The Quantum SSEP &

the emergence of free probability in noisy many-body systems

How to characterise fluctuations in diffusive out-of-equilibrium many-body quantum systems?

Denis Bernard (CNRS & LPENS, Paris)
with Tony Jin (now Chicago U.) and Ludwig Hruza (LPENS, Paris)
and

M. Bauer, Ph. Biane, F. Essler, A. Krajenbrink, M. Medenjak, L. Piroli.

Rome, Jan. 2023

The Quantum SSEP & Motivations:

Fermions hopping on a lattice with Brownian amplitudes

$$dH_t = \sqrt{D} \sum_j \left(c_{j+1}^{\dagger} c_j dW_t^j + c_j^{\dagger} c_{j+1} d\overline{W_t^j} \right)$$

- + boundary terms...
- + injection/extraction...
- Schematic representation of « mesoscopic » systems coupled to reservoirs

Aims: Describing fluctuations of coherent effects at mesoscopic scale (out-of-equilibrium).

The (classical) Macroscopic Fluctuation Theory

[Bertini, Sole, Gabrielli, Jona-Lasinio, Landim, ...]

- MFT describes fluctuations in out-of-equilibrium « classical » systems
 - -> Statistics on profiles, currents, transport, and their fluctuations

$$\left\{ \begin{array}{l} \partial_t n(x,t) + \partial_x j(x,t) = 0 \\ j(x,t) = -D(n)\partial_x n(x,t) + \sqrt{L^{-1}\sigma(n)}\,\xi(x,t) \end{array} \right.$$
 (noisy Fourier-Fick's law)

Large deviation functions

$$\mathbb{P}\mathrm{rob} \Big[\mathrm{profile} = n(\cdot) \Big] \asymp e^{-(L/a_{uv}) \, F[n(\cdot)]} \quad \longleftarrow \quad \text{``analogue "`of free energy out-of-equilibrium (non-local)}$$

MFT defines as an effective theory for a noisy Fourier-Fick's law
 MFT emerged from studies of (stochastic) lattice models...

[Kipnis, Landim, Liggett, Spohn, Derrida, Mallick, Evans, et al ...]

e.g. SSEP (Markov chain)

Towards a « Quantum Mesoscopic Fluctuation Theory »

- Is there universality in the fluctuations of quantum coherent effects in out-of-equilibrium diffusive many-body systems ?...
 - Get quantitative description of transport, interferences, coherent processes, entanglement, monitoring, etc, and their fluctuations in those systems ...
- Experimental measurability of these fluctuating coherent effects

Nice, rich, quantum stochastic processes, generalising well known classical processes
 (say SSEP, ASEP) with unexpected connexions (probability & group theory, combinatorics, ...)

The Quantum SSEP (structure & basics):

— Quadratic but noisy model :

$$dH_t = \sqrt{D} \sum_j \left(c_{j+1}^\dagger c_j \, dW_t^j + c_j^\dagger c_{j+1} \, d\overline{W_t^j} \right)$$
 + boundary (injection/extraction) terms...

— Stochastic many-body quantum system :

The evolution is stochastic, so is the quantum state and hence the 2-point functions G

-> Stochastic process on coherences

$$G_{ij} = \langle c_j^{\dagger} c_i \rangle_t = \text{Tr}(\rho_t \, c_j^{\dagger} c_i)$$

$$G_{t+dt}=e^{-idh_t}G_te^{+idh_t}$$
 (with dh the one-particle hamiltonian)

Q-SSEP includes SSEP (in mean) but codes for quantum coherent effects.

