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Conduction in disordered media

• Random resistor networks (RNs) have been used for decades in
Physics to study conduction in disordered media.

• Random RNs have been much studied also by probabilists,
especially in Percolation Theory (e.g. G. Grimmett, H. Kesten,
L.T Chayes, L. Chayes, Y. Peres, R. Lyons,....) .

• Mathematically, a RN is a weighted undirected graph.
Edges correspond to electrical filaments, weights to
conductances.
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Some popular RNs

See e.g. Percolation and Conduction, Rev. Mod. Phys. 45 (1973), S.
Kirkpatrick

• Box in Zd with random conductances
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Some popular RNs

• RN built on supercritical bond percolation on Zd (with
random conductances)
Mixtures of insulating and conducting materials
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Some popular RNs

• Miller-Abrahams resistor network on Rd
Amorphous solids as doped semiconductors

Each node x has an energy mark Ex ∈ R
Between nodes x 6= y there is an electrical filament with
conductance

cx,y := exp
{
− |x− y| − β(|Ex|+ |Ey|+ |Ex − Ey|)

}
β: inverse temperature
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Directional conductivity

Box of size `

σ`:= Directional conductivity
σ`:=current along 1st direction under unit potential difference.
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Scaling limit of directional conductivity

Box of size `

Fact (S.M. Kozlov, Math. USSR Sbornik 57, 1987)

Consider Z2. If the conductivities cx,y are i.i.d. with values in [a, b]
with 0 < a < b < +∞, then

lim
`→+∞

σ` = σ a.s.

where σ is non-random and σI is the effective homogenized matrix.

General dimension d: lim`→+∞ `
2−dσ` = σ a.s.
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Scaling limit of directional conductivity:
what about other RNs?

It was an open problem
(the solution, soon)
See Problem 1.18 in

Recent progress on the Random
Conductance Model

M. Biskup,
Probability Surveys, 2011.
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Scaling limit of directional conductivity:
what about other RNs?
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• All the above RNs, and many more, can be thought of as RNs
on simple point processes.

• We will describe a “universal” result for the scaling limit of the
directional conductivity
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Environment ω and random weighted graph G(ω)

• (Ω,F ,P) probability space

• ω ∈ Ω: environment, modeling the disorder and describing all
sources of microscopic randomness

• Our finite RNs will be built from an infinite resistor network
G(ω) (=infinite weighted undirected graph)
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Simple point process ω̂

We fix a simple point process, i.e.

Ω 3 ω 7→ ω̂ ∈ { locally finite subsets of Rd }
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Conductance field

We fix a conductance field

c : Ω× Rd × Rd 3 (ω, x, y) 7→ cx,y(ω) ∈ [0,+∞)

• B cx,y(ω) = cy,x(ω)

• Relevant values are for x 6= y in ω̂
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Infinite resistor network G(ω)

• { Nodes of G(ω) } := ω̂

• {filaments of G(ω) } := { {x, y} : x 6= y in ω̂ , cx,y(ω) > 0 }

• Conductance of {x, y} := cx,y(ω)

Alessandra Faggionato Random resistor networks on simple point processes and Mott’s law



From G(ω) to finite RNs

` > 0, Λ` := [−`/2, `/2]d = �
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From G(ω) to finite RNs

Keep only filaments in the stripe with at least one node in Λ`
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Statistical homogeneity and ergodicity of the
medium

• We deal with media which are

disordered at microscopic level ,

homogeneous at macroscopic level .

• To formalize that, we need another MAIN INGREDIENT:
Group G= Rd, Zd acting on

• the Euclidean space Rd

• the probability space (Ω,F ,P)
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Action of G on the Euclidean space Rd

• (τg)g∈G , τg : Rd → Rd translation

• Just for simplicity, here: τgx = x+ g

• In general, τgx = x+ V g with V invertible d× d matrix

General case with V and G = Zd: relevant for graphs built on crystal
lattices
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Action of G on the probability space (Ω,F ,P)

• Action of G on the probability space: (θg)g∈G,

θg : Ω→ Ω , θ0 = 1 , θg ◦ θg′ = θg+g′ for all g, g′ ∈ G

• θgω describes the updated environment when we perform a
translation τ−g on the Euclidean space.

• This is formalized by assuming some simple covariant
relations between the two G–actions:

For all ω ∈ Ω, g ∈ G and x, y ∈ θ̂gω, it holds

θ̂gω = τ−g(ω̂) ,

cx,y(θgω) = cτgx,τgy(ω) .
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Assumptions

B P0:=Palm distribution. Roughly, P0 := P(·|0 ∈ ω̂)

Assumptions:

(A1) P is stationary and ergodic w.r.t. the action of G on Ω;

(A2) the intensity m of ω̂ (i.e. mean density) is finite and positive;

(A3) covariant relations for the two G–actions;

(A4) for P–a.a. ω the weighted undirected graph G(ω) is connected [it
can be relaxed];

(A5) λ0, λ2 ∈ L1(P0), where λk(ω) :=
∑

x∈ω̂:x 6=0 c0,x(ω)|x|k

(A6) L2(P0) is separable.

B Consequence: P(|ω̂| = +∞) = 1.

