I) are free or freely independent, if
ϕ(a1 · · · an) = 0 whenever

I ai ∈ Aj(i), j(i) ∈ I ∀i,
I j(1) 6= j(2) 6= · · · 6= j(n)
I ϕ(ai) = 0 ∀i

Random variables x1, . . . , xn ∈ A are free, if their generated unital
subalgebras Ai := algebra(1, xi) are so.
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Freeness

What is freeness?

Remark
Freeness between x and y is an infinite set of equations relating various
moments in x and y:

ϕ
(
p1(x)q1(y)p2(x)q2(y) · · ·

)
= 0

Basic observation: freeness between x and y is actually a rule for
calculating mixed moments in x and y from the moments of x and the
moments of y:

ϕ
(
xm1yn1xm2yn2 · · ·

)
= polynomial

(
ϕ(xi), ϕ(yj)

)
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Freeness

Example
If x and y are free, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

Remark

Roland Speicher Free Probability and Free Cumulants 6 / 43



Freeness

Example
If x and y are free, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

Remark
Freeness is a rule for calculating mixed moments, analogous to the concept
of independence for random variables. This is the reason that it is also
called “free independence”.
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Freeness

Example
If x and y are free, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

Remark
Free independence is a rule for calculating mixed moments, analogous to
the concept of independence for random variables.
Note: free independence is a different rule from classical independence; free
independence occurs typically for non-commuting random variables, like
operators on Hilbert spaces or (random) matrices.
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Freeness

Where does freeness show up?

Important occurrences
generators of the free group in the corresponding free group von
Neumann algebras L(Fn)

creation and annihilation operators on full Fock spaces
for many classes of random matrices
black holes, tensor networks, fluctuations of Q-SSEP, eigenstate
thermalization hypothesis, etc ...

Fundamental questions
Why should this strange definition of freeness be something special –
it looks so arbitrary?

—> universal construction

How can we understand those rules for mixed moments in a
systematic way?

—> free cumulants
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Freeness

Where does free probability show up?
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Freeness

Fundamental questions: why and what???
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Universality of freeness

Section 2

What is freeness?

A universal concept!
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Universality of freeness

Universal products
How to get mixed moments in a universal way?
Input: moments of {xi} and moments of {yi}
Output: mixed moments in {xi, yj}

mixed moments
ϕ(xiyj), ϕ(xiyjxk), ϕ(xiyjxkyl), . . .

moments in X
ϕ(xi), ϕ(xixj), ϕ(xixjxk), . . .

moments in Y
ϕ(yi), ϕ(yiyj), ϕ(yiyjyk), . . .

universal
rule
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Universality of freeness

Speicher 1997, Ben Ghorbal and Schürmann 2002
There are exactly two universal rules on states, which are associative,
commutative and unital:

the tensor product

—> classical independence

the reduced free product of Voiculescu

—> free independence

So by general principles, there are only two possibilities for ϕ(xyxy):
ϕ(xx)ϕ(yy)

ϕ(xx)ϕ(y)ϕ(y) + ϕ(x)ϕ(x)ϕ(yy)− ϕ(x)ϕ(y)ϕ(x)ϕ(y)
and then everything else is determined!

more possibilities
without unital: also boolean product
without commutative: also monotone product

Roland Speicher Free Probability and Free Cumulants 10 / 43



Universality of freeness

Speicher 1997, Ben Ghorbal and Schürmann 2002
There are exactly two universal rules on states, which are associative,
commutative and unital:

the tensor product

—> classical independence

the reduced free product of Voiculescu

—> free independence

So by general principles, there are only two possibilities for ϕ(xyxy):
ϕ(xx)ϕ(yy)

ϕ(xx)ϕ(y)ϕ(y) + ϕ(x)ϕ(x)ϕ(yy)− ϕ(x)ϕ(y)ϕ(x)ϕ(y)
and then everything else is determined!

more possibilities
without unital: also boolean product
without commutative: also monotone product

Roland Speicher Free Probability and Free Cumulants 10 / 43



Universality of freeness

Speicher 1997, Ben Ghorbal and Schürmann 2002
There are exactly two universal rules on states, which are associative,
commutative and unital:

the tensor product —> classical independence
the reduced free product of Voiculescu —> free independence

So by general principles, there are only two possibilities for ϕ(xyxy):
ϕ(xx)ϕ(yy)