- -> More than in the classical analogue (due to coherent/interference effects)
- Look for fluctuations of the coherences and higher moments

$$\mathbb{E}[G_{i_1i_n}\cdots G_{i_2,i_1}]$$

Non-equilibrium coherent fluctuations

— Open boundary condition —> system is driven out-of-equilibrium

- Steady mean profile -> out-of-equilibrium:

$$[n_j]:=\mathbb{E}[\langle c_j^\dagger c_j
angle]=n_a+x(n_b-n_a)$$
 (x=j/N, at large system size L=Na) $\mathbb{E}[G_{ij}]=0$ \longrightarrow decoherence (in mean)

 Fluctuations & coherences -> Steady statistics of (coherent) fluctuations.

$$\mathbb{E}[G_{ij}G_{ji}] = \frac{1}{N}(\Delta n)^2 x (1-y) + O(N^{-2}) \qquad \text{for} \quad G_{ij} = \langle c_j^\dagger c_i \rangle$$
 —> long range (multi-point) correlations.

Sub-leading (in system size) fluctuating coherences (beyond mean decoherence) ... with some (hidden) patterns (-> free probability...)

Fluctuations of coherences (large deviation)

- Statistics of the coherences: higher moments... $G_{ij} = \langle c_i^{\dagger} c_i \rangle_t = \operatorname{Tr}(\rho_t c_i^{\dagger} c_i)$

$$G_{ij} = \langle c_j^{\dagger} c_i \rangle_t = \text{Tr}(\rho_t \, c_j^{\dagger} c_i)$$

$$\mathbb{E}[G_{i_1i_n}\cdots G_{i_3i_2}G_{i_2i_1}]^c = (\frac{a_{uv}}{L})^{n-1} \ g_n(x_1,\cdots,x_n;\tau) + O((\frac{a_{uv}}{L})^n)$$
 n-th cumulants

in the scaling limit $x_k = i_k/N, \ \tau = t/N^2, \ N = L/a_{uv}$

- -> (formal) existence of large deviation function
- Existence of scaling limit: numerical check.

FIG. 2. The discrete fermion density $n_{Lx}(L^2t)$ for system sizes L=24 and L=48 together with the scaling limit $\rho(x,t)$ at t=0.01 as a function of space x=i/L. The extraction and injection rates are $\alpha_1 = \beta_1 = \alpha_L = \beta_L = 1$ and don't fit the initial conditions. The agreement is very good.

two-point function

FIG. 3. Boundary conditions that fit the initial domain wall state $(n_a = 1, n_b = 0)$.

Fluctuations: the role of free probability

— Look at the moments of the coherences $\mathbb{E}[G_{i_1i_n}\cdots G_{i_2,i_1}]$ in terms of their cumulants $\mathbb{E}[G_{i_1i_n}\cdots G_{i_2,i_1}]^c$ (-> via sum on partitions)

Only the non-crossing partitions contribute. Generalisation to higher order expectations

Free probability!

- Universality: it relies only three conditions.

 - $\text{ U(1) invariance}: \ G_{jk} \equiv_{\text{in law}} e^{i\theta_j} G_{jk} e^{-i\theta_k}$ $\text{ Scaling of the loop expectation values}: \ \mathbb{E}[G_{j_1j_n} \cdots G_{j_3j_2} G_{j_2j_1}] \sim N^{1-n}$ $\text{ Factorisation of product of loops}: \ \mathbb{E}[G_{j_1j_n} \cdots G_{j_2j_1} \cdot G_{i_1i_p} \cdots G_{i_2i_1}] =$ $\mathbb{E}[G_{j_1j_n}\cdots G_{j_2j_1}] \ \mathbb{E}[G_{i_1i_p}\cdots G_{i_2i_1}]$

Fluctuations: the role of free probability

- Application (i): Steady measure and free cumulants [(B.J).... Ph. Biane... (then B. H.)]

```
Theorem: Let \varphi the Lebesgue measure on [0,1], Let I_x:=\mathbb{I}_{[0,x]} with \varphi(I_{x_1},\cdots,I_{x_n})=\min(x_1,\cdots,x_n), Then: g_n(x_1,\cdots,x_n;\tau=\infty)=\kappa_n(I_{x_1},\cdots,I_{x_n}) free cumulants
```