Alessandra Faggionato Random resistor networks on simple point processes and Mott’s law



Directional conductivity

Connect the RN at scale ` to a battery with a unit potential
difference

σ`:=current flowing along the 1st direction.
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Scaling limit of directional conductivity

D:=effective homogenized matrix

Theorem (AF, arXiv:2108.11258)

Under the previous general assumptions:
Suppose that e1 is an eigenvector of D. Then for P–a.a. ω it holds

σ := lim
`→+∞

`2−dσ`(ω) = mD1,1 = me1 ·De1 .

• Extensions: e1 ∈ Ker(D)⊥, replace Λ` by suitable parallelepiped

• Kirchhoff’s laws =⇒ Electrical potential V ω
` satisfies a discrete

elliptic equation
∇ · (D`(ω)∇V ω

` ) = 0

with suitable b.c.

• Stochastic homogenization
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Effective homogenized matrix

To simplify, here, we take ω̂ ⊂ G

Definition

We define the effective homogenized matrix D as the d× d
nonnegative symmetric matrix such that, for all a ∈ Rd,

a ·Da = inf
f∈L∞(P0)

1

2

∫
dP0(ω)

∑
x∈ω̂

c0,x(ω) (a · x−∇f(ω, x))2 ,

where ∇f(ω, x) := f(θxω)− f(ω).
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Effective homogenized matrix

• D can be degenerate and non zero (A.F, arXiv:2108.11258).

• The continuous time random walk on ω̂ with probability rate
cx,y(ω) for a jump from x to y has asymptotic diffusion matrix
equal to 2D (A.F. arXiv:2009.08258 (2020), to appear in AIHP)

• D can be computed explicitly in few cases (linear resistor
networks)
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Miller-Abrahams random resistor network

Effective model of Mott’s variable range hopping:

• phonon–assisted electron hopping in amorphous solids in the
regime of strong Anderson localization

• introduced by N. Mott to explain anomalous decay of
conductivity at low temperature

The environment ω is the realization of a marked simple point
process, ω = {(x,Ex)}, ω̂ = {x}.
G(ω): complete graph on ω̂ with weights

cx,y(ω) := exp
{
− |x− y| − β(|Ex|+ |Ey|+ |Ex − Ey|)

}
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Bounds

General Assumptions read:
P stationary, ergodic, E

[(
] ω̂ ∩ [0, 1]d

)2]
< +∞.

• σ(β) = mD(β)1,1

• D(β)1,1 = inff∈L∞(P0)F(f)
=⇒ for each test function f we have an upper bound on D(β)1,1

• σ(β) is the scaling limit of directional conductivity:
=⇒ we get lower bounds on σ(β) by Rayleigh’s monotonicity
law for resistor networks
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Mott’s law

• Physics law

• Energy marks: i.i.d. random variables with law ν,
ν(dE) = c |E|αdE and α ≥ 0, on a finite interval [−A,A]

• d ≥ 2

• Heuristic derivation. Several attempts in the Physics literature
to make it more robust

Mott’s law:

σ(β) ≈ a(β) exp
{
−κβ

α+1
α+1+d

}
for β large

a(β) exhibits a negligible β–dependence.

Rich debate: κ?
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Critical conductance

G(ω): complete graph on ω̂ with weights

cx,y(ω) := exp
{
− |x− y| − β(|Ex|+ |Ey|+ |Ex − Ey|)

}
Definition (Critical conductance cc(β))

Given ξ > 0 keep in G(ω) only filaments with cx,y(ω) ≥ ξ. Then{
for ξ > cc(β) the resulting graph a.s. does not percolate,

for ξ < cc(β) the resulting graph a.s. percolates .

Recall Mott’s law: σ(β) ≈ a(β) exp
{
−κβ

α+1
α+1+d

}
Physics heuristics:

• cc(β) ≈ a′(β) exp{−κ′β
α+1
α+1+d }

• Conjecture: κ = κ′

• Debate: κ′?
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Assumptions

• Nodes {x}: homogeneous Poisson point process with intensity m

• I.I.D. energy marks with common distribution ν such that, near
the origin, ν has form

ν(dE) =

{
C0E

α1(E ≥ 0)dE Case A

C0|E|αdE Case B
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Mott’s law for the critical conductance

Theorem ( A.F. arXiv:2301.06318)

κ′ := lim
β→+∞

β−
α+1
α+1+d ln cc(β) = −

(
λcC

α+1
0 /m

) 1
α+1+d

where λc is a constant of percolation-type depending only from α, d
and Case A or B.

Hence we have proved that

cc(β) ≈ a′(β) exp{−κ′β
α+1
α+1+d } , κ′ = −

(
λcC

α+1
0 /m

) 1
α+1+d

Alessandra Faggionato Random resistor networks on simple point processes and Mott’s law



Mott’s law

Recall: κ′ = −
(
λcC

α+1
0 /m

) 1
α+1+d

Theorem ( A.F. )

In Case (A): κ := limβ→+∞ β
− 1+α
d+1+α lnσ(β) = κ′. Hence,

σ(β) ≈ a(β) exp
{
−κβ

α+1
α+1+d

}
, κ = κ′ .

In case (B): same result under a suitable Ansatz on left-right
crossings (up to now rigorously proved only in Case A, where FKG
inequality holds)

Poisson point processes are the right object:
basic mechanism of thinning at low temperature leads to a Poisson
point process after space rescaling (see [AF, arXiv:2301.06318] for
more results on universality behind Mott’s law)
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