ϕ(xx)ϕ(y)ϕ(y) + ϕ(x)ϕ(x)ϕ(yy)− ϕ(x)ϕ(y)ϕ(x)ϕ(y)
and then everything else is determined!

more possibilities
without unital: also boolean product
without commutative: also monotone product

Roland Speicher Free Probability and Free Cumulants 10 / 43



Universality of freeness

Speicher 1997, Ben Ghorbal and Schürmann 2002
There are exactly two universal rules on states, which are associative,
commutative and unital:

the tensor product —> classical independence
the reduced free product of Voiculescu —> free independence

So by general principles, there are only two possibilities for ϕ(xyxy):
ϕ(xx)ϕ(yy)

ϕ(xx)ϕ(y)ϕ(y) + ϕ(x)ϕ(x)ϕ(yy)− ϕ(x)ϕ(y)ϕ(x)ϕ(y)
and then everything else is determined!

more possibilities
without unital: also boolean product
without commutative: also monotone product

Roland Speicher Free Probability and Free Cumulants 10 / 43



Free cumulants

Section 3

How do we understand freeness conceptually:
free cumulants
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Free cumulants

Understanding the freeness rule: the idea of
cumulants

write moments in terms of other quantities, which we call free
cumulants

freeness is much easier to describe on the level of free cumulants:
vanishing of mixed cumulants
relation between moments and cumulants is given by summing over
non-crossing or planar partitions
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Free cumulants

Non-crossing partitions

Definition
A partition of {1, . . . , n} is a decomposition π = {V1, . . . , Vr} with

Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= j),
⋃
i

Vi = {1, . . . , n}

The Vi are the blocks of π ∈ P(n).
π is non-crossing if we do not have p1 < q1 < p2 < q2 such that p1, p2 are
in same block, q1, q2 are in same block, but those two blocks are different.

NC(n) := {non-crossing partitions of {1,. . . ,n}}

Remark
NC(n) is actually a lattice with refinement order.
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Free cumulants

the only crossing partition for n = 4

π = {(1, 3), (2, 4)}

1 2 3 4

NC(4): the 14 non-crossing partitions for n = 4
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Free cumulants

Moments and cumulants
Definition
For unital linear functional

ϕ : A → C

we define cumulant functionals κn (for all n ≥ 1)

κn : An → C

as multi-linear functionals by moment-cumulant relation

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ[a1, . . . , an]

Remark
Note: classical cumulants are defined by a similar formula, where only
NC(n) is replaced by P(n)
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Free cumulants

Example (n = 4)

ϕ(a1a2a3a4) = + + + +

+ + + + +

+ + + +

= κ4(a1, a2, a3, a4) + κ1(a1)κ3(a2, a3, a4)

+ κ1(a2)κ3(a1, a3, a4) + κ1(a3)κ3(a1, a2, a4)

+ κ3(a1, a2, a3)κ1(a4) + κ2(a1, a2)κ2(a3, a4)

+ κ2(a1, a4)κ2(a2, a3) + κ1(a1)κ1(a2)κ2(a3, a4)

+ κ1(a1)κ2(a2, a3)κ1(a4) + κ2(a1, a2)κ1(a3)κ1(a4)

+ κ1(a1)κ2(a2, a4)κ1(a3) + κ2(a1, a4)κ1(a2)κ1(a3)

+ κ2(a1, a3)κ1(a2)κ1(a4) + κ1(a1)κ1(a2)κ1(a3)κ1(a4)
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Free cumulants

Freeness =̂ vanishing of mixed cumulants
Theorem (Speicher 1994)
The fact that x1, . . . , xm are free is equivalent to the fact that

κn(xi(1), . . . , xi(n)) = 0

whenever
1 ≤ i(1), . . . , i(n) ≤ m
there are p, q such that i(p) 6= i(q) (in particular, n ≥ 2)

Example
If x and y are free then: ϕ(xyxy) =

κ1(x)κ1(x)κ2(y, y) + κ2(x, x)κ1(y)κ1(y) + κ1(x)κ1(y)κ1(x)κ1(y)

x y x y x y x y x y x y
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Free cumulants

Sum of free variables: description via R-transform

Definition
Consider a random variable x ∈ A. We define its Cauchy transform
G = Gx and its R-transform R = Rx by