-> Higher Q-SSEP steady cumulants are free cumulants of commuting variables

```
A few exemples : (\text{for } 0 < x_1 < x_2 < x_3 < x_4 < 1) \kappa_2(x,y) = x(1-y) \;,\; \kappa_3(x,y) = x(1-2y)(1-z) \kappa_4(x_1,x_2,x_3,x_4) = x_1(1-3x_2-2x_3+5x_2x_3)(1-x_4) depend on the ordering of the points on the loop
```

Combinatorial aspect —> associahedron; Q-SSEP —> free probability for classical SSEP.

Application (ii): Dynamics -> The free cumulants of the expectations of coherences satisfy simple scaling hydrodynamic equations.

Emergence of free probability

in noisy mesoscopic systems

- Coarse-grained description (at mesoscopic scale)
 - (i) <u>separation</u> of time scales: fast, closed dynamics within ballistic cells for $t < t_\ell$ —> unitary dynamics within each cells for $t < t_\ell$

(ii) <u>ergodicity</u> of the fast dynamics (-> noise):

$$\mathbb{E}_t[G_{jk}] := rac{1}{t_\ell} \int_t^{t+t_\ell} dt' \, G_{jk}(t') = \mathrm{Tr}(
ho_t \, [c_i^\dagger c_j]_U)$$
 (local) Haar measure

- Validity of U(1) sym. + MFT in mean —> the \ll universality three conditions \gg
 - U(1) invariance : $G_{jk} \equiv_{\text{in law}} e^{i\theta_j} G_{jk} e^{-i\theta_k}$ $G_{jk} \equiv_{\text{in law}} e^{i\theta_j} G_{jk} e^{-i\theta_k}$ closed unitary dynamics at short time
 - Scaling of the loop expectation values : $\mathbb{E}[G_{j_1j_n}\cdots G_{j_3j_2}G_{j_2j_1}]\sim N^{1-n}$ If some perturbation theory is valid $(H=H_0+V)$

(if no cancelation between the two first diagrams)

If mean densities satisfy MFT

- Factorisation of loop expectations:
 closed fast dynamics / cells independence
- Validation / Violation of these three conditions ...

Conclusion:

Many open questions related to quantum stochastic processes and to constructing a « Quantum Mesoscopic Fluctuation Theory » but Q-SSEP already provides a few hints

Conjectural ubiquitous/universal role of « free probability » in fluctuating (at- or out-of-equilibrium) many body quantum systems

- non-crossing partitions <— scaling of cumulants and U(1) invariance.
 as large matrices <— associated to ballistic cells d.o.f.'s
 similar occurence in ETH [see S. Pappalardi, L. Fioni, J. Kurchan] (locality/coarse-graining in energy versus locality in space)
 L. Hurla & D. B., arXiv:2204.11680

Thank you !!!

Hidden free probability in classical SSEP:

[M. Bauer, D.B. Ph. Biane]

- Large deviation Q-SSEP

$$\mathbb{P}\left[\mathfrak{n}(\cdot) \approx n(\cdot)\right] \asymp_{N \to \infty} e^{-N I_{\text{ssep}}[n]},$$

-> In terms of free probability data

$$I_{\mathrm{ssep}}[n] = \max_{g(\cdot),q(\cdot)} \left(\int_0^1 \!\! dx \Big[n(x) \log \big(\frac{n(x)}{g(x)} \big) + (1-n(x)) \log \big(\frac{1-n(x)}{1-g(x)} \big) + q(x)g(x) \Big] - F_0^{\mathrm{ssep}}[q] \right)$$
 with
$$F_0^{\mathrm{ssep}}[a] = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} R_n(\mathbb{I}_{[a]}),$$
 n-th free cumulants of $\mathbb{I}_{[a]}(x) = \int_x^1 dy \, a(y)$ w.r.t. to the Lebesgue measure on [0,1]