G(z) =
1

z
+

∞∑
n=1

ϕ(xn)

zn+1
, R(z) =

∞∑
n=1

κn(x, . . . , x)z
n−1

Theorem (Voiculescu 1986, Speicher 1994)
Then we have

1
G(z) +R(G(z)) = z

Rx+y(z) = Rx(z) +Ry(z) if x and y are free

Roland Speicher Free Probability and Free Cumulants 18 / 43



Free cumulants

Eigenvalues of the sum of independent Gaussian
and Wishart 3000× 3000 random matrices

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Free cumulants

Product of free variables: description via
S-transform

Theorem (Voiculescu 1987; Haagerup 1997; Nica, Speicher 1997)
Put

Mx(z) :=

∞∑
m=1

ϕ(xm)zm

and define

Sx(z) :=
1 + z

z
M<−1>
x (z) S-transform of x

Then: If x and y are free, we have

Sxy(z) = Sx(z) · Sy(z).

Roland Speicher Free Probability and Free Cumulants 20 / 43



Free cumulants

Eigenvalues of the product of two independent
Wishart 2000× 2000 random matrices

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Generalization to higher order and arbitrary genus

Section 4

And now something new: Generalization to
higher order and arbitrary genus
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Generalization to higher order and arbitrary genus

Topological numbers, indexed by genus g and
numbers l1, . . . , ln of points on n boundaries

αg;l1,...,ln

n = 3, g = 0 n = 3, g = 2
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Generalization to higher order and arbitrary genus

Topological numbers, indexed by genus g and
numbers l1, . . . , ln of points on n boundaries

αg;l1,...,ln

n = 3, g = 0 n = 3, g = 2

α0;4,5,3 α2;3,2,1
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Generalization to higher order and arbitrary genus

Topological linear functionals, indexed by genus g
and numbers l1, . . . , ln of points on n boundaries

αg;l1,...,ln(a1, . . . , al1 , al1+1, . . . , al1+···+ln) ai ∈ A some algebra A

n = 3, g = 0 n = 3, g = 2

α0,;4,5,3

[a1, · · · , a12]

α2,;3,2,1

[b1, b2, · · · , b6]
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Generalization to higher order and arbitrary genus

Encoding in surfaced permutations PS
(or partitioned permutations with genus)

1

4
5

2

36
7

9

8
10

surfaced permutation: (V, π, g)

π is the permutation with cycles
according to all the boundaries
V is the partition of all cycles of
π according to the connected
components
g is the vector of genera of the
components

(1, 4)(2, 3)(5)(6, 9, 7)(8, 10)

g = (0, 2, 1)
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Generalization to higher order and arbitrary genus

Multiplicative functions on surfaced permutations

Definition
A function f : PS→ C is called multiplicative if

f(V, π, g) =
∏
B∈V

f(B, π|B, g|B)

and if it is invariant under conjugation of π.
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Generalization to higher order and arbitrary genus

Example for multiplicativity

1

4 5

2

36
7

9

8
10

f( ) =
1

4
5

2

36
7

9

8
10

f( )) x f( ) x f(=
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1
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9

8
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1
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1
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4
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Generalization to higher order and arbitrary genus

Our examples for such multiplicative functions:
correlations coming from random matrices

Let A = (aij)
N
i,j=1 be random matrix. Let kr be classical cumulants:

l1 = 4,
l2 = 5,
l3 = 3

γ1 = (1, 2, 3, 4)

γ2 = (5, 6, 7, 8, 9)

γ3 = (10, 11, 12)

product along cycles of matrix entries
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traces along cycles
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∑
g

N2−n−2gϕg;l1,...,ln
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Generalization to higher order and arbitrary genus

Our examples for such multiplicative functions:
correlations coming from random matrices
Let A = (aij)

N
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l1 = 4,
l2 = 5,
l3 = 3
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γ3 = (10, 11, 12)

traces along cycles

k3(Tr(A4),Tr(A5),Tr(A3))

=
∑
g

N−1−2gϕg;4,5,3

product along cycles of matrix entries

k3(a12a23a34a41, a56a67a78a89a95, . . . )

=
∑
g

N−13−2gκg,4,5,3
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Generalization to higher order and arbitrary genus

Moment-cumulant formulas

“moments” are given by collection of numbers (ϕg;l1,...,ln)n;l1,...,ln;g
“cumulants” are given by collection of numbers (κg;l1,...,ln)n;l1,...,ln;g

moments and cumulants determine each other by combinatorial
formulas

I “moment-cumulant formula”

I given by “convolution of multiplicative functions on surfaced
permutations”

I corresponding to “product of surfaced permutations”

skip details
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Generalization to higher order and arbitrary genus

Product of surfaced permutations

Definition
Let (V, π, g) and (W, σ, h) be surfaced permutations. We define their
product to be

(V, π, g)� (W, σ, h) = (

V ∨W

,

πσ

,

k

)

where
V ∨W is the join of the two set partitions V and W
πσ is the product of the two permutations π and σ
k is given in terms of g and h and a “genus defect” coming from the
multiplication
(genus can be created, but not destroyed by multiplication)
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Generalization to higher order and arbitrary genus

Example ((n = 1, g = 0)× (n = 1, g = 0) = (n = 2, g = 0))

12 3

5 4

1

4 5

2 3

1 2

3

5

4

no creation of genus

{(1, 4)}{(2, 3, 5)} × {(1, 5)}{(2)}{(3, 4)} = {(123)(45)}.
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Generalization to higher order and arbitrary genus

Example ((n = 2, g = 0)× (n = 1, g = 0) = (n = 2, g = 1))

1

45

2 3

1 2

3

5

4

2

3

5

4

1

creation of genus

{(1, 4)(2, 3, 5)} × {(1, 5)}{(2)}{(3, 4)} = {(123)(45)}.
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Generalization to higher order and arbitrary genus

Functions on PS and their convolution
Definition
Let f1, f2 : PS→ C be functions, we define their convolution by

f1 ~ f2(U , γ, k) =
∑

(V,π,g)�(W,σ,h)=(U ,γ,k)

f1(V, π, g)f2(W, σ, h).

Definition
A function f : PS→ C is called multiplicative if

f(V, π, g) =
∏
B∈V

f(B, π|B, g|B)

and if it is invariant under conjugation of π.

Fact
The convolution of two multiplicative functions is multiplicative.
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Generalization to higher order and arbitrary genus

Delta, Zeta, and Möbius function on PS
Delta function
The unit element w.r.t. the convolution is given by the multiplicative delta
function

δ(V, π, g) =

{
1 if (0e, e, 0)
0 otherwise

,

Zeta function
The zeta function ζ on PS is the multiplicative function given by

ζ(V, π, g) =

{
1 if V = 0π and g = 0

0 otherwise

Möbius function
The zeta function has an inverse with respect to convolution. This is called
Möbius function and denoted by µ. It is also multiplicative.

ζ ~ µ = δ, µ~ ζ = δ.
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Generalization to higher order and arbitrary genus

Restriction to planar (g = 0) sector

Fact
This all restricts consistently to the genus = 0 sector:

if we consider only
k = 0, then the factorizations in

f1 ~ f2(U , γ, k) =
∑

(V,π,g)�(W,σ,h)=(U ,γ,k)

f1(V, π, g)f2(W, σ, h).

run automatically only over g = 0 and h = 0.

This corresponds then to the combinatorics of higher order free probability
theory.
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Generalization to higher order and arbitrary genus

Higher order free probability theory

Moment-cumulant formulas
The above theory restricted to the planar sector (g = 0) yields the
combinatorial theory of (higher order) free probability theory.

the relevant objects are
I the multiplicative moment function ϕ
I the multiplicative cumulant function κ

the relation between them is given by the moment-cumulant formula

ϕ = κ~ ζ, κ = ϕ~ µ restricted to g = 0.

in this context the surfaced permutations with g = 0 are called
partitioned permutations
in particular, for n = 1, partitioned permutations can be identified
with non-crossing partitions and everything reduces to ordinary free
probability
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Generalization to higher order and arbitrary genus

Our questions on higher order free probability
theory

Main questions
Are there extensions of the planar free probability theory to general
genus?

I yes, according to the extension of the theory of multiplicative functions
from partitioned permutations to surfaced permutations, in [BCGLS]

Are there reformulations of the combinatorial moment-cumulant
relations in terms of generating power series?