- Three steps:

- (i): Q-SSEP /classical SSEP relation
- (ii): Free probability description of the Q-SSEP steady measure
- (iii): A relation between cumulants and « non-coincidants » cumulants for Bernouilli variables

Closed model: Fluctuations at Equilibrium

- Periodic boundary condition -> Equilibrium state (at large time) + fluctuations

- Steady/Invariant measure : $G_{ij} = \langle c_i^{\dagger} c_i \rangle_t = \operatorname{Tr}(\rho_t \, c_i^{\dagger} c_i)$

- 1-point functions (mean decoherence)
$$\mathbb{E}[G_{ii}] = M_1/N = \bar{m} \qquad \text{(equilibrium)}$$

$$\mathbb{E}[G_{ij}] = 0 \quad (i \neq j) \qquad \text{(decoherence)}$$

 $M_k := \operatorname{tr}(G^k) =: Nm_k$ $(\Delta \bar{m}) \equiv \text{initial density variance}$

- 2-point functions (fluctuating coherence)

$$\mathbb{E}[|G_{ij}|^2]=rac{NM_2-M_1^2}{N(N^2-1)}\equivrac{(\Deltaar{m})^2}{N}$$
 i.e. $\langle c_j^\dagger c_i
angle\simeq O(1/\sqrt{N})$

- -> Fluctuating coherence (generated from initial inhomogeneities)
- Steady state = (non random) equilibrium state + fluctuations

$$\lim_{t\to\infty}\rho_t=\rho_{\rm eq}+\delta\rho \qquad \qquad \text{Fluctuating deviation from equilibrium (cf. higher moments, large deviation function...)}$$

Reminder on Free Probability

For a collection of random variables X_{j}

- (Standard) cumulants (-> sum over partitions {1,...,m}):

$$\mathbb{E}[X_1\cdots X_m] = \sum_{\pi\in\mathcal{P}_m} C_\pi(X)$$

$$m_1 = c_1,$$

$$m_2 = c_2 + c_1^2,$$

$$m_3 = c_3 + 3c_2c_1 + c_1^3,$$

$$m_4 = c_4 + 4c_1c_3 + 3c_2^2 + 6c_1^2c_2 + c_1^4.$$

- Free cumulants (-> sum over non-crossing partitions {1,...,m}):

$$\mathbb{E}[X_1 \cdots X_m] = \sum_{\pi \in NC_m} C_{\pi}(X)$$

$$m_1 = \kappa_1,$$

$$m_2 = \kappa_2 + \kappa_1^2,$$

$$m_3 = \kappa_3 + 3\kappa_2\kappa_1 + \kappa_1^3,$$

$$m_4 = \kappa_4 + 4\kappa_1\kappa_3 + 2\kappa_2^2 + 6\kappa_1^2\kappa_2 + \kappa_1^4.$$

(Un-reasonable) connexions to combinatorics

- Recall
$$\left[G_{i_1i_N}\cdots G_{i_3i_2}G_{i_2i_1}\right]^c = rac{1}{L^{N-1}}\,g_N(x_1,\cdots,x_N) + O(L^{-N})$$

- Take all points to be equal : $x_j = -t$

Then:
$$g_N(\mathbf{x})|_{x=-t} = t(1+t)\Phi_{N-1}(t)$$

$$\Phi_2(t) = 1 + 2t,
\Phi_3(t) = 1 + 5t + 5t^2,
\Phi_4(t) = 1 + 9t + 21t^2 + 14t^3,
\Phi_5(t) = 1 + 14t + 56t^2 + 84t^3 + 42t^4.$$

—> These are the generating functions counting the number of (n-k) dimensional faces in the associahedron of order n.

- vertices = different parenthesis
- edges = associativity rule

$$(a(bc)) \longleftrightarrow ((ab)c)$$

- these graphs are polytopes.