I yes, according to [BCGLS]

[BCGLS]
“Analytic theory of higher order free cumulants” (arxiv.2112.12184)
by G. Borot, S. Charbonnier, E. Garcia-Failde, F. Leid and S. Shadrin
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Generalization to higher order and arbitrary genus

Generating power series formulas for g = 0: n = 1, 2

Voiculescu 1986, Speicher 1994;

Collins,Mingo,Sniady,Speicher 2008

Consider the generating series

M1(x) = 1 +
∑
l∈N

ϕlx
l, C1(x) = 1 +

∑
l∈N

κlx
l

M2(x1, x2) =
∑

l1,l2∈N
ϕl1,l2x

l1
1 x

l2
2 , C2(x1, x2) =

∑
l1,l2∈N

κl1,l2x
l1
1 x

l2
2

then

M1(x) = C1(xM1(x)),

M2(x1, x2) +
x1x2

(x1 − x2)2
=

d ln y1
d lnx1

d ln y2
d lnx2

(
C2(y1, y2) +

y1y2
(y1 − y2)2

)
,

where yi = xiM1(xi).
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d lnx1

d ln y2
d lnx2

(
C2(y1, y2) +

y1y2
(y1 − y2)2

)
,

where yi = xiM1(xi).

Roland Speicher Free Probability and Free Cumulants 39 / 43



Generalization to higher order and arbitrary genus

Generating power series formulas for g = 0: n = 1, 2

Voiculescu 1986, Speicher 1994; Collins,Mingo,Sniady,Speicher 2008
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Generalization to higher order and arbitrary genus

Generating power series formulas for g = 0: n > 2

Notation
For n ∈ N we denote

Mn(x1, . . . , xn) = δn,1 +
∑

l1,...,ln∈N
ϕl1...lnx

l1
1 . . . x

ln
n ,

Cn(x1, . . . , xn) = δn,1 +
∑

l1,...,ln∈N
κl1...lkx

l1
1 . . . x

ln
n .

Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 2021
We have

Mn(x1, . . . , xn) =
∑

r1,...,rn∈N

∑
T∈G0,n(r+1)

O∨ri(yi)
′∏

I∈I(T )

C#I(yI).
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Generalization to higher order and arbitrary genus

Generating power series formulas for g = 0: n > 2

Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 2021

Mn(x1, . . . , xn) =
∑

r1,...,rn∈N

∑
T∈G0,n(r+1)

O∨ri(yi)

′∏
I∈I(T )

C#I(yI),

where yi = xiM1(xi), r+ 1 = (r1 + 1, . . . , rn + 1),

G0,n(r+ 1) is set of bicolored trees, I(T ) the set of black vertices identified
with its adjacent white vertices,

O∨r (y) =
∑
m≥0

(
d ln y

d lnx
y∂y

)m
d ln y

d lnx
[vm]

(
∂w +

v

w

)r

· 1
∣∣∣∣
w=C1(y)

,

∏′ means C2(yi, yj) is replaced by

C2(yi, yj) +
yiyj

(yi − yj)2
.

Roland Speicher Free Probability and Free Cumulants 40 / 43



Generalization to higher order and arbitrary genus

The case k=3

Example
The only types of trees that contribute to M3(x1, x2, x3) are the following

M3(x1, x2, x3) =

C3(x1, x2, x3)∏3
i=1C1(yi)x′(yi)

+
y1∏3

i=1C1(yi)x′(yi)

∂

∂y1

C̃2(y1, y2)C̃2(y1, y3)

C1(y1)x′(y1)
+ . . .
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Generalization to higher order and arbitrary genus

Bychkov, Dunin-Barkowski, Kazarian, Shadrin:

Explicit closed algebraic formulas for Orlov– Scherbin n-point functions

Generalised ordinary vs fully simple duality for n-point functions and a proof
of the Borot–Garcia-Failde conjecture
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Generalization to higher order and arbitrary genus

Some more questions

and partial answers:

give direct combinatorial proof of formula for generating power series

I Lionni: From higher order free cumulants to non-separable hypermaps;
arXiv:2212.14885

I Hock: A simple formula for the x− y symplectic transformation in
topological recursion; arXiv:2211.08917

I Alexandrov, Bychkov, Dunn-Barkowski, Kazarian, Shadrin: A universal
formula for the x− y swap in topological recursion; arXiv:2212.00320

I ????????????

Thank you for your attention!
